JPS63182548A - Evaluating method for ultra cleanliness and measuring instrument used for the same - Google Patents

Evaluating method for ultra cleanliness and measuring instrument used for the same

Info

Publication number
JPS63182548A
JPS63182548A JP1577587A JP1577587A JPS63182548A JP S63182548 A JPS63182548 A JP S63182548A JP 1577587 A JP1577587 A JP 1577587A JP 1577587 A JP1577587 A JP 1577587A JP S63182548 A JPS63182548 A JP S63182548A
Authority
JP
Japan
Prior art keywords
cleanliness
air
dust
ultra
target air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1577587A
Other languages
Japanese (ja)
Other versions
JPH0830675B2 (en
Inventor
Yoshinobu Suzuki
良延 鈴木
Susumu Oikawa
老川 進
Takao Kase
加瀬 隆雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP62015775A priority Critical patent/JPH0830675B2/en
Publication of JPS63182548A publication Critical patent/JPS63182548A/en
Publication of JPH0830675B2 publication Critical patent/JPH0830675B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To evaluate ultra cleanliness by comparing a background counted value which is the cleanliness of no-dust air with the cleanliness of object air and taking a statistical test, and regarding the difference between mean values of the both as the cleanliness of the object air when the test result indicates significance or the cleanliness of the object air as the cleanliness of the no-dust air when not. CONSTITUTION:A filter 2 of 15-nine in collection efficiency to, for example, 0.1mum is arranged at the ceiling part of a clean room 1 and the clean unit 9 consisting of a filter 6, an air conditioner 7, and a fan 8 is coupled with the ceiling part of the room 1 and a grating floor 3 through ducts 4 and 5. Further, a cleanliness measuring instrument 10 consists of a no-dust air producer 11 and a fine particle measuring instrument 12. When a measurement is taken, no-dust air from the producer 11 is sampled through a sampling pipe 17 to measure the background counted value of the measuring instrument 12 and the air in the room 1 is sampled through the pipe 17 to measure particulates in it; and they are tested statistically to evaluate the ultra cleanliness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超LSI等の製造成いは研究開発を行うクリ
ーンルーム内の超清浄度の評価方法および該評価方法に
使用される測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for evaluating ultra-cleanliness in a clean room for manufacturing or researching and developing ultra-LSIs, and a measuring device used in the evaluation method. .

〔従来の技術〕[Conventional technology]

従来、清浄空気の評価は、サンプリング管内に測定空気
を吸引しこれにレーザ光を照射し、レーザ光が粒子に衝
突し散乱する光を光センサにより検出しているが、現在
、清浄空気の評価については、米国連邦規格で規定され
ているクラス100、クラス1,000、クラス10,
000、クラス100.000について評価が行われて
いる。これは、粒子径0.5μm以上の粒子数が、1r
t3の立方体の中にそれぞれ100個、1,000個、
10,000個、100.000個存在することを意味
している。
Conventionally, clean air evaluation involves sucking measurement air into a sampling tube, irradiating it with laser light, and detecting the scattered light when the laser light collides with particles using an optical sensor. For class 100, class 1,000, class 10,
000 and class 100.000 are being evaluated. This means that the number of particles with a particle size of 0.5 μm or more is 1r.
100 pieces, 1,000 pieces, respectively in the cube of t3,
This means that there are 10,000 or 100,000 pieces.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、対象粒子径が0. 1μm、クラス1 
(1個/ft3)さらには対象粒子径が0゜03μm、
クラス0.5 (1個/2 f t3)といった超清浄
空気の正確な評価方法はなかった。
However, the target particle size is 0. 1μm, class 1
(1 piece/ft3) Furthermore, the target particle diameter is 0°03μm,
There was no accurate evaluation method for ultra-clean air such as class 0.5 (1 piece/2 ft3).

