JPS6318247A - Fuel component detector - Google Patents

Fuel component detector

Info

Publication number
JPS6318247A
JPS6318247A JP16267186A JP16267186A JPS6318247A JP S6318247 A JPS6318247 A JP S6318247A JP 16267186 A JP16267186 A JP 16267186A JP 16267186 A JP16267186 A JP 16267186A JP S6318247 A JPS6318247 A JP S6318247A
Authority
JP
Japan
Prior art keywords
light
fuel
refractive index
temperature
light guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16267186A
Other languages
Japanese (ja)
Inventor
Izumi Miyashita
宮下 泉
Okifumi Kageyama
陰山 興史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP16267186A priority Critical patent/JPS6318247A/en
Publication of JPS6318247A publication Critical patent/JPS6318247A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/43Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
    • G01N21/431Dip refractometers, e.g. using optical fibres

Abstract

PURPOSE:To enable the detection of fuel components accurately regardless of temperature changes, by providing a light emitting section at one end of a light guide contacting a fuel and a light receiving section at the other end thereof. CONSTITUTION:A light guide 3 comprises a first member 6 and a second member 7 linked thereto and the refractive index of the member 7 changes in such a manner as to be larger in the difference from that of the member 6 with a rise in the temperature. The member 7 is surrounded by a light shielding member 8 so that light is reflected effectively on the interface with the member 6. Both ends of the light guide 3 sticks out of a fuel cell 1 and a light emitting section 4 is provided at one end thereof 3 and a light receiving section 5 at the other end thereof. Light projected to one end of the light guide 3 from a light emitting section 4 travels through the light guide 3 while light is leaked at a fixed rate determined by the refractive index of a fuel 2 and comes out to the other end thereof to be received by the light receiving section 5. Furthermore, the quantity of light emitted from the light emitting section 4 and the quantity of light received by the light receiving section 5 are inputted into a component detector section 9 and components of the fuel is detected. This enables accurate detection of the fuel regardless of changes in the temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料成分検出装置の改良に係り、詳しくは、温
度の変化によっても、正確に燃料成分の検出ができる燃
料成分検出装置に関する。これは、例えば自動車用燃料
などの成分検出の分野で利用される。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement of a fuel component detection device, and more particularly, to a fuel component detection device that can accurately detect fuel components even when a temperature changes. This is used, for example, in the field of detecting components such as automobile fuel.

〔従来技術〕[Prior art]

国内では自動市川燃料に無鉛プレミアムとレギュラーと
が使用されているが、コーロノパにおいてはガソリンに
少量のメタノールまたはエタノールなどのアルコール成
分を混合したものが実用に供されている。したがって、
近い将来、我が国においても石油の代替燃料として最有
力視されているメタノールが自動車用燃料としてガソリ
ンや軽油に混合されるようになることが確実視されてい
る。
In Japan, unleaded premium and regular are used as automatic Ichikawa fuel, but in Colonopa, gasoline mixed with a small amount of alcohol component such as methanol or ethanol is used in practical use. therefore,
In the near future, it is certain that methanol, which is considered the most promising alternative fuel to petroleum in Japan, will be mixed with gasoline and diesel oil as automobile fuel.

このような燃料成分多様化の実態は地域によって様々で
あり、自動車メーカーは仕向地別にエンジンの点火タイ
ミングなどを調整することにより対処している。しかし
、同一地域においても上記多様化が進行しつつある現状
では、エンジンに充分な調整を施すことができない場合
があり、そのため種々のトラブルが発生している。した
がって、このような燃料成分の多様化に対応できるワイ
ドレンジフューエルエンジンの開発は必須とされ、それ
に伴い燃料成分を検出できるコンパクトなセンサーの開
発が必要となっている。
The actual situation of such diversification of fuel components varies depending on the region, and automobile manufacturers are dealing with this by adjusting engine ignition timing and other factors depending on the destination. However, in the current situation where the above-mentioned diversification is progressing even in the same region, it may not be possible to make sufficient adjustments to the engine, resulting in various troubles. Therefore, it is essential to develop a wide-range fuel engine that can handle the diversification of fuel components, and along with this, there is a need to develop a compact sensor that can detect fuel components.

