JPS63179527A - Plasma generating apparatus - Google Patents

Plasma generating apparatus

Info

Publication number
JPS63179527A
JPS63179527A JP1190587A JP1190587A JPS63179527A JP S63179527 A JPS63179527 A JP S63179527A JP 1190587 A JP1190587 A JP 1190587A JP 1190587 A JP1190587 A JP 1190587A JP S63179527 A JPS63179527 A JP S63179527A
Authority
JP
Japan
Prior art keywords
gas
electrode
discharge chamber
insulator
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1190587A
Other languages
Japanese (ja)
Inventor
Kazutoshi Kusakabe
日下部 和利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP1190587A priority Critical patent/JPS63179527A/en
Publication of JPS63179527A publication Critical patent/JPS63179527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent glow discharge in a gas path, by introducing process gas into a discharge chamber between both high frequency electrodes so that the gas is not brought into contact with the electrodes before the gas enters into the discharge chamber, and making the distance of a gas introducing path in the direction of an electric field shorter than the thickness of an ion sheath in the discharge chamber. CONSTITUTION:An electric insulator 13 comprising Teflon, alumina and the like is provided between a planar electrode 1 and a tubular electrode 2. A gas introducing tube 14 comprising an insulator is inserted into the electric insulator in the lateral direction. An annular slit-shaped gas flowing path 15 is formed in the insulator 13 and a quartz pipe 5 so as to communicate the introducing tube and a discharge chamber 3. A length (width) d1 of the gas flowing path in the direction of a high frequency electric field (direction of arrows) is thin and shorter than a thickness d2 of an ion sheath 16, which is generated between a plasma region in the discharge chamber and the electrode 1. Process gas is not brought into contact with the electrodes 1 and 2 before the gas enters into the discharge chamber 3. The gas is introduced through a space, in which the distance in the direction of the applied electric field is less than the thickness of the ion sheath. Therefore, glow discharge is not generated in the gas flowing path 15.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はイオン源、プラズマエツチング、反応性イオン
エツチング、プラズマCVD等に使用するプラズマ発生
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ion source, a plasma generation device used in plasma etching, reactive ion etching, plasma CVD, etc.

[従来技術1 従来のプラズマ中のイオンを取出す型のイオン源の一例
を第3図に示しである。この例は高周波放電を利用して
プラズマを発生するもので、1は平板状電極、2は該平
板状電極との間に放電室3を形成するための筒状の電極
で、両者には高周波1ii714より所望周波数の高周
波電力が給電される。
[Prior Art 1] FIG. 3 shows an example of a conventional ion source for extracting ions from plasma. In this example, plasma is generated using high-frequency discharge, and 1 is a flat electrode, 2 is a cylindrical electrode for forming a discharge chamber 3 between the flat electrode, and both are connected to a high-frequency discharge. 1ii714 supplies high-frequency power at a desired frequency.

前記平板状電極と筒状電極は電気的に絶縁してあり、又
放電室は石英ガラス管等の電気絶縁物5により囲われ、
電極1及び2が保護されている。6はアース電位の外筐
であり、この外筐、平板状電極1及び石英ガラス管5を
貫通してテフロンチュ−ブ等の電気絶縁物性のプロセス
ガス導入通路7が形成されいる。該通路は流量調節バル
ブ8を介して外部のガス供給源(タンク)に接続され、
所望のガスが所定圧力になるように前記放電室3内に導
入される。前記放電室の出口、つまり平板状電極と反対
の側にはメツシュ状をなした加速電極9、引出電極10
及びアース電極11が順に配置されており、放電室内に
発生したプラズマ領域12内からイオンを加速しながら
引出し、下方に向けて投射している。前記加速電極には
正の電位が、又引出し電極には負の電位が夫々の直流電
源から与えられている。
The flat electrode and the cylindrical electrode are electrically insulated, and the discharge chamber is surrounded by an electrical insulator 5 such as a quartz glass tube,
Electrodes 1 and 2 are protected. Reference numeral 6 denotes an outer casing at ground potential, and a process gas introduction passage 7 made of an electrically insulating material such as a Teflon tube is formed through the outer casing, the flat electrode 1, and the quartz glass tube 5. The passage is connected to an external gas supply source (tank) via a flow control valve 8,
A desired gas is introduced into the discharge chamber 3 at a predetermined pressure. At the outlet of the discharge chamber, that is, on the side opposite to the flat electrode, there are a mesh-shaped accelerating electrode 9 and an extraction electrode 10.
and a ground electrode 11 are arranged in this order, and extract ions while accelerating them from within the plasma region 12 generated in the discharge chamber, and project them downward. A positive potential is applied to the acceleration electrode, and a negative potential is applied to the extraction electrode from respective DC power sources.

