JPS6318174B2 - - Google Patents

Info

Publication number
JPS6318174B2
JPS6318174B2 JP11687976A JP11687976A JPS6318174B2 JP S6318174 B2 JPS6318174 B2 JP S6318174B2 JP 11687976 A JP11687976 A JP 11687976A JP 11687976 A JP11687976 A JP 11687976A JP S6318174 B2 JPS6318174 B2 JP S6318174B2
Authority
JP
Japan
Prior art keywords
diffuser plate
speckle
photosensitive material
lens
diffuser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11687976A
Other languages
Japanese (ja)
Other versions
JPS5342726A (en
Inventor
Takashi Suzuki
Kyoshi Iizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11687976A priority Critical patent/JPS5342726A/en
Publication of JPS5342726A publication Critical patent/JPS5342726A/en
Publication of JPS6318174B2 publication Critical patent/JPS6318174B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はスリガラス等の拡散板をコヒーレント
光束で照射し、拡散板からの光束によつて形成さ
れるスペツクルパターンを光学的に記録すること
によつて得られるスペツクル拡散板の作成方法に
関するものである。 スペツクルパターンを光学的に記録した拡散板
としては、拡散板をコヒーレント光で照明、撮影
し現像、漂白処理によつて得られた記録材料面上
の凹凸を利用するものがある。この拡散板をホロ
グラフイーに於いて均一照明装置として用いるた
め、照明光の波長をλとして拡散板透過後の位相
変化がλ/2以下になるようにすることは特公昭
48−17093号に記載されている。またプロジエク
ター用のスクリーンとして用いるため観察領域を
考慮して、特に配光特性が回転非対称となるよう
にするため、スペツクルパターンを撮影する光学
系としていわゆる4−F配置の二重回折光学系を
用い、スペツクル面で空間周波フイルターを行う
ことは特開昭49−10265号に記載されている。こ
れらの拡散板は表面凹凸タイプの拡散板であつた
が、スペツクルパターンをホログラフイツクに記
録するもの(USP3708217)、ボリユームタイプ
のガボア形ホログラムとして記録しマイクロシス
テムのビユーワー用スクリーンとして用いるもの
もある。(D.Meyerhoter,Apul,Opt.12
The present invention relates to a method for producing a speckle diffuser plate obtained by irradiating a diffuser plate such as ground glass with a coherent light beam and optically recording a speckle pattern formed by the light beam from the diffuser plate. be. As a diffuser plate in which a speckle pattern is optically recorded, there is one that utilizes the unevenness on the surface of a recording material obtained by illuminating the diffuser plate with coherent light, photographing it, developing it, and bleaching it. In order to use this diffuser plate as a uniform illumination device in holography, it is necessary to set the wavelength of the illumination light to λ so that the phase change after passing through the diffuser plate is λ/2 or less.
No. 48-17093. In addition, considering the observation area for use as a screen for a projector, and in particular to ensure that the light distribution characteristics are rotationally asymmetric, the optical system for photographing the speckle pattern is a so-called 4-F arrangement double diffraction optical system. JP-A-49-10265 describes the use of a spatial frequency filter in the speckle plane using the above system. These diffusion plates were of the uneven surface type, but there are also some that record the speckle pattern holographically (USP3708217), and others that record the speckle pattern as a volume type Gaboa hologram and use it as a viewer screen for a microsystem. . (D. Meyerhoter, Apul, Opt. 12