このような現状の下に、ガソリン燃料の成分の迎いに応
じて光の屈折率が変化することを利用した燃料成分検出
装置が、第4I国際アルコール燃料技術シンポジウム(
IV International Symposi−
um Alcohol Fuel Technolog
y、開催国−ブラジル、開催時期−1980年10月5
〜8日)の議事録筒11(vol、I )の8 2.4
9’lに発表されている。
Under these circumstances, a fuel component detection device that utilizes the change in the refractive index of light depending on the components of gasoline fuel was proposed at the 4th International Alcohol Fuel Technology Symposium (
IV International Symposia
um Alcohol Fuel Technology
y, Host country: Brazil, Date: October 5, 1980
- 8th) Minutes Volume 11 (Vol. I) No. 8 2.4
It was announced on 9'l.

この燃料成分検出W置は、燃料中に浸される透明な導光
路と、該導光路の一端に光を入射する発光部と、該導光
路の他端から出る光を受光する受光部とよりなり、受光
量の多少により燃料の成分を検出するものである。すな
わち、発光部から出た光は、導光路と燃料の界面で反射
と屈折を繰り返しながら、受光部に到達するので、受光
部の受光量が燃料の屈折率に応じて変化することを利用
し、屈折率の変化に寄与する燃料中の成分の多少を検出
するものである。
This fuel component detection W position consists of a transparent light guide immersed in fuel, a light emitting part that enters light into one end of the light guide, and a light receiving part that receives light emitted from the other end of the light guide. The components of the fuel are detected based on the amount of light received. In other words, the light emitted from the light emitting section is repeatedly reflected and refracted at the interface between the light guide and the fuel before reaching the light receiving section. , which detects the amount of components in the fuel that contribute to changes in the refractive index.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の検出装置では、燃料の屈折率自体温
度によって変化する一方、導光路の屈折率も変化し、温
度の上昇に伴い導光路の屈折率に対する燃料の屈折率の
比率が小さくなる。したがって、温度の上昇により導光
路から光が洩れにくくなり、受光量が増加していわゆる
温度ドリフトが発生する。
In conventional detection devices such as those described above, while the refractive index of the fuel itself changes with temperature, the refractive index of the light guide also changes, and as the temperature rises, the ratio of the refractive index of the fuel to the refractive index of the light guide decreases. . Therefore, as the temperature rises, it becomes difficult for light to leak from the light guide path, and the amount of light received increases, causing a so-called temperature drift.

ところで、燃料成分を検出するには、高い精度で燃料の
屈折率を検出しなければならないため、光電変換素子な
どで形成される受光部の感度を高める必要がある。しか
し、受光部の検出感度を高めると上記の温度ドリフトは
増大し、検出精度に影響する。そこで、従来はサーミス
タなどの温度検知素子を用いて受光部の温度を検出し、
マイクロコンピュータなどで温度ドリフトを補正してい
た。ところが、可燃性の燃料にサーミスタなどの半導体
を近接または接触させることは、防爆や耐腐食性の点か
ら適切でなく、また、装置自体が複雑化しかつ大型で高
価なものとなるという3′!f点があった。
By the way, in order to detect fuel components, it is necessary to detect the refractive index of the fuel with high accuracy, so it is necessary to increase the sensitivity of the light receiving section formed by a photoelectric conversion element or the like. However, increasing the detection sensitivity of the light receiving section increases the temperature drift described above, which affects detection accuracy. Therefore, conventionally, a temperature sensing element such as a thermistor was used to detect the temperature of the light receiving part.
Temperature drift was corrected using a microcomputer. However, placing a semiconductor such as a thermistor in close proximity to or in contact with flammable fuel is not appropriate in terms of explosion protection or corrosion resistance, and the device itself becomes complicated, large, and expensive. There was point f.

本発明は、このような事情を考慮してなされたもので、
温度の変化によっても、正確に燃料成分の検出ができる
燃料成分検出装置を提供することを目的とする。
The present invention was made in consideration of such circumstances, and
It is an object of the present invention to provide a fuel component detection device that can accurately detect fuel components even when the temperature changes.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するための本発明の手段は、燃料に接す
る導光路の一端に発光部が、他端に受光部が設けられた
燃料成分検出装置であって、上記導光路が第一部材とそ
れに連結される第二部材とからなり、第二部材の屈折率
は温度の上昇に伴い、上記第一部材の屈折率との差が大
きくなるように変化するものであることである。
Means of the present invention for achieving the above object is a fuel component detection device in which a light guide in contact with fuel is provided with a light emitting part at one end and a light receiving part at the other end, the light guide being a first member. and a second member connected thereto, the refractive index of the second member changing as the temperature rises such that the difference from the refractive index of the first member increases.