このような装置で、所望のガスを通路7から放電室内に
導入しておき、高周波電#i4から電極1゜2間に高周
波電力を給電すると、放電室内に高周波放電が生起し、
12で示す領域にプラズマが発生する。このプラズマ領
域に接した加速電極9に正の電位を与え、引出し電極1
0に負の電位を与えることにより、該プラズマ領域中の
イオンがビームとして加速されながら引出される。そし
て、このイオンビームはエツチングやCVD等の目的に
使用される。
In such a device, when a desired gas is introduced into the discharge chamber through the passage 7 and high-frequency power is supplied between the electrodes 1 and 2 from the high-frequency electric wire #i4, a high-frequency discharge is generated within the discharge chamber.
Plasma is generated in the area indicated by 12. A positive potential is applied to the acceleration electrode 9 in contact with this plasma region, and the extraction electrode 1
By applying a negative potential to zero, ions in the plasma region are extracted while being accelerated as a beam. This ion beam is then used for purposes such as etching and CVD.

[発明が解決しようとする問題点] しかし、上記従来の装置ではプロセスガスを導入するた
めの通路7を電極1内に形成し、電位のある部位からガ
ス導入を図っているので、該通路7をテフロンチューブ
等の電気絶縁物で形成したとしても、アース電位の外筐
6や調整バルブ8との間の通路は電界方向に長さを有し
、この部分にグロー放電(Aの部分)が生起する。この
放電により、放電室3内の主放電が非常に不安定になり
、又該グロー放電による局所的な加熱があり、通路や電
極の一部が損傷するケースも生じ、更にはパワーロスが
大きい等の欠点がある。
[Problems to be Solved by the Invention] However, in the conventional device described above, the passage 7 for introducing the process gas is formed in the electrode 1, and the gas is introduced from a portion with a potential. Even if it is made of an electrical insulator such as a Teflon tube, the passage between the earth potential outer casing 6 and the adjustment valve 8 has a length in the direction of the electric field, and glow discharge (portion A) occurs in this part. arise. Due to this discharge, the main discharge inside the discharge chamber 3 becomes extremely unstable, and there is also local heating due to the glow discharge, which may damage some passages and electrodes, and furthermore, cause a large power loss. There are drawbacks.

本発明は上記従来の欠点に鑑み、プロセスガス導入通路
内にグロー放電の生じない新規なプラズマ発生装置を提
供することに目的を有するものである。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional drawbacks, it is an object of the present invention to provide a novel plasma generating device in which no glow discharge occurs in the process gas introduction passage.

E問題点を解決するための手段] 本発明は平板状電極と、この電極に電気的に絶縁して配
置され該平板状電極どの間に放電室を形成するための実
質的に筒状の電極と、前記平板状電極と筒状電極との間
に高周波電力を給電する高周波電源と、前記放電室内に
プロセスガスを導入する手段とを備えた装置において、
前記平板状電極と筒状電極の間に電気絶縁物を介在せし
め、プロセスガスを導入する通路をこの絶縁物内に形成
し、該通路の内生なくとも前記両電極に近接する部分の
電界方向における長さは前記放電室内に発生するイオン
シースの厚さより短く形成したプラズマ発生装置に特徴
がある。
Means for Solving Problem E] The present invention includes a flat electrode, and a substantially cylindrical electrode arranged electrically insulated from the electrode to form a discharge chamber between the flat electrodes. and a high-frequency power source that supplies high-frequency power between the flat electrode and the cylindrical electrode, and means for introducing a process gas into the discharge chamber,
An electrical insulator is interposed between the flat electrode and the cylindrical electrode, and a passage for introducing a process gas is formed in the insulator, and the direction of the electric field in a portion close to both electrodes is determined at least within the passage. The plasma generating device is characterized in that the length is shorter than the thickness of the ion sheath generated within the discharge chamber.

[発明の作用] 本発明は高周波を利用したプラズマ発生装置に関し、プ
ロセスガスの放電室内への導入は両高周波電極の間から
行ない、放電室に入る前に電極に接しないようにすると
共に、ガス導入路の電界方向の距離を放電室内のイオン
シースの厚さより短く形成することにより、ガス通路内
でのグロー放電を防止している。
[Operation of the Invention] The present invention relates to a plasma generation device that utilizes high frequency waves, and the process gas is introduced into the discharge chamber from between both high frequency electrodes so that it does not come into contact with the electrodes before entering the discharge chamber. Glow discharge within the gas passage is prevented by making the distance of the introduction path in the electric field direction shorter than the thickness of the ion sheath inside the discharge chamber.