〔9〕
2180.)このようにスペツクルパターンを光学的
に記録することによつて得られた拡散板を総称し
てスペツクル拡散板と呼ぶことにする。 本件発明者はこのようなスペツクル拡散板が35
mmスチルカメラ、8mmムービーカメラ等のフアイ
ンダー用スクリーンとしても有効であることを見
出した。第1図はスペツクル拡散板がカメラにお
いて用いられる一態様を示すもので結像レンズ1
によつて物体の像はハネ上げミラー2を経てピン
ト板4のマツト面10上に結像される。通常マツ
ト面の中央部にはスプリツトプリズムまたはマイ
クロプリズム9が設けられており、この部分の像
を目8で見ながら結像レンズを距離合せしてピン
ト合せを行なう。ピント合せが終了した後シヤツ
ターを切るとハネ上げミラー2が上部に上がり、
ミラー2に関しマツト面と共役な位置にあるフイ
ルム3に像が露光される。従来のマツト面10は
たとえば金属面を荒摺した得られる面をプラスチ
ツク板に転写して作製したものであつた。このよ
うにして得られたマツト面は第2図に断面図を示
すとおり、凹凸の角が鋭角的であり、かつ凹凸の
粒も不整いとなる。その結果、光学的特性として
は、入射方向から大きくそれて拡散される光が多
いため、フアインダーの像が暗くなる、絞りを絞
つたとき、粒状性が目立ち像がきたなくなる、な
どの欠点が現われた。従来の加工法で、この欠点
を除くために荒摺用の砂のメツシユを細かくする
方法が考えられたが、凹凸の山の高さ粒径が小さ
くなりマツト面の透過光量が増し、フアインダー
が明るくなつた代償としてマツト面での測距が困
難になるという結果となつた。マツト面における
測距の必要性について、第1図にもどり説明す
る。マツト面の中央部にあるスプリツトプリズム
あるいはマイクロプリズムは、一定の角度を有
し、従つて入射光線を一定の方向にまげる。通常
一眼レフレツクスカメラでは、この偏角を4゜から
6゜程度にしている。従つて結像レンズとしてFNo.
の大きい望遠レンズを用いた場合、ピント板9に
入射する光束の入射角が90゜に近くなり、その光
束が4゜〜6゜まげられるとフアインダー光学系の外
に出て目に届かないということになる。その結
果、FNo.の小さい明るいレンズであつても絞りを
絞つてF5.6とかF8程度にした場合、また、もと
もとFNo.の大きいレンズを用いた場合には、ピン
ト板9での測距ができなくなり、マツト面10を
使つて測距を行なうこととなる。 以上の説明からわかるように、カメラ用のマツ
ト面として必要な性能とは、 1 従来の加工法で製作したマツト面より明るい
(凹凸の鋭い角を無くす) 2 FNo.の大きいレンズにしても粒状性が目立た
ない(凹凸の粒子サイズをフアインダー光学系
を含めた目の解像限界以下におさえる) 3 拡散特性として入射方向に対し、少くとも5゜
程度曲げられる光量が十分ある。 等となる。 発明者はスペツクル拡散板を種々作成し測定を
行なつた結果、スペツクル拡散板が上記三つの条
件を満たし、従来の製法によるマツト面よりも優
れたカメラ用マツト面として用い得るという結論
を得た。 本発明の拡散板の作成方法の一実施例を第3図
に示す。第3図においてレーザー光源たとえば
He−Neレーザーからの光束31を顕微鏡対物レ
ンズ32を用い発散球面波33とし、さらにコン
デンサレンズ34(単レンズでも可)を用い収束
球面波にした後、開口部36を有する遮光板35
を通してスリガラス等の拡散板37を照明する。
拡散板37からの出射光束91〜94中にはよく
知られたスペツクルパターン(斑点模様)が生ず
るのでこれを感光材料100に記録する。感光材
料100が銀塩乾板である場合は、公知の種々の
ブリーチ法を用いて記録された斑点模様を、屈折
率の変化からなる斑点模様や凹凸の変化からなる
斑点模様に変換することができる。感光材料10
0が高分子感材たとえばフオトレジであれば記録
された斑点模様即ち凹凸の変化となる。第3図に
おいて感光材料100に記録されるスペツクルパ
ターンの個々のスペツクルの平均的大きさは、開
口36による拡散板37上の照明領域の形状38
と拡散板37から感光材料100までの距離と、
使用波長λとにより決まる。われわれの経験によ
れば、粒状性をそろえるには、第3図に示したよ
うに輪帯開口を用いた場合が最も効果的であつ
た。 拡散板37から感光材料100までの距離を
種々変えることによつて平均粒子サイズ10μ,
5μ,3μ程度の種々の拡散板が容易に得られる。 またこのようにして記録されたスペツクルパタ
ーンを凹凸の変化に変換した時の個々の山の形
状、高さは用いる感材の種類、現像プロセス等に
よつて大いに変化する。銀塩感材のブリーチ法に
よつて得られた凹凸の断面形状を電子顕微鏡写真
から判断するとほぼ第4図に示した如きものであ
る。このとき、1つの山の高さは干渉顕微鏡で測
定したところでは平均粒子サイズ10μ程度のもの
で、0.5〜1μ程度であつた。 このようにして得られたスペツクル拡散板と従
来の加工法によつて得られた拡散板の透過配向特
性の一例を第5図に示す。 第5図において、実線はスペツクル拡散板、点
線は従来の加工法による拡散板である。 第2,4,5図を比較すると次のようなことが
わかる。即ち従来の拡散板(第2図)においてみ
られた凹凸の鋭いとがりがスペツクル拡散板(第
4図)では無くなつており、スペツクル拡散板は
大きさのほぼそろつた微小レンズの配列とみなせ
る。このため拡散特性としても第5図でみられる
ように、従来の拡散板は拡散角度の大きいところ
での光量がスペツクル拡散板より多くそれだけ有
効光量の損失がもたらされることになる。 実際に第1図の10の位置にスペツクル拡散面
を置いてフアインダーの見え具合のパネルテスト
を行なつたところ測距精度に関しては従来のマツ
ト面と同等、明るさに関しては十分な改善が認め
られた。さらにレンズを絞つた時の粒状性も殆ん
ど目立たずヌケの良い像が得られた。但し平均的
な粒子サイズが10μ程度以上になつた場合には、
ボケ味が悪くなることが指摘された。眼の分解能
は明視の距離で10本/mm程度であり、その際用い
たフアインダー光学系の倍率が5倍程度であつた
から、フアインダー光学系を含めた眼の分解能は
50本/mm程度、ピツチにして20μ程度となる。即
ちスペツクルの大きさがフアインダー光学系を含
めた眼の解像限界に近づくとボケ味が悪くなると
いう事であり従つてスペツクルデイフユーザーを
カメラのマツト面として用いる場合、ボケ味の点
からも平均的な粒子サイズは、先の解像限界以下
におさえる必要があるということになる。パネル
テストの結果で、フアインダーの見え具合は、ス
ペツクルの平均粒子サイズが3μとか5μのものに
関しては良好であつた。 以上種々説明したように本発明は従来の機械的
加工では達成不可能であると思われた性能を有す
るカメラフアインダー用マツト面を光学的な手段
を用いた作成法によつて提供するものである。ま
た、この分野で周知の種々の光学的、機械的コピ
ー技術は、得られる拡散板の特性を制御したり同
一特性の拡散板を大量に得るために利用し得るも
のである。
[9]
2180.) The diffuser plates obtained by optically recording speckle patterns in this manner will be collectively referred to as speckle diffusers. The present inventor believes that such a speckle diffuser plate is 35
It has been found that it is also effective as a viewfinder screen for mm still cameras, 8mm movie cameras, etc. Figure 1 shows one mode in which a speckle diffuser is used in a camera.
As a result, an image of the object is formed on the mat surface 10 of the focusing plate 4 via the mirror 2. Usually, a split prism or microprism 9 is provided at the center of the mat surface, and focusing is performed by adjusting the distance of the imaging lens while viewing the image of this part with the eye 8. When you turn off the shutter after focusing, the mirror 2 will rise to the top.