これは、レーザパーティクルカウンタでは粒子径が0.
1μmのものまで計測可能であり、また、粒子を飽和ア
ルコールの中を通過させ粒子径を大にしてから計測する
CNCカウンタでは、粒子径が0.02〜0.03μm
のものまで計測可能であるが、測定器のバックグランド
計数値(真に無塵の空気をサンプリングした場合でも粒
子数をカウントする値)が問題となり正確に評価が出来
ないためである。この測定器のハックグランド計数値は
、周囲の静電気、電磁波等の影響により測定器がノイズ
を発生し、これをカウントする値が主なものであるが、
他に測定器内の空気流路等の汚染により、ここから粒子
が発生してハックグランド計数値に加算される場合もあ
る。
This means that the laser particle counter has a particle size of 0.
It is possible to measure particles down to 1 μm, and CNC counters that pass particles through saturated alcohol to increase the particle size before measuring can measure particles with a particle size of 0.02 to 0.03 μm.
Although it is possible to measure even particles, the background count value of the measuring device (a value that counts the number of particles even when sampling truly dust-free air) becomes a problem and cannot be accurately evaluated. The hack ground count value of this measuring device is mainly a value that counts noise generated by the measuring device due to the influence of surrounding static electricity, electromagnetic waves, etc.
In addition, particles may be generated due to contamination of the air flow path within the measuring instrument and added to the Hackland count value.

本発明は上記問題を解決するものであって、バックグラ
ンド計数値が現場により異なっていても、限りなくOに
近い超清浄度をも評価できる超清浄度の評価方法および
該評価方法に使用される測定装置を提供することを目的
とする。
The present invention solves the above-mentioned problems, and provides an ultracleanliness evaluation method that can evaluate ultracleanliness as close as possible to O even if the background count value varies from site to site, and is used in the evaluation method. The purpose is to provide a measuring device that

〔問題点を解決するための手段〕[Means for solving problems]

そのために本発明の超清浄度の評価方法は、無塵空気の
清浄度であるバックグランド計数値と対象空気の清浄度
とを測定し、これらバックグランド計数値と対象空気の
清浄度とを統計的に検定し、有意であれば両者の平均値
の差をその対象空気の清浄度とし、有意でないならば、
その対象空気の清浄度を無塵空気の清浄度と同じと見做
すことを特徴とし、また、本発明の超清浄度の評価方法
に使用される測定装置は、無塵空気発生器と、サンプリ
ング管と、該サンプリング管に接続される微粒子測定器
とからなり、前記サンプリング管はサンプリング管固定
器具により固定位置が可変可能に構成され、前記無塵空
気発生器から発生する無塵空気と対象空気の両者の清浄
度を測定可能にすることを特徴とするものである。
For this purpose, the ultra-cleanliness evaluation method of the present invention measures the background count value, which is the cleanliness of dust-free air, and the cleanliness of the target air, and statistically calculates the background count value and the cleanliness of the target air. If it is significant, the difference between the two average values is taken as the cleanliness of the target air, and if it is not significant,
The cleanliness of the target air is considered to be the same as the cleanliness of dust-free air, and the measuring device used in the ultra-cleanliness evaluation method of the present invention includes a dust-free air generator, It consists of a sampling tube and a particulate measuring device connected to the sampling tube, and the sampling tube is configured so that its fixing position can be changed by a sampling tube fixing device, and the sampling tube is configured such that the fixing position thereof can be varied, and the dust-free air generated from the dust-free air generator and the object are It is characterized by being able to measure the cleanliness of both air.

〔作用〕[Effect]