[実施例] 第1図は本発明の一実施例を示す断面図で、第3図と同
一符号は同様な構成部材を示しである。
[Embodiment] FIG. 1 is a sectional view showing an embodiment of the present invention, and the same reference numerals as in FIG. 3 indicate the same constituent members.

本発明において、電極1と2の間にテフロンやアルミナ
等の電気絶縁物13を介挿し、この電気絶縁物に横方向
から絶縁物製のガス導入チューブ14を差込み、この導
入チューブと放電室3を連絡するように環状でスリット
状をなすガス流入路15を前記絶縁物13及び石英管5
に形成する。第2図は第1図の主要部の拡大図であり、
放電室とガス流入路部分を示しである。図から解るよう
に、ガス流入路の高周波電界方向(矢印の方向)の長さ
く厚さ)dlは非常に薄くされており、放電室内に形成
されるプラズマ領域と電極1との間に発生するイオンシ
ース16の厚さd2より短くされている。
In the present invention, an electrical insulating material 13 such as Teflon or alumina is inserted between the electrodes 1 and 2, and a gas introduction tube 14 made of an insulating material is inserted into the electrical insulating material from the lateral direction. The insulator 13 and the quartz tube 5 are connected to the insulator 13 and the quartz tube 5 through an annular and slit-shaped gas inflow path 15 so as to communicate with each other.
to form. Figure 2 is an enlarged view of the main parts of Figure 1.
The discharge chamber and gas inflow path are shown. As can be seen from the figure, the length and thickness (dl) of the gas inflow path in the direction of the high-frequency electric field (in the direction of the arrow) are made very thin, and the gas flow is generated between the plasma region formed in the discharge chamber and the electrode 1. It is shorter than the thickness d2 of the ion sheath 16.

尚、上記において、電極2は筒状電極であるが、円筒で
ある必要はなく任意な形状で良い。又、これは完全に筒
状である必要はなく、平板または湾曲板を例えば4枚用
い、電気的には互いに接続して実質的に筒状の電極に構
成しても良い。更に又、イオンシースの厚さより薄いd
lに形成するガス流路の部分は高周波電極1と2に近接
する部分に限定して良く、グロー放電が発生する程電界
強度が高くない部分では電界に平行な方向にガス流路(
チューブ)を配置しても良い。
In the above, the electrode 2 is a cylindrical electrode, but it does not need to be cylindrical and may have any shape. Further, it does not have to be completely cylindrical; for example, four flat plates or curved plates may be used and electrically connected to each other to form a substantially cylindrical electrode. Furthermore, d is thinner than the thickness of the ion sheath.
The part of the gas flow path formed in the direction L may be limited to the part close to the high frequency electrodes 1 and 2, and in the part where the electric field strength is not high enough to generate a glow discharge, the gas flow path (
tube) may be placed.

[効果3 上記のような構成となせば、プロセスガスが放電室内に
入る前に電極に接触するようなこともなく、またガスは
印加電界方向の距離がイオンシースの厚さ以下になる空
間から導入されるので、ガス流入路内にグロー放電が発
生するようなことはなくなり、それに伴ない主放電の安
定性が向上し、局所的な損傷もなく、更にはパワーロス
も少なくなる等の効果が期待できる。
[Effect 3] With the above configuration, the process gas will not come into contact with the electrode before entering the discharge chamber, and the gas will be removed from the space where the distance in the direction of the applied electric field is less than the thickness of the ion sheath. This eliminates the occurrence of glow discharge in the gas inflow path, improves the stability of the main discharge, prevents local damage, and further reduces power loss. You can expect it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は第1
図装置の主要部拡大図、第3図は従来の装置の断面図で
ある。 1.2:高周波電極  3:放電室 4:高周波電源    6:外筺 7:ガス導入通路   8:流量調整バルブ9:加速電
極    10:引出電極 11:アース電極   12:プラズマ領域13:電気
絶縁物 14:ガス導入チューブ
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, and FIG.
FIG. 3 is an enlarged view of the main parts of the device, and FIG. 3 is a sectional view of the conventional device. 1.2: High frequency electrode 3: Discharge chamber 4: High frequency power supply 6: Outer casing 7: Gas introduction passage 8: Flow rate adjustment valve 9: Accelerating electrode 10: Extraction electrode 11: Earth electrode 12: Plasma region 13: Electrical insulator 14 :Gas introduction tube