An image is exposed onto a film 3 located at a position conjugate to the matte surface with respect to the mirror 2. The conventional mat surface 10 was made by, for example, rough-sanding a metal surface and transferring it onto a plastic plate. As shown in the cross-sectional view of FIG. 2, the thus obtained pine surface has acute corners of the unevenness and irregular grains of the unevenness. As a result, as for optical characteristics, a lot of light is greatly deviated from the direction of incidence and is diffused, resulting in disadvantages such as dark images in the viewfinder, and when the aperture is closed, graininess becomes noticeable and the image becomes blurry. Ta. In conventional processing methods, a method was considered to make the sand mesh for roughing finer to eliminate this drawback, but as the height of the uneven peaks and the grain size become smaller, the amount of light transmitted through the mat surface increases, and the finder becomes smaller. The trade-off for the increased brightness was that it became difficult to measure distances on the pine surface. The necessity of distance measurement on the mat surface will be explained by returning to FIG. The split prism or microprism in the center of the mat face has a certain angle and therefore bends the incident light beam in a certain direction. Normally, single-lens reflex cameras have this angle of declination between 4° and
It is set at about 6°. Therefore, as an imaging lens, FNo.
When using a telephoto lens with a large angle, the angle of incidence of the light beam that enters the focusing plate 9 approaches 90 degrees, and if the light beam is bent by 4 to 6 degrees, it will exit the viewfinder optical system and will not reach the eye. It turns out. As a result, even if you use a bright lens with a small F No., if you close down the aperture to about F5.6 or F8, or if you use a lens with a large F No., the focusing plate 9 will not be able to measure the distance. Therefore, distance measurement will be performed using the mat surface 10. As you can see from the above explanation, the performance required for a matte surface for a camera is: 1. Brighter than a matte surface produced using conventional processing methods (eliminating sharp edges of unevenness) 2. Even with a lens with a large f/no., it has no graininess (The particle size of the unevenness is kept below the resolution limit of the eye, including the viewfinder optical system.) 3. As a diffusion characteristic, there is a sufficient amount of light that can be bent by at least 5 degrees with respect to the incident direction. etc. As a result of making and measuring various speckle diffusers, the inventor came to the conclusion that the speckle diffuser satisfies the above three conditions and can be used as a matte surface for cameras that is superior to matte surfaces produced by conventional methods. . FIG. 3 shows an embodiment of the method for manufacturing a diffuser plate of the present invention. In Figure 3, the laser light source, for example
A light beam 31 from a He-Ne laser is converted into a diverging spherical wave 33 using a microscope objective lens 32, and then converted into a converging spherical wave using a condenser lens 34 (a single lens is also acceptable).
A diffuser plate 37 made of ground glass or the like is illuminated through the light.
A well-known speckle pattern is generated in the light beams 91 to 94 emitted from the diffuser plate 37 and is recorded on the photosensitive material 100. When the photosensitive material 100 is a silver salt dry plate, a speckled pattern recorded using various known bleaching methods can be converted into a speckled pattern consisting of a change in refractive index or a speckled pattern consisting of a change in unevenness. . Photosensitive material 10
If 0 is a polymer sensitive material, such as a photoresist, it will be a recorded speckled pattern, that is, a change in unevenness. In FIG. 3, the average size of the individual speckles of the speckle pattern recorded on the photosensitive material 100 is determined by the shape 38 of the illumination area on the diffuser plate 37 due to the aperture 36.
and the distance from the diffuser plate 37 to the photosensitive material 100,
It is determined by the wavelength λ used. According to our experience, the use of annular apertures as shown in Figure 3 was most effective in making the graininess uniform. By varying the distance from the diffuser plate 37 to the photosensitive material 100, the average particle size is 10μ,