〔作   用〕[For production]

発光部から導光路に入射される光が、温度の上昇による
第一部材に対する燃料の屈折率比の低下によりその洩れ
量が少なくなり、導光路内の光量が増す。一方、第二部
材の屈折率は温度の上昇に伴い第一部材との差が大きく
なるように変化し、・ その境界面での反射率が増大す
る。
The amount of light that enters the light guide from the light emitting portion leaks is reduced due to a decrease in the refractive index ratio of the fuel to the first member due to the rise in temperature, and the amount of light in the light guide increases. On the other hand, as the temperature rises, the refractive index of the second member changes so that the difference with the first member becomes larger, and the reflectance at the interface increases.

したがって、温度の上昇による光量の増加分を第一部材
と第二部材の境界面で反射させ、受光部に到達させない
ようにし、自動的に受光量の温度補正が行われる。
Therefore, the increase in the amount of light due to the rise in temperature is reflected at the interface between the first member and the second member, preventing it from reaching the light receiving section, and temperature correction of the amount of received light is automatically performed.

〔発明の効果〕〔Effect of the invention〕

本発明の燃料成分検出装置は、燃料に接する導光路の一
端に発光部が、他端に受光部が設けられた燃料成分検出
装置であって、上記導光路が第一部材とそれに連結され
る第二部材とからなり、第二部材の屈折率は温度の上昇
に伴い、上記第一部材の屈折率との差が大きくなるよう
に変化するものであるので、温度の上昇による光量の増
加分が第一部材と第二部材間の境界面で反射され、受光
量の補正がなされる。したがって、温度変化の如何にか
かわらず、燃料の屈折率を正確に把握することができ、
燃料成分を正確に検出できる。
The fuel component detection device of the present invention is a fuel component detection device in which a light guide path in contact with fuel is provided with a light emitting section at one end and a light receiving section at the other end, and the light guide path is connected to a first member. The refractive index of the second member changes as the temperature rises so that the difference from the refractive index of the first member increases. is reflected at the interface between the first member and the second member, and the amount of received light is corrected. Therefore, regardless of temperature changes, the refractive index of the fuel can be accurately determined.
Fuel components can be detected accurately.

〔実 施 例〕 以下に、本発明をその実施例に基づき詳細に説明する。〔Example〕 The present invention will be described in detail below based on examples thereof.

本実施例の燃料成分検出装置は、いわゆるワイドレンジ
フューエルエンジンの燃料配管に装着され、温度変化の
如何を問わず正確に燃料成分を検出し、その検出成分に
応してエンジン本体に付属する各種アクチュエータを自
動調整できるようにするものである。装置本体は、第1
図に示すように、図示しない燃料配管から分岐されて燃
料セル1に導入される燃料2に導光路3が浸され、その
一端に発光部4が、他端に受光部5が設けられる。
The fuel component detection device of this embodiment is installed in the fuel piping of a so-called wide range fuel engine, and accurately detects fuel components regardless of temperature changes. This allows the actuator to be automatically adjusted. The main body of the device is the first
As shown in the figure, a light guide path 3 is immersed in fuel 2 branched from a fuel pipe (not shown) and introduced into a fuel cell 1, and a light emitting section 4 is provided at one end of the light guide path 3, and a light receiving section 5 is provided at the other end.

導光路3は第一部材6とそれに連結される第二部材7と
からなり、第二部材7の屈折率は温度の上昇に伴い、上
記第一部材6の屈折率との差が大きくなるように変化す
る。
The light guide path 3 consists of a first member 6 and a second member 7 connected thereto, and the refractive index of the second member 7 is such that the difference from the refractive index of the first member 6 increases as the temperature rises. Changes to

