JPS63179317A - Spatial light modulator - Google Patents
Spatial light modulatorInfo
- Publication number
- JPS63179317A JPS63179317A JP1081187A JP1081187A JPS63179317A JP S63179317 A JPS63179317 A JP S63179317A JP 1081187 A JP1081187 A JP 1081187A JP 1081187 A JP1081187 A JP 1081187A JP S63179317 A JPS63179317 A JP S63179317A
- Authority
- JP
- Japan
- Prior art keywords
- thickness
- channel
- voltage
- semi
- electric field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010521 absorption reaction Methods 0.000 claims abstract description 14
- 230000003287 optical effect Effects 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 239000004065 semiconductor Substances 0.000 claims description 7
- 239000010409 thin film Substances 0.000 claims description 5
- 238000010030 laminating Methods 0.000 claims description 2
- 230000005684 electric field Effects 0.000 abstract description 8
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 7
- 230000000694 effects Effects 0.000 description 7
- 239000013078 crystal Substances 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は画像処理や光コンピュータ等に必要とされる空
間光変調器に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a spatial light modulator required for image processing, optical computers, and the like.
(従来技術とその問題点)
空間光変調器は入射光の強度や位相を空間的に変調する
もので、並列光情報処理システムを構成する際に不可欠
なキー・デバイスである。第3図は埋め込みチャネル型
の″S苛結合デバイス(以下CCDと略記する)を用い
た空間光変調器の従来例で、アプライド・フィジックス
・レターズ(^pp1. Phys、 Lett、、
41.1982>の413〜415頁に掲載されたもの
である。同図において、31は半絶縁性のGaAs基板
、32はn型G a As、33は不透明を極、34は
半透明電極である。電極に電圧を印加するとFranz
−Keldysh効果でn型GaA s 32の光学的
吸収係数が層厚方向で変化する。(Prior art and its problems) A spatial light modulator spatially modulates the intensity and phase of incident light, and is an essential key device when constructing a parallel optical information processing system. Figure 3 shows a conventional example of a spatial light modulator using a buried channel type "S coupling device (hereinafter abbreviated as CCD)", which is published in Applied Physics Letters (^pp1. Phys, Lett.
41.1982>, pages 413-415. In the figure, 31 is a semi-insulating GaAs substrate, 32 is n-type GaAs, 33 is an opaque electrode, and 34 is a semi-transparent electrode. When a voltage is applied to the electrode, Franz
- The optical absorption coefficient of n-type GaAs 32 changes in the layer thickness direction due to the Keldysh effect.
半透明電極34の下に電荷が蓄積されていると電圧が一
定でも層厚方向の実効的な電界強度が変イヒし入射光の
強度を空間的に変調することができる。If charges are accumulated under the semi-transparent electrode 34, even if the voltage is constant, the effective electric field strength in the layer thickness direction changes, making it possible to spatially modulate the intensity of the incident light.
この素子の問題点は吸収係数の電圧依存性が小さく、高
い電圧を電極に印加しないと十分な強度変調ができない
点にあった。例えば5■程度の印加電圧ではチャネル厚
2.5μm、キャリア濃度5×101!IQ11−3で
、電荷が存在しない場合で5%程度しか強度変調ができ
なかった。The problem with this element is that the absorption coefficient has little voltage dependence, and sufficient intensity modulation cannot be achieved unless a high voltage is applied to the electrodes. For example, with an applied voltage of about 5μ, the channel thickness is 2.5μm and the carrier concentration is 5×101! With IQ11-3, intensity modulation of only about 5% was possible in the absence of charge.
本発明は、上記欠点に鑑み成されたもので、低電圧で十
分な強度変か1が可能な空間光変調器を提供することを
目的とする。The present invention has been made in view of the above-mentioned drawbacks, and an object of the present invention is to provide a spatial light modulator capable of sufficiently varying the intensity with low voltage.
(問題点を解決するための手段)
前述の問題点を解決するために本発明が提供する空間光
変調器は、電荷結合デバイスからなり、チャネルは電子
のド・ブロイ波長程度以下の厚さの半導体薄膜を基板上
に積層することによって形成し、転送電極に加えた電圧
と転送された電荷とによって生ずる電界とで層厚方向の
光学的吸収係数に変化を与え、その変化によって入射光
に空間的に強度変〕jを与えて出射することを特徴とす
る。(Means for Solving the Problems) In order to solve the above-mentioned problems, the spatial light modulator provided by the present invention consists of a charge-coupled device, and the channel has a thickness of about the de Broglie wavelength of electrons or less. It is formed by laminating semiconductor thin films on a substrate, and the electric field generated by the voltage applied to the transfer electrode and the transferred charges changes the optical absorption coefficient in the layer thickness direction, and this change causes the incident light to have a spatial effect. It is characterized in that it emits light with an intensity variation]j.