本発明においては例えば第1図に示すように、先ず、サ
ンプリング管17を水平に倒して第2図点線の位置にし
、無塵空気発生器11からでる無塵空気をサンプリング
して微粒子測定器12のバックグランド計数値を測定し
、次に、サンプリング管17を垂直に起こして、クリー
ンルーム1内の空気を等速サンプリングし、クリーンル
ーム1内の微粒子を測定する。そして、これらバックグ
ランド計数値と測定対象データとを統計的に検定し、有
意であれば両者の平均値の差をその対象空気の清浄度と
し、有意でないならば、そのその対象空気の清浄度は無
塵空気の清浄度と同じと見做し、清浄度をクラスOとす
るものである。
In the present invention, for example, as shown in FIG. 1, first, the sampling tube 17 is laid down horizontally to the position indicated by the dotted line in FIG. Next, the sampling tube 17 is raised vertically to sample the air in the clean room 1 at a constant velocity, and the particles in the clean room 1 are measured. Then, statistically test these background counts and the measurement target data, and if significant, the difference between the average values of the two is determined as the cleanliness of the target air, and if not significant, the cleanliness of the target air. The cleanliness is considered to be the same as that of dust-free air, and the cleanliness is classified as class O.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照しつつ説明す
る。第1図は本発明の超清浄度の評価方法および該評価
方法に使用される測定装置の1実施例を説明するための
図、第2図は本発明の超清浄度の評価方法に使用される
測定装置の要部を示す側面図である。図中、1はクリー
ンルーム、2はフィルタ、3はグレーチング床、4.5
はダクト、6はフィルタ、7は空調機、8はファン、9
・・・クリーンユニット、10は超清浄度測定装置、1
1は無塵空気発生器、12は微粒子測定器、13.14
・・・台車、15はフ・アン、16はU L P Aフ
ィルタ、17・・・サンプリング管、18はサンプリン
グ管固定器具、19・・・測定器本体、20は支持具、
21は可撓性管、22は溝を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram for explaining an embodiment of the ultra-cleanliness evaluation method of the present invention and a measuring device used in the evaluation method, and FIG. 2 is a diagram for explaining an embodiment of the ultra-cleanliness evaluation method of the present invention. FIG. 2 is a side view showing main parts of the measuring device. In the figure, 1 is a clean room, 2 is a filter, 3 is a grating floor, 4.5
is a duct, 6 is a filter, 7 is an air conditioner, 8 is a fan, 9
...Clean unit, 10 is ultra cleanliness measuring device, 1
1 is a dust-free air generator, 12 is a particulate meter, 13.14
... Cart, 15 is a fan, 16 is a U L P A filter, 17... sampling tube, 18 is a sampling tube fixing device, 19... measuring instrument body, 20 is a support,
21 is a flexible tube, and 22 is a groove.

第1図において、クリーンルーム1の天井部には、HE
PAフィルタ、U T−P Aフィルタ、スーパーUL
PAフィルタ等の捕集効率の高いフィルタ2が配設され
、クリーンルーム1の天井部およびグレーチング床3に
は、ダクト4.5を介してフィルタ6、空調機7および
ファン8を備えるクリーンユニット9が連結されている
In Figure 1, there is a HE
PA filter, U T-PA filter, super UL
A filter 2 with high collection efficiency such as a PA filter is installed, and a clean unit 9 including a filter 6, an air conditioner 7 and a fan 8 is installed on the ceiling and grating floor 3 of the clean room 1 via a duct 4.5. connected.

超清浄度測定装置10は、無塵空気発生器11と微粒子
測定器12から構成され、それぞれ移動可能な台車13
.14上に載置されている。無塵空気発生器11は、フ
ァン15により吸引した空気を3枚のU L P Aフ
ィルタ16を通過させ無塵空気を発生させるものである
。ULPAフィルタ16は、例えば0.1μmに対して
捕集効率が99.999%で3枚のULPAフィルタ1
6の総合捕集効率は99.99・・・99(15ナイン
)%で、これを通過した空気は真に無塵の空気と見做す
ことができる。
The ultra-cleanliness measuring device 10 is composed of a dust-free air generator 11 and a particulate measuring device 12, each of which is equipped with a movable trolley 13.
.. It is placed on 14. The dust-free air generator 11 generates dust-free air by passing air sucked by a fan 15 through three ULP A filters 16. The ULPA filter 16 has a collection efficiency of 99.999% for 0.1 μm, for example, and is composed of three ULPA filters 1.
The overall collection efficiency of No. 6 is 99.99...99 (15 nines)%, and the air that passes through this can be regarded as truly dust-free air.