Various diffuser plates with a diameter of about 5μ and 3μ can be easily obtained. Further, when the speckle pattern recorded in this manner is converted into a change in unevenness, the shape and height of each mountain vary greatly depending on the type of photosensitive material used, the developing process, etc. Judging from an electron micrograph, the cross-sectional shape of the unevenness obtained by bleaching the silver salt photosensitive material is approximately as shown in FIG. 4. At this time, the height of one mountain was measured using an interference microscope, and the average particle size was about 10 μm, which was about 0.5 to 1 μm. FIG. 5 shows an example of the transmission orientation characteristics of the speckle diffuser plate thus obtained and the diffuser plate obtained by the conventional processing method. In FIG. 5, the solid line is a speckle diffuser plate, and the dotted line is a diffuser plate formed by a conventional processing method. Comparing Figures 2, 4, and 5 reveals the following. That is, the sharp peaks of the unevenness seen in the conventional diffuser plate (Fig. 2) are no longer present in the speckle diffuser plate (Fig. 4), and the speckle diffuser plate can be regarded as an array of microlenses of approximately the same size. Therefore, as shown in FIG. 5, the diffusion characteristics of the conventional diffuser plate are larger than those of the speckle diffuser plate in the area where the diffusion angle is large, resulting in a corresponding loss in the effective light quantity. When we actually conducted a panel test to check the visibility of the viewfinder by placing a speckle diffusion surface at position 10 in Figure 1, we found that the distance measurement accuracy was the same as that of the conventional matte surface, and the brightness was significantly improved. Ta. Furthermore, when the lens was stopped down, the graininess was hardly noticeable and a clear image was obtained. However, if the average particle size is about 10μ or more,
It was pointed out that the bokeh quality deteriorated. The resolution of the eye is about 10 lines/mm at the distance of clear vision, and the magnification of the finder optical system used at that time was about 5 times, so the resolution of the eye including the finder optical system is
Approximately 50 lines/mm, pitch approximately 20μ. In other words, when the size of the speckle approaches the resolution limit of the eye including the viewfinder optical system, the bokeh becomes worse. This means that the average particle size must be kept below the resolution limit mentioned above. The panel test results showed that the visibility of the finder was good for speckles with an average particle size of 3μ or 5μ. As variously explained above, the present invention provides a matte surface for a camera finder having performance that was thought to be unattainable by conventional mechanical processing, by a method using optical means. . Additionally, various optical and mechanical copying techniques well known in the art can be used to control the properties of the resulting diffuser or to obtain large quantities of diffusers with the same properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスペツクル拡散板を1眼レフレツクス
カメラのフアインダーに適用した実施例を示す
図、第2図は従来のスリガラス拡散板の断面図、
第3図は本発明のスペツクル拡散板の作成方法を
説明する図、第4図は第3図の作成方法で作成さ
れたスペツクル拡散板の断面図、第5図はスペツ
クル拡散板の特性図である。 図中、1は対物レンズ、2はスイングアツプミ
ラー、3はフイルム、4は拡散板、5はコンデン
サレンズ、6はペンタプリズム、7はアイピー
ス、9は眼、31はコヒーレント光束、32は顕
微鏡対物レンズ、33は発散球面波、34はコン
デンサレンズ、35は遮光板、36は開口、37
は拡散板、38は被照明域、91〜94は出射光
束、100は感光材料、である。
Fig. 1 is a diagram showing an embodiment in which a speckled diffuser plate is applied to the viewfinder of a single-lens reflex camera, and Fig. 2 is a cross-sectional view of a conventional ground glass diffuser plate.
Fig. 3 is a diagram explaining the method for producing the speckle diffuser plate of the present invention, Fig. 4 is a cross-sectional view of the speckle diffuser plate produced by the production method shown in Fig. 3, and Fig. 5 is a characteristic diagram of the speckle diffuser plate. be. In the figure, 1 is an objective lens, 2 is a swing-up mirror, 3 is a film, 4 is a diffuser, 5 is a condenser lens, 6 is a pentaprism, 7 is an eyepiece, 9 is an eye, 31 is a coherent light beam, and 32 is a microscope objective. Lens, 33 is a diverging spherical wave, 34 is a condenser lens, 35 is a light shielding plate, 36 is an aperture, 37
38 is a diffuser plate, 38 is an illuminated area, 91 to 94 are emitted light beams, and 100 is a photosensitive material.