Claims (3)

【特許請求の範囲】[Claims] (1)平板状電極と、この電極に電気的に絶縁して配置
され該平板状電極との間に放電室を形成するための実質
的に筒状の電極と、前記平板状電極と筒状電極との間に
高周波電力を給電する高周波電源と、前記放電室内にプ
ロセスガスを導入する手段とを備えた装置において、前
記平板状電極と筒状電極の間に電気絶縁物を介在せしめ
、プロセスガスを導入する通路をこの絶縁物内に形成し
、該通路の内少なくとも前記両電極に近接する部分の電
界方向における長さは前記放電室内に発生するイオンシ
ースの厚さより短く形成することを特徴とするプラズマ
発生装置。
(1) A flat electrode, a substantially cylindrical electrode arranged electrically insulated from the electrode and for forming a discharge chamber between the flat electrode, and a cylindrical In an apparatus comprising a high-frequency power source for supplying high-frequency power to an electrode, and a means for introducing a process gas into the discharge chamber, an electrical insulator is interposed between the flat electrode and the cylindrical electrode, and the process A passage for introducing gas is formed in the insulator, and the length of at least a portion of the passage close to the electrodes in the direction of the electric field is formed to be shorter than the thickness of the ion sheath generated in the discharge chamber. Plasma generator.
(2)前記平板状電極と筒状電極とにより形成される放
電室は石英ガラス管等の電気絶縁物により内張りされて
いる特許請求の範囲第1項記載のプラズマ発生装置。
(2) The plasma generating device according to claim 1, wherein the discharge chamber formed by the flat electrode and the cylindrical electrode is lined with an electrical insulator such as a quartz glass tube.
(3)前記筒状電極は複数枚の板状電極を組合わせて形
成した特許請求の範囲第1項又は第2項記載のプラズマ
発生装置。
(3) The plasma generating device according to claim 1 or 2, wherein the cylindrical electrode is formed by combining a plurality of plate electrodes.
JP1190587A 1987-01-21 1987-01-21 Plasma generating apparatus Pending JPS63179527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1190587A JPS63179527A (en) 1987-01-21 1987-01-21 Plasma generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1190587A JPS63179527A (en) 1987-01-21 1987-01-21 Plasma generating apparatus

Publications (1)

Publication Number Publication Date
JPS63179527A true JPS63179527A (en) 1988-07-23

Family

ID=11790742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1190587A Pending JPS63179527A (en) 1987-01-21 1987-01-21 Plasma generating apparatus

Country Status (1)

Country Link
JP (1) JPS63179527A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0709875A1 (en) * 1994-10-26 1996-05-01 Applied Materials, Inc. A processing chamber gas distribution manifold

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0709875A1 (en) * 1994-10-26 1996-05-01 Applied Materials, Inc. A processing chamber gas distribution manifold
US5597439A (en) * 1994-10-26 1997-01-28 Applied Materials, Inc. Process gas inlet and distribution passages

Similar Documents

Publication Publication Date Title
JP2776855B2 (en) High frequency ion source
US5369336A (en) Plasma generating device
US5996528A (en) Method and apparatus for flowing gases into a manifold at high potential
EP0217361B1 (en) Ion source
JP2001502468A (en) Ion gun
US5252892A (en) Plasma processing apparatus
JPH10270430A (en) Plasma treating device
KR100876052B1 (en) Neutralizer-type high frequency electron source
US4521719A (en) Ion beam gun
JPS63179527A (en) Plasma generating apparatus
JPH06216078A (en) Equipment and method for capacitive coupling discharge processing of wafer
JP5105775B2 (en) Insulating piping, plasma processing apparatus and method
KR20040025587A (en) Plasma source
JPH0266941A (en) Etching apparatus
JPH077639B2 (en) Ion source
JPS62140339A (en) Microwave ion source
JPS62291922A (en) Plasma processor
WO2001022465A1 (en) Plasma source of linear ion beam
JP3010059B2 (en) Ion source
JPH08246146A (en) Method for plasma treating and device therefor
JPH02195631A (en) Plasma generator
JPH01258400A (en) Microwave plasma generating device
JPH0945496A (en) Ecr plasma processing device
JPH0636695A (en) High-frequency ion source device
JPH02130826A (en) Method and apparatus for processing with plasma