(f′r−用)
バルク半導体のFranz−Ke Idysh効果によ
る吸収係数α(ω)の変化は
・・・・・・(1)
で表わされる。(1)式でωとωgはそれぞれ入射光及
び禁制V幅に相当する角周波数、Rは定数である。また
、θFは、電子電荷e、電子の還元fi1m、、ブラン
ク定数打、電界強度Ft用いてθp = (e2F2/
2mr ”hr) 1/3””・・(2)と表わされる
。電界を増大させることにより禁制帯に対し、長波長側
の光の吸収係数が増大する。(For f'r-) The change in the absorption coefficient α(ω) due to the Franz-Ke Idysh effect of a bulk semiconductor is expressed as (1). In equation (1), ω and ωg are angular frequencies corresponding to the incident light and the forbidden V width, respectively, and R is a constant. In addition, θF is expressed as θp = (e2F2/
2mr ``hr) 1/3'''' (2) By increasing the electric field, the absorption coefficient of light on the longer wavelength side with respect to the forbidden band increases.
量子効果が現われる程度に薄い薄膜半導体ではFran
Z−にe+dysh効果を大きくさせることができる。For thin film semiconductors thin enough to produce quantum effects, Fran
It is possible to increase the e+dysh effect on Z-.
第2図はAρG a A s / G a A s系で
ダブル・ヘテロ(DH)@晶と多重量子井戸(M Q
W )結晶との吸収係数の電界依存性を測定した結果で
ある。同図でα0はF=Oでの吸収係数、Egは禁制帯
エネルギーである9例えば!+OleV長波側の光に対
する吸収係数は、F = 3.3X 104 V/個で
は2.6倍、 F =5. ex io’t V/ci
テ4.: 1.9倍ホトMQWの方がDHに比べて大
きくできる6従って、量子効果が現われるような厚さの
小さい薄膜半導体をCCDのチャネルに用いることによ
り低い電圧で空間的に強度変調を行なうことが可能とな
る。Figure 2 shows the AρG a As / G a As system consisting of a double hetero (DH) @crystal and a multiple quantum well (M Q
W) This is the result of measuring the electric field dependence of the absorption coefficient with the crystal. In the same figure, α0 is the absorption coefficient at F=O, and Eg is the forbidden band energy.9For example! The absorption coefficient for light on the +OleV long wavelength side is 2.6 times when F = 3.3X 104 V/piece, and F = 5. exio't V/ci
Te4. : 1.9 times photo-MQW can be made larger than DH6 Therefore, by using a thin film semiconductor with a small thickness that allows quantum effects to appear for the CCD channel, spatial intensity modulation can be performed at a low voltage. becomes possible.
(実施例) 第1図は本発明の一実施例を示す断面図である。(Example) FIG. 1 is a sectional view showing an embodiment of the present invention.
同図において、11は半絶縁性GaAs基板であり、1
2はアンドープのMQW7I!で、層厚115人のGa
AsW121と同じ<115人のff1JIVのA A
xGap−、Ash (x=0.35) 122が
交互に110周Fll m mされて形成されている。In the figure, 11 is a semi-insulating GaAs substrate;
2 is undoped MQW7I! So, the layer thickness is 115 people.
Same as AsW121 <115 people ff1JIV A A
xGap-, Ash (x=0.35) 122 are formed by alternately repeating 110 rounds.
チャネルのM厚は約2.511y+である。MQW層1
2のキャリア濃度はn = 5 X 1015an−’
である。13はショットキー型のTi−Auから成る電
荷転送用の不透明電極、14は覆い半透明性の′riを
用いた半透明電極である。The M thickness of the channel is approximately 2.511y+. MQW layer 1
The carrier concentration of 2 is n = 5 x 1015an-'
It is. 13 is an opaque electrode for charge transfer made of Schottky-type Ti-Au, and 14 is a semi-transparent electrode using semi-transparent 'ri'.
基板17には基板での吸収損失の影響を避けるなめに、
第1図に示した様に、エツチングで渭を形成する。電極
開閉は2四で3個のクロック発振器によって電荷転送が
行なわれる。第2図のF=!1.6X 10’ V/a
iに相当する電界は、この場合電圧に換算して約5Vで
あり、本構造によって従来例に比べて2〜3倍変化が大
きく、従って消光比も3dB〜5dB程高い空間的光強
度の変調を行なうことが可能となった。In order to avoid the influence of absorption loss in the substrate 17,
As shown in FIG. 1, the edges are formed by etching. Electrode opening/closing is 24 times, and charge transfer is performed by three clock oscillators. F=! in Figure 2! 1.6X 10'V/a
In this case, the electric field corresponding to i is approximately 5 V in terms of voltage, and with this structure, the change is 2 to 3 times larger than in the conventional example, and the extinction ratio is also 3 dB to 5 dB higher. It became possible to do this.