Claims (1)

【特許請求の範囲】[Claims] 1 対象物像を対物レンズによつて拡散板上に形
成し、この対象物像を観察光学系を介して観察す
るカメラのフアインダーにおける前記拡散板の作
成方法であつて、拡散部材をコヒーレント光で照
明し、該拡散部材からの射出光束が形成するスペ
ツクルを感光材面に直接記録する時、所定の開口
を用いて前記感光材面に到達するスペツクルパタ
ーンを制御し、前記感光材面に所望のスペツクル
パターンを記録することを特徴とする拡散板の作
成方法。
1. A method for creating a diffuser plate in a camera viewfinder in which an object image is formed on a diffuser plate by an objective lens and this object image is observed through an observation optical system, the method comprising: When illuminating and directly recording speckles formed by the light flux emitted from the diffusing member on the surface of the photosensitive material, a predetermined aperture is used to control the speckle pattern reaching the surface of the photosensitive material, and a desired pattern is formed on the surface of the photosensitive material. A method for creating a diffuser plate characterized by recording a speckle pattern.
JP11687976A 1976-09-29 1976-09-29 Camera finder Granted JPS5342726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11687976A JPS5342726A (en) 1976-09-29 1976-09-29 Camera finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11687976A JPS5342726A (en) 1976-09-29 1976-09-29 Camera finder