導光路3はU字型の棒状体に形成され、発光部4が設け
られる一端から湾曲部を含むそのほとんど大部分が光量
測定のための第一部材6よりなり、これに連続して他端
に至る小部分が温度補正を行うための第二部材7よりな
る。なお、第二部材7は遮光性部材8により周囲が被覆
され、第一部材6との境界面で有効に光が反射されるよ
うなっている。導光路3の両端部は燃料セル1の外部に
突出し、その一端には光源である発光部5tが、他端に
は例えば光電変換素子よりなる受光部5が設けられる。
The light guide path 3 is formed in a U-shaped rod-like body, and from one end where the light emitting part 4 is provided, most of it including the curved part consists of a first member 6 for measuring the amount of light, and the other end continues from this. A small portion leading to the second member 7 is used for temperature correction. The second member 7 is surrounded by a light-shielding member 8, so that light is effectively reflected at the interface with the first member 6. Both ends of the light guide path 3 protrude outside the fuel cell 1, and a light emitting section 5t serving as a light source is provided at one end, and a light receiving section 5 made of, for example, a photoelectric conversion element is provided at the other end.

そして、発光部4から導光路3の一端側に投射された光
が導光部3内を進行し、燃料2の屈折率で定まる一定割
合の光が洩らされて他端+!’!へ出、受光部5によっ
て受光されるようになっている。そして、発光部4の発
光量と受光部5で受光される受光量は、マイクロコンピ
ュータなどよりなる成分検出部9に人力され、燃料成分
の検出が行われる。
Then, the light projected from the light emitting part 4 to one end of the light guide path 3 travels inside the light guide part 3, and a certain proportion of light determined by the refractive index of the fuel 2 is leaked to the other end +! '! The light is emitted to the light receiving section 5 and is received by the light receiving section 5. The amount of light emitted by the light emitting section 4 and the amount of light received by the light receiving section 5 are input manually to a component detecting section 9, which includes a microcomputer or the like, and the fuel components are detected.

よく知られるように、オクタン価の高いアロマ系のベン
ゼンなどは屈折率が高く、オクタン価の低いパラフィン
系の物質は屈折率が低い。また、メタノールやエタノー
ルなどのアルコール成分−よ屈折率が低い。この屈折率
は発光部4の発する発光量に対する、受光部5で受光さ
れる受光量の割合に基づいて検出することができる。し
たがって、検出した屈折率により、一般のガソリンの場
合lまオクタン価を知ることができ、アルコールを混合
したガソリンの、場合はアルコールの含を量を知ること
ができるのである。なお、導光路3をU字型に形成した
のは、光をできるだけ多(燃料2中に洩らすことにより
、受光gIS5では燃料成分の検出に寄与する光量のみ
を受光させ、検出精度を向上させると共に上載用として
装置をコンパクトに形成するためである。
As is well known, aromatic substances such as benzene with a high octane number have a high refractive index, while paraffin-based substances with a low octane number have a low refractive index. In addition, it has a lower refractive index than alcohol components such as methanol and ethanol. This refractive index can be detected based on the ratio of the amount of light received by the light receiving section 5 to the amount of light emitted by the light emitting section 4. Therefore, based on the detected refractive index, the octane number of ordinary gasoline can be determined, and the alcohol content of gasoline mixed with alcohol can be determined. The reason why the light guide path 3 is formed in a U-shape is to allow as much light as possible (by leaking it into the fuel 2, the light receiving gIS5 receives only the amount of light that contributes to the detection of fuel components, improving detection accuracy and This is to make the device compact for mounting.

ところで、既に述べたように、燃料2の屈折率は温度に
よって変化するので、より高精度に屈折率を検出するた
めには、適切な温度補正を行う必要がある。そごで、本
実施例でヒ、前記第一部材6を石英ガラスで形成し、第
二部材7を石英ガラスより屈折率の大きい方解石CaC
O3で形成し、両部材の境界面で光の一部を反射するこ
とにより、受光量を減じて温度補正を行うようにしてい
る。
By the way, as already mentioned, the refractive index of the fuel 2 changes depending on the temperature, so in order to detect the refractive index with higher accuracy, it is necessary to perform appropriate temperature correction. Therefore, in this embodiment, the first member 6 is made of quartz glass, and the second member 7 is made of calcite CaC, which has a higher refractive index than quartz glass.
It is made of O3, and by reflecting a part of the light at the interface between the two members, the amount of received light is reduced and temperature correction is performed.