微粒子測定器12は、サンプリング管17、サンプリン
グ管固定器具18および測定器本体19からなり、第2
図に詳細に示すように、サンプリング管17は支持具2
0を介して塩ビ管等の可撓性管21と接続されると共に
、サンプリング管固定器具18は、サンプリング管17
の支持具2゜が固定器具1日の溝22に沿って回動可能
に形成され、これによりサンプリング管17を垂直に立
ててクリーンルーム1内の空気を吸引したり、例えば、
矢印Aに示すように水平にして無塵空気発生器11から
でる空気を吸引することができるように、固定位置が可
変になるように形成されている。また、微粒子測定器1
2の必要条件はサンプリング管17に近づいてサンプリ
ングの位置を換える際に、人からの発塵により測定値の
信頼性が低下するのを防止することである。
The particle measuring device 12 consists of a sampling tube 17, a sampling tube fixing device 18, and a measuring device main body 19.
As shown in detail in the figure, the sampling tube 17 is connected to the support 2.
0, and the sampling tube fixing device 18 is connected to a flexible tube 21 such as a PVC tube through the sampling tube 17.
A support 2° is formed to be rotatable along a groove 22 of the fixture, so that the sampling tube 17 can be vertically erected to suck the air in the clean room 1, for example.
It is formed so that its fixed position is variable so that it can be placed horizontally as shown by arrow A and the air coming out of the dust-free air generator 11 can be sucked. In addition, particulate measuring device 1
The second requirement is to prevent the reliability of measured values from decreasing due to dust generated by people when approaching the sampling tube 17 and changing the sampling position.

次に測定方法について説明すると、先ず、サンプリング
管17を水平に倒して第2図点線の位置にし、無塵空気
発生器11からでる無塵空気をサンプリングして微粒子
測定器12のハックグランド計数値を測定し、次に、サ
ンプリング管17を垂直に起こして、クリーンルーム1
内の空気を等速サンプリングし、クリーンルーム1内の
微粒子を測定する。そして、これらハックグランド計数
値と測定対象データとを統計的に検定し、有意であれば
両者の平均値の差をその対象空気の清浄度とし、有意で
ないならば、そのその対象空気の清浄度は無塵空気の清
浄度と同じと見做し、清浄度がクラスOとするものであ
る。
Next, to explain the measurement method, first, the sampling tube 17 is laid down horizontally to the position shown by the dotted line in Figure 2, the dust-free air coming out from the dust-free air generator 11 is sampled, and the hack grand count value of the particulate meter 12 is measured. Next, the sampling tube 17 is raised vertically and the clean room 1 is opened.
The air inside the clean room 1 is sampled at a constant velocity, and the particles inside the clean room 1 are measured. Then, statistically test these hack grand count values and the measurement target data, and if significant, the difference between the average values of the two is determined as the cleanliness of the target air, and if not significant, the cleanliness of the target air. The cleanliness is considered to be the same as that of dust-free air, and the cleanliness is class O.

次に、本発明による超清浄度の評価方法の評価例につい
て説明すると、次ページの表1は上記した評価装置を用
いて測定した結果を示し、無塵空気によるハックグラン
ドを15回測定した値と、クリーンルーム内を20回測
定した値を示している。
Next, to explain an evaluation example of the ultra-cleanliness evaluation method according to the present invention, Table 1 on the next page shows the results measured using the above-mentioned evaluation device, and the values obtained by measuring hack ground using dust-free air 15 times. This shows the value obtained by measuring the inside of the clean room 20 times.

表1 上記表1で得られたデータを基にバックグランドデータ
と測定データの存意義検定をも分布を用いて行う例を以
下に説明する。
Table 1 An example will be described below in which the existence significance test of background data and measurement data is also performed using distribution based on the data obtained in Table 1 above.