Publications (2)

Publication Number Publication Date
JPS5342726A JPS5342726A (en) 1978-04-18
JPS6318174B2 true JPS6318174B2 (en) 1988-04-18

Family

ID=14697888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11687976A Granted JPS5342726A (en) 1976-09-29 1976-09-29 Camera finder

Country Status (1)

Country Link
JP (1) JPS5342726A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2951207A1 (en) * 1978-12-26 1980-07-10 Canon Kk METHOD FOR THE OPTICAL PRODUCTION OF A SPREADING PLATE
JPS5590931A (en) * 1978-12-29 1980-07-10 Canon Inc Production of micro structure element array
JPS5860642A (en) * 1981-10-01 1983-04-11 Nippon Kogaku Kk <Nikon> Preparation of focusing glass
CA2168106C (en) * 1993-07-27 2002-08-20 Joel Petersen High brightness directional viewing screen
CA2168107C (en) * 1993-07-27 2001-02-13 Joel Petersen Light source destructuring and shaping device
US20080153008A1 (en) * 2004-02-18 2008-06-26 Masahiko Hayashi Optical Element, Method for Production Thereof and Display Device

Also Published As

Publication number Publication date
JPS5342726A (en) 1978-04-18

Similar Documents

Publication Publication Date Title
US4336978A (en) Method for optically making a diffusion plate
US4165930A (en) Camera having a holographic indicator
US4309093A (en) Camera having a diffusing plate with rotationally asymmetric light diffusion property
US4523807A (en) Method for making a member having microstructure elements arranged thereon
US3718078A (en) Smoothly granulated optical surface and method for making same
US4602843A (en) Holographic diffusion screen and methods for the production thereof
US2959105A (en) Phase noise filter and its application to photography and photolithography
US4421398A (en) Focussing plate
JPH059776B2 (en)
JPS61193136A (en) Multiple focal length fresnel lens for focal plate of camera
JPS6318174B2 (en)
US4027327A (en) View finder for reflex camera
JPS63761B2 (en)
JPS6321161B2 (en)
JP4054424B2 (en) Method and apparatus for Fourier manipulation in an optical lens or mirror train
JP2771078B2 (en) ND filter for light intensity diaphragm device
JP2512932B2 (en) Optical element for soft focus
US4378141A (en) Exposure package for holography
US2323754A (en) Illumination of photographic screens
Capstaff et al. The Kodacolor process for amateur color cinematography
GB1579214A (en) Screens for optical imaging systems
US3811770A (en) Camera
JPS6371803A (en) Speckle diffusion board forming device
JPH05173004A (en) Manufacture of nd filter and diaphragm device
JPH06202202A (en) Camera