なお、燃tI2の常温での屈折率n = 1.42〜1
.43テ、温度に対する変化率dn /dT= −2〜
−3X 10−’、石英ガラスの屈折率n+ = 1.
456で、温度に対する変化率dn+ / dT−3X
 10−6、方解石の屈折率n2= 1.654 、温
度変化率dn2/ dT= 5 X 10−6である。
In addition, the refractive index n of fuel tI2 at room temperature is 1.42 to 1
.. 43 Te, rate of change with respect to temperature dn /dT = -2~
-3X 10-', refractive index of silica glass n+ = 1.
456, the rate of change with temperature dn+ / dT-3X
10-6, the refractive index of calcite n2 = 1.654, and the temperature change rate dn2/dT = 5 x 10-6.

また、境界面での反射率Rは(n+ −nz / n+
 + r12)2である。したがって、第二部材7の屈
折率n2は、第2図に示すように、温度の上昇に伴い、
上記第一部材6の屈折率間との差、つまり上記の反射率
Rが大きくなるように変化する。
Also, the reflectance R at the boundary surface is (n+ -nz / n+
+r12)2. Therefore, as shown in FIG. 2, the refractive index n2 of the second member 7 changes as the temperature increases.
The difference between the refractive index of the first member 6, that is, the reflectance R changes to become larger.

このように構成することによって、温度上昇に伴い第一
部材6の屈折率間に対する燃料2の屈折率nの比率が低
下し、光の洩れ量が少なくなり、第一部材6内の光量が
増加する。この増加分を上記境界面で反射させることに
より、受光部5に到達させないようにすることができる
。つまり、周囲温度の上昇に基づく屈折率の温度ドリフ
トに対して、反射率Rが増加することにより自動的に反
射光量が増加して補正されるのである。
With this configuration, as the temperature rises, the ratio of the refractive index n of the fuel 2 to the refractive index of the first member 6 decreases, the amount of light leakage decreases, and the amount of light inside the first member 6 increases. do. By reflecting this increased amount at the boundary surface, it is possible to prevent it from reaching the light receiving section 5. In other words, a temperature drift in the refractive index due to an increase in ambient temperature is corrected by automatically increasing the amount of reflected light by increasing the reflectance R.

なお、上記とは別に、第一部材6に使用される石英ガラ
スより屈折率の小さい第二部材7を採用する場合、例え
ば螢石CaF2(屈折率n3=  1.432゜温度変
化率dn3/ dT−5X 1O−5)を用いると、そ
の屈折率n3は、第3図に示すように、温度の上昇に伴
って前記第一部材6の屈折率間との差、つまり反射率R
が大きくなるように変化する。したがって、前記と同様
に、温度ドリフトを補正し高い精度で燃料成分の検出を
することができる。なお、上記実施例では、光を第一部
材6から第二1;13材7に導いているが、反対の経路
を採って受光させるようにしてもよい。
In addition, apart from the above, when employing the second member 7 having a smaller refractive index than the quartz glass used for the first member 6, for example, fluorite CaF2 (refractive index n3 = 1.432° temperature change rate dn3/dT -5X 1O-5), as shown in FIG.
changes so that it becomes larger. Therefore, similarly to the above, temperature drift can be corrected and fuel components can be detected with high accuracy. In the above embodiment, the light is guided from the first member 6 to the second member 7, but the light may be received by taking the opposite path.

このように、本装誼によれば、温度検出素子などを用い
た補正回路を設けることなく、コンパクトな装置で、自
動釣に光量の温度ドリフトを正確に補正することができ
る。したがって、特に、従来は必ずしも容易でなかった
ハイオクタン価ガソリンとレギュラーガソリンとの混合
率をも検出でき、実用的な効果は大きくなる。なお、本
実施例では導光路3をU字型に形成したが、本発明はそ
の形状を特定するものではない。また、成分検出部9に
は、必ずしもマイクロコンピユータを用いる必要はな(
、受光部5の出力を増幅して直接各種アクチュエータを
駆動させるようにすることもできる。
As described above, according to the present arrangement, temperature drift in the amount of light can be accurately corrected in automatic fishing with a compact device without providing a correction circuit using a temperature detection element or the like. Therefore, in particular, it is possible to detect the mixing ratio of high octane gasoline and regular gasoline, which has not always been easy in the past, and the practical effects are great. Although the light guide path 3 is formed in a U-shape in this embodiment, the present invention does not specify the shape. Furthermore, it is not necessarily necessary to use a microcomputer in the component detection section 9 (
It is also possible to amplify the output of the light receiving section 5 and directly drive various actuators.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の概要構成を示す模式図、第2
図は第一部材と第二部材の屈折率の温度変化を示すグラ
フ、第3図は異なる実施例における第一部材と第二部材
の屈折率の温度変化を示すグラフである。 2−燃料、3−導光路、4−発光部、5−受光部、6・
−・第一部材、7−第二部材。
FIG. 1 is a schematic diagram showing the general configuration of an embodiment of the present invention, and FIG.
The figure is a graph showing temperature changes in the refractive index of the first member and the second member, and FIG. 3 is a graph showing the temperature change in the refractive index of the first member and the second member in different embodiments. 2-fuel, 3-light guide path, 4-light emitting section, 5-light receiving section, 6.
-・First member, 7-Second member.