ハックグランド値の符号をb、測定値の符号をmとし、
それぞれの平均値をM、 、M、 、標準偏差をSDl
、5D11、サンプル数をN、 、N、とすると、変数 t = (MIR−Mb )/SD’ (1/ Nb 
+ 1/ NII)SO’ −((SDb ”+30m
 ”)/(N b +Nm −2) ) ””は自由度
(N b +)i、−2)のt分布に従うことが証明さ
れている。上式に表1のデータから得られるMb =0
.133 、SDb −0,352、Nb =15MI
I=0.150 、S DIll=0.366 、NI
I=20を代入すると、t0=0.5E+6となる。
Let the sign of the hack grand value be b, the sign of the measured value be m,
The respective mean values are M, , M, and standard deviations are SDl.
, 5D11, when the number of samples is N, ,N, variable t = (MIR-Mb)/SD' (1/Nb
+ 1/NII) SO' -((SDb ”+30m
``)/(N b + Nm -2) ) '' has been proven to follow the t distribution with degrees of freedom (N b +)i, -2).In the above equation, Mb = 0 obtained from the data in Table 1
.. 133, SDb -0,352, Nb = 15MI
I=0.150, SDIll=0.366, NI
Substituting I=20 gives t0=0.5E+6.

次にt表より危険率αのときのt  (N b +Nイ
ー2゜α)を求める。危険率α−0,05のとき、t 
 (15+20−2.0.05) =t  (33,0,05)=2.03となる。
Next, from the t table, find t (N b +N2°α) when the risk rate is α. When the risk factor α-0.05, t
(15+20-2.0.05)=t(33,0,05)=2.03.

t o > t  (N b +Nm−2,α)が成立
すれば、ハックグランドデータと測定データに有意な差
があると判断してよく、両者の平均値の差をその対象空
気の清浄度とするが、この場合のように、t、=0.5
66<t  (33,0,05)=2゜03の場合には
、両者に有意な差がないとしてその対象空気の清浄度を
無塵空気の清浄度と同じと見做し、清浄度を0個/ft
3と判定する。
If t o > t (N b +Nm-2, α) holds, it can be determined that there is a significant difference between the hack ground data and the measured data, and the difference between the average values of the two can be calculated as the cleanliness of the target air. But, as in this case, t,=0.5
If 66<t (33,0,05)=2°03, it is assumed that there is no significant difference between the two, and the cleanliness of the target air is considered to be the same as that of dust-free air, and the cleanliness is 0 pieces/ft
It is judged as 3.

なお、本発明は上記実施例に限定されるものではなく、
種々の変更が可能である。例えば、上記実施例において
は、バックグランドデータと測定データの有意義検定を
t分布を用いて行っているが、他の検定手法を用いても
よい。
Note that the present invention is not limited to the above embodiments,
Various modifications are possible. For example, in the above embodiment, the significance test between the background data and the measured data is performed using the t-distribution, but other test methods may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、無塵空気の清浄度
であるバックグランド計数値と対象空気の清浄度とを測
定し、これらハックグランド計数値と対象空気の清浄度
とを統計的に検定し、有意であれば両者の平均値の差を
その対象空気の清浄度とし、有意でないならば、その対
象空気の清浄度を無塵空気の清浄度と同じと見做し、清
浄度0個/ft”とするものであるから、ハックグラン
ド計数値が現場により異なっていても、限りなくOに近
い超清浄環をも評価することができる。
As explained above, according to the present invention, the background count value, which is the cleanliness of dust-free air, and the cleanliness of the target air are measured, and these hack ground count values and the cleanliness of the target air are statistically calculated. If the difference between the average values is significant, the cleanliness of the target air is determined as the cleanliness of the target air, and if it is not significant, the cleanliness of the target air is considered to be the same as the cleanliness of dust-free air, and the cleanliness is 0. Therefore, even if the Hack Grand count value varies depending on the site, it is possible to evaluate an ultra-clean ring as close to O as possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の超清浄環の評価方法および該評価方法
に使用される測定装置の1実施例を説明するための図、
第2図は本発明の超清浄環の評価方法に使用される測定
装置の要部を示す側面図である。 1・・・クリーンルーム、2・・・フィルタ、3・・・
グレーチング床、4.5・・・ダクト、6・・・フィル
タ、7・・・空gIJ11.8・・・ファン、9・・・
クリーンユニット、10・・・超清浄環測定装置、11
・・・無塵空気発生器、12・・・微粒子測定器、13
.14・・・台車、15・・・ファン、16・・・UL
PAフィルタ、17・・・サンプリング管、18・・・
サンプリング管固定器具、19・・・測定器本体、20
・・・支持具、21・・・可撓性管、22・・・溝。
FIG. 1 is a diagram for explaining an embodiment of the ultra-clean ring evaluation method of the present invention and a measuring device used in the evaluation method;
FIG. 2 is a side view showing the main parts of a measuring device used in the ultra-clean ring evaluation method of the present invention. 1...Clean room, 2...Filter, 3...
Grating floor, 4.5...Duct, 6...Filter, 7...Empty gIJ11.8...Fan, 9...
Clean unit, 10... Ultra clean ring measuring device, 11
...Dust-free air generator, 12...Particle measuring device, 13
.. 14... Trolley, 15... Fan, 16... UL
PA filter, 17... sampling tube, 18...
Sampling tube fixing device, 19... Measuring instrument body, 20
...Support, 21...Flexible tube, 22...Groove.