(発明の効果)
以上に説明したように、本発明の空間光変調器では、層
厚方向の光学吸収検数の電圧変化が大きいから、変調度
が高く、低電圧で十分な強度変調が可能である。(Effects of the Invention) As explained above, in the spatial light modulator of the present invention, since the voltage change in the optical absorption coefficient in the layer thickness direction is large, the degree of modulation is high, and sufficient intensity modulation can be achieved with a low voltage. It is.
第1図は本発明の一実施例の断面図、第2図は半導体結
晶における吸収係数の電界依存性を示した特性図、第3
図は従来例の断面図である611及び31は半絶縁性G
a A s基板、12はMQW屑、 12フはGaA
s、II、 122はA jJ z Cr a 1−
xA s M、32はn型GaAs、13及び33は
不透明電極、14及び34は半透明電極である。FIG. 1 is a cross-sectional view of an embodiment of the present invention, FIG. 2 is a characteristic diagram showing the electric field dependence of the absorption coefficient in a semiconductor crystal, and FIG.
The figure is a cross-sectional view of a conventional example. 611 and 31 are semi-insulating G
a A s substrate, 12 is MQW scrap, 12 is GaA
s, II, 122 is A jJ z Cr a 1-
xA s M, 32 is n-type GaAs, 13 and 33 are opaque electrodes, and 14 and 34 are semitransparent electrodes.
Claims (1)
イ波長程度以下の厚さの半導体薄膜を基板上に積層する
ことによって形成し、転送電極に加えた電圧と転送され
た電荷とによって生ずる電界とで層厚方向の光学的吸収
係数に変化を与え、その変化によって入射光に空間的に
強度変調を与えて出射することを特徴とする空間光変調
器。In a charge-coupled device, a channel is formed by laminating a semiconductor thin film on a substrate with a thickness of about the de Broglie wavelength of electrons or less, and the channel is formed by stacking a semiconductor thin film on a substrate with a thickness equal to or less than the de Broglie wavelength of electrons. A spatial light modulator characterized by changing the optical absorption coefficient in the thickness direction, and using the change to spatially modulate the intensity of incident light and emit the same.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1081187A JPS63179317A (en) | 1987-01-20 | 1987-01-20 | Spatial light modulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1081187A JPS63179317A (en) | 1987-01-20 | 1987-01-20 | Spatial light modulator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63179317A true JPS63179317A (en) | 1988-07-23 |
Family
ID=11760731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1081187A Pending JPS63179317A (en) | 1987-01-20 | 1987-01-20 | Spatial light modulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63179317A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5196767A (en) * | 1991-01-04 | 1993-03-23 | Optron Systems, Inc. | Spatial light modulator assembly |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61173218A (en) * | 1985-01-28 | 1986-08-04 | Nippon Telegr & Teleph Corp <Ntt> | Quantum well type light modulator |
-
1987
- 1987-01-20 JP JP1081187A patent/JPS63179317A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61173218A (en) * | 1985-01-28 | 1986-08-04 | Nippon Telegr & Teleph Corp <Ntt> | Quantum well type light modulator |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5196767A (en) * | 1991-01-04 | 1993-03-23 | Optron Systems, Inc. | Spatial light modulator assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Warde et al. | Optical information processing characteristics of the microchannel spatial light modulator | |
US5047822A (en) | Electro-optic quantum well device | |
JP2584811B2 (en) | Nonlinear optical element | |
JPH02129616A (en) | Light modulation apparatus and method | |
EP0275554B1 (en) | Optical device | |
JPH0293523A (en) | Nonlinear optical element | |
Chanussot et al. | A bulk photovoltaic effect due to electron-phonon coupling in polar crystals | |
JPS63179317A (en) | Spatial light modulator | |
JPH04100024A (en) | Waveguide structure | |
JP2758472B2 (en) | Light modulator | |
JPS6331165A (en) | Resonant tunneling semiconductor device | |
JP3751423B2 (en) | Semiconductor element | |
JPS61173218A (en) | Quantum well type light modulator | |
JP2000305055A (en) | Electric field absorption optical modulator | |
JPH01179124A (en) | Optical space modulating element | |
JPS62270926A (en) | Total reflection type optical modulation element | |
JP2727262B2 (en) | Optical wavelength conversion element | |
JP2833391B2 (en) | Wavelength conversion element and multiple wavelength light source device | |
JPS63269119A (en) | Multiple quantum well structure | |
JP2662170B2 (en) | Semiconductor optical switching device | |
JPH01198726A (en) | Variable modulation nonlinear type optical thin film | |
JP3135002B2 (en) | Light control type electron wave interference device | |
Garmire | Optical nonlinearities enhanced by using carrier transport | |
JPS63179316A (en) | Spatial light modulator | |
Suzuki et al. | Optical transfer characteristics of microchannel spatial light modulator |