Claims (1)

【特許請求の範囲】[Claims] (1)燃料に接する導光路の一端に発光部が、他端に受
光部が設けられた燃料成分検出装置であって、 上記導光路が第一部材とそれに連結される第二部材とか
らなり、 第二部材の屈折率は温度の上昇に伴い、上記第一部材の
屈折率との差が大きくなるように変化するものであるこ
とを特徴する燃料成分検出装置。
(1) A fuel component detection device including a light-emitting section at one end of a light guide in contact with fuel and a light-receiving section at the other end, the light guide comprising a first member and a second member connected to the first member. . A fuel component detection device, wherein the refractive index of the second member changes as the temperature increases so that the difference from the refractive index of the first member increases.
JP16267186A 1986-07-10 1986-07-10 Fuel component detector Pending JPS6318247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16267186A JPS6318247A (en) 1986-07-10 1986-07-10 Fuel component detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16267186A JPS6318247A (en) 1986-07-10 1986-07-10 Fuel component detector

Publications (1)

Publication Number Publication Date
JPS6318247A true JPS6318247A (en) 1988-01-26

Family

ID=15759071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16267186A Pending JPS6318247A (en) 1986-07-10 1986-07-10 Fuel component detector

Country Status (1)

Country Link
JP (1) JPS6318247A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784337A (en) * 1980-09-18 1982-05-26 Battelle Memorial Institute Double optical probe apparatus for measuring refractive index of fluid reduced in case of specified reference temperature

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784337A (en) * 1980-09-18 1982-05-26 Battelle Memorial Institute Double optical probe apparatus for measuring refractive index of fluid reduced in case of specified reference temperature

Similar Documents

Publication Publication Date Title
US4427293A (en) Double optical probe device for the determination of the refractive index of a liquid reduced to a predetermined reference temperature
EP0027099A1 (en) Refractive-index responsive light-signal system
CN101680836B (en) Fuel property detecting device
KR940004880B1 (en) Fiber optic liquid leak detector
US5157453A (en) Liquid content detecting device for alcohol regular gasoline and premium gasoline fuel mixture
US4037967A (en) Apparatus for measuring the density of a liquid, utilizing the law of refraction
EP0370807A1 (en) A liquid mixture ratio detector device
JPH01257245A (en) Measuring apparatus for mixing ratio of fuel for internal combustion engine
WO1991013323A2 (en) Fiber optic fuel and liquid gauge
JPS6318247A (en) Fuel component detector
JPS6318248A (en) Fuel component detector
US5220180A (en) Fiber optic fuel and liquid gauge having an open rigid "J" shaped tube
EP0281337B1 (en) A detector device for mixing ratio for petrol and alcohol or the like
JPS62232537A (en) Apparatus for detecting fuel component
JPH0249144A (en) Detector for liquid mixing ratio of mixed liquid
JPH0249143A (en) Detector for liquid mixing ratio of mixed liquid
JPS62276438A (en) Mixing ratio sensor for alcohol mixed fuel
JPH0222540A (en) Detector for liquid mixing ratio of liquid mixture
JPH0282138A (en) Liquid mixing ratio detector for mixed liquid
JPS63215945A (en) Mixing ratio detector for fluid such as gasoline-alcohol
JPH0658875A (en) Liquid property detector
JPH0464040A (en) Device and method for detecting content rate
JPH02107948A (en) Liquid mixing ratio detector for mixed liquid
JP2011226885A (en) Fuel property detector
JPH01262442A (en) Alcohol content detector