Claims (2)

【特許請求の範囲】[Claims] (1)無塵空気の清浄度であるバックグランド計数値と
対象空気の清浄度とを測定し、これらバックグランド計
数値と対象空気の清浄度とを統計的に検定し、有意であ
れば両者の平均値の差をその対象空気の清浄度とし、有
意でないならば、その対象空気の清浄度を無塵空気の清
浄度と同じと見做すことを特徴とする超清浄度の評価方
法。
(1) Measure the background count value, which is the cleanliness of the dust-free air, and the cleanliness of the target air, and statistically test the background count value and the cleanliness of the target air. A method for evaluating ultra-cleanliness, characterized in that the difference between the average values of is regarded as the cleanliness of the target air, and if it is not significant, the cleanliness of the target air is considered to be the same as the cleanliness of dust-free air.
(2)無塵空気の清浄度であるバックグランド計数値と
対象空気の清浄度とを測定し、これらバックグランド計
数値と対象空気の清浄度とを統計的に検定し、有意であ
れば両者の平均値の差をその対象空気の清浄度とし、有
意でないならば、その対象空気の清浄度を無塵空気の清
浄度と同じと見做すことを特徴とする超清浄度の評価方
法に使用される測定装置であって、該測定装置は無塵空
気発生器と、サンプリング管と、該サンプリング管に接
続される微粒子測定器とからなり、前記サンプリング管
はサンプリング管固定器具により固定位置が可変可能に
構成され、前記無塵空気発生器から発生する無塵空気と
対象空気の両者の清浄度を測定可能にすることを特徴と
する超清浄度の評価方法に使用される測定装置。
(2) Measure the background count value, which is the cleanliness of the dust-free air, and the cleanliness of the target air, statistically test these background count values and the cleanliness of the target air, and if they are significant, both The difference between the average values of is regarded as the cleanliness of the target air, and if it is not significant, the cleanliness of the target air is regarded as the same as the cleanliness of dust-free air. The measuring device used includes a dust-free air generator, a sampling tube, and a particle measuring device connected to the sampling tube, and the sampling tube is fixed at a fixed position by a sampling tube fixing device. A measuring device used in an ultra-cleanliness evaluation method, characterized in that it is configured to be variable and is capable of measuring the cleanliness of both the dust-free air generated from the dust-free air generator and the target air.
JP62015775A 1987-01-26 1987-01-26 Ultra-cleanliness evaluation method and measuring device used in the evaluation method Expired - Lifetime JPH0830675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62015775A JPH0830675B2 (en) 1987-01-26 1987-01-26 Ultra-cleanliness evaluation method and measuring device used in the evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62015775A JPH0830675B2 (en) 1987-01-26 1987-01-26 Ultra-cleanliness evaluation method and measuring device used in the evaluation method

Publications (2)

Publication Number Publication Date
JPS63182548A true JPS63182548A (en) 1988-07-27
JPH0830675B2 JPH0830675B2 (en) 1996-03-27

Family

ID=11898188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62015775A Expired - Lifetime JPH0830675B2 (en) 1987-01-26 1987-01-26 Ultra-cleanliness evaluation method and measuring device used in the evaluation method

Country Status (1)

Country Link
JP (1) JPH0830675B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151653A (en) * 1993-11-30 1995-06-16 Sumika Bunseki Center:Kk Sample kit and sampling/analyzing method
JP2002357346A (en) * 2001-03-29 2002-12-13 Ricoh Co Ltd Clean room
JP2013217805A (en) * 2012-04-10 2013-10-24 Azbil Corp Position recording system of particle measuring apparatus and position recording method of particle measuring apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6124107B2 (en) * 2012-08-28 2017-05-10 エヌ・ティ・ティ・エイ・ティ・クリエイティブ株式会社 Measuring method of detection object

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868641A (en) * 1981-10-20 1983-04-23 Masabumi Kato Air analysis-reporting system for clean room and monitor card used in said system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868641A (en) * 1981-10-20 1983-04-23 Masabumi Kato Air analysis-reporting system for clean room and monitor card used in said system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151653A (en) * 1993-11-30 1995-06-16 Sumika Bunseki Center:Kk Sample kit and sampling/analyzing method
JP2002357346A (en) * 2001-03-29 2002-12-13 Ricoh Co Ltd Clean room
JP2013217805A (en) * 2012-04-10 2013-10-24 Azbil Corp Position recording system of particle measuring apparatus and position recording method of particle measuring apparatus

Also Published As

Publication number Publication date
JPH0830675B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
Donovan Particle control for semiconductor manufacturing
Hanley et al. Fractional aerosol filtration efficiency of in‐duct ventilation air cleaners
EP2741843B1 (en) System and method for converting optical diameters of aerosol particles to mobility and aerodynamic diameters
KR101146302B1 (en) Device for measuring size distribution of fine particles
CN106979909A (en) Particulate matter classification and concentration detection sensor and method based on luminous flux ratio
Bergmans et al. Particulate matter indoors: a strategy to sample and monitor size-selective fractions
Zinky A new tool for air pollution control: The aerosol particle counter
JPS63182548A (en) Evaluating method for ultra cleanliness and measuring instrument used for the same
US4847503A (en) Radon progeny detector for measuring attached and unattached fractions
Whitby et al. The ASHAE air-borne dust survey
Cesard et al. Assessing the containment efficiency of a microbiological safety cabinet during the simultaneous generation of a nanoaerosol and a tracer gas
BRESLIN et al. Efficiency of dust sampling inlets in calm air
Heo et al. Effect of horizontal inlet on slit-nozzle virtual impactor performance
Witschger et al. A new experimental wind tunnel facility for aerosol sampling investigations
CN108120659A (en) A kind of particle concentration detecting system and method having from zero calibration
CN207472723U (en) A kind of particle concentration detecting system having from zero calibration
Hanley et al. Fundamental evaluation of an electronic air cleaner
Hanley et al. A fractional aerosol filtration efficiency test method for ventilation air cleaners
Stukel Turbulent flow of suspensions over parallel plates
Szymanski et al. Filter efficiency measurement with optical particle counters—limitations and error sources
bin Mohd Nor Research on the Unified Threshold Criteria of Installed Filter Leak Test in Cleanrooms
KR102480904B1 (en) Method for estimating air quality index in consideration with bio particle
Glen et al. Air sampling for particulates
McKnight The measurement of net space charge density using air filtration methods
Sramek et al. The measurement system for the calibration of particle counters