JPS63178458A - Cylindrical solid electrolyte fuel cell - Google Patents
Cylindrical solid electrolyte fuel cellInfo
- Publication number
- JPS63178458A JPS63178458A JP62010349A JP1034987A JPS63178458A JP S63178458 A JPS63178458 A JP S63178458A JP 62010349 A JP62010349 A JP 62010349A JP 1034987 A JP1034987 A JP 1034987A JP S63178458 A JPS63178458 A JP S63178458A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- solid electrolyte
- cell
- stack
- unit cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims description 25
- 239000007784 solid electrolyte Substances 0.000 title claims description 15
- 239000004020 conductor Substances 0.000 claims abstract description 3
- 239000002184 metal Substances 0.000 abstract description 13
- 229910052751 metal Inorganic materials 0.000 abstract description 13
- 239000000758 substrate Substances 0.000 abstract 2
- 238000010248 power generation Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000002912 waste gas Substances 0.000 description 3
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2425—High-temperature cells with solid electrolytes
- H01M8/243—Grouping of unit cells of tubular or cylindrical configuration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は、円筒型固体電解質燃料電池(円筒型5OFG
>の改良に関する。Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a cylindrical solid electrolyte fuel cell (cylindrical 5OFG
>Regarding improvements.
[従来の技術]
従来、円筒型固体電解質燃料電池として、第6図〜第8
図に示すものが知られているく特開昭52−12174
3号)。[Prior art] Conventionally, as a cylindrical solid electrolyte fuel cell, as shown in Figs.
The thing shown in the figure is known as JP-A-52-12174.
No. 3).
第6図中の1は、単電池である。この単電池1は、第7
図に示す如く燃料電極2.固体電解質膜3、インクコネ
クタ4及び燃料電極5を積層して構成され、かかる構成
の単電池1が複数個基体管6の上に直列に配置された構
造となっている(以下、スタック7という)。そして、
スタック7は、基体管6の上にコーティングした金属膜
及び酸化物膜の2層液m8を設け、更に水冷した金属端
子9を介して第8図に示す如く電流を取出す構造となっ
ている。こうした構造の固体電解質燃料電池によれば、
5OFC1電池では約0.9Vの起電力しか得られない
ものが、スタック7においては約0.9Vの電池数倍の
起電力が得られる。このように比較的容易に高電圧化が
図れるため、電気の使用側から考えると非常に有利とな
る。1 in FIG. 6 is a single battery. This cell 1 is the seventh
As shown in the figure, fuel electrode 2. It is constructed by stacking a solid electrolyte membrane 3, an ink connector 4, and a fuel electrode 5, and has a structure in which a plurality of unit cells 1 having such a structure are arranged in series on a base tube 6 (hereinafter referred to as a stack 7). ). and,
The stack 7 has a structure in which a two-layer liquid m8 of a metal film and an oxide film is coated on the base tube 6, and a current is taken out through a water-cooled metal terminal 9 as shown in FIG. According to the solid electrolyte fuel cell with this structure,
Although the 5OFC1 battery can only obtain an electromotive force of about 0.9V, the stack 7 can obtain an electromotive force of about 0.9V, which is several times the number of batteries. Since it is possible to increase the voltage relatively easily in this way, it is very advantageous from the viewpoint of electricity users.
[発明が解決しようとする問題点]
しかしながら、従来の固体電解質燃料電池によれば、以
下に述べる問題点を有する。[Problems to be Solved by the Invention] However, the conventional solid electrolyte fuel cell has the following problems.
■極端な場合、スタック7中の複数個の単電池の中で1
単電池が破損又は製作ミスなどで電気的に断線すると、
スタック7中の複数個の単電池全てに全く電流が流れな
いことになる。このように、スタック7中の複数個の単
電池のトータルの性能は、複数個の単電池の中の最も悪
い電池の性能に強く影響される。つまり、スタック7の
電池性能を100%引出す為には全ての単電池1が完壁
な状態であることが必要になる。従って、検査としては
抜取り検査では不十分で全数検査が必要になり、検査工
数が膨大になる。また、スタック7は、多数の単電池1
を1基体管上に直列に接続しており、たとえ単電池の不
良率が小さくても、スタック7として考えた時の不良率
はその電池数倍となり9歩留りが悪くなる。■In extreme cases, one of the multiple cells in the stack 7
If the battery becomes electrically disconnected due to damage or manufacturing error,
No current will flow through all of the plurality of cells in the stack 7. In this way, the total performance of the plurality of single cells in the stack 7 is strongly influenced by the performance of the worst battery among the plurality of single cells. In other words, in order to bring out 100% of the battery performance of the stack 7, all the single cells 1 must be in a perfect state. Therefore, a sampling inspection is insufficient for inspection, and a complete inspection is required, resulting in an enormous amount of inspection man-hours. In addition, the stack 7 includes a large number of single cells 1
are connected in series on one base tube, and even if the defective rate of a single cell is small, when considered as a stack 7, the defective rate is multiplied by the number of cells, resulting in poor yield.
■同様なことが、スタック7を複数本直列に接続してよ
り高電圧化を図る場合にも生じるので、装置を大型化す
る場合、単電池の不良率をなくす必要がある。例えば、
100万KW級発電プラントを製作する場合、1電池の
出力が5Wとしても、2g1個の単電池を完壁な状態で
揃える必要があるが、これは現在の技術を駆使しても不
可能に近い。(2) A similar problem occurs when a plurality of stacks 7 are connected in series to increase the voltage, so when increasing the size of the device, it is necessary to eliminate the defective rate of single cells. for example,
When building a 1 million kW class power plant, even if the output of each battery is 5W, it is necessary to have one 2g cell in perfect condition, but this is impossible even with current technology. close.
また、水冷した金属端子9を介して電流を取出す構造と
なっているため、次のような問題がある。Further, since the structure is such that the current is extracted through the water-cooled metal terminal 9, there are the following problems.
■5OFCは1電池当りの起電力が約0.9Vと低いた
め、いかに単電池の抵抗を小さくしても大きな出力を得
るかということが重要である。その1例が固体電解質で
あるイツトリア安定化ジルコニア(YSZ)の薄膜化で
ある。即ち、YSZは高温で02″イオンのみを通すと
いう5ol−Cの最も重要な構成要素である。しかし、
他の構成要素と比較して固有抵抗が数桁大きいため電池
の抵抗を大きくする重大な要因となるが、薄膜化するこ
とによりその影響は比較的小さくなっている。(2) Since the electromotive force per cell of 5OFC is as low as approximately 0.9V, it is important to find out how to obtain a large output even if the resistance of the single cell is made small. One example is the thinning of yttria-stabilized zirconia (YSZ), which is a solid electrolyte. That is, YSZ is the most important component of 5ol-C, allowing only 02'' ions to pass through at high temperatures. However,
Since the specific resistance is several orders of magnitude higher than that of other components, it is a significant factor in increasing the resistance of the battery, but by making the film thinner, this effect has become relatively small.
その他酸素電極、燃料電極、インタコネクタの構造材料
などを検討し、従来例では1電池当りの抵抗を0.10
0程度としている。In addition, we examined the structural materials of oxygen electrodes, fuel electrodes, interconnectors, etc., and in the conventional example, the resistance per cell was reduced to 0.10.
It is set to about 0.
以上のように、従来例は電池部分に関しては抵抗を0.
01Ωオーダで下げる工夫を行っているが、電流取出し
方法として5OFGの運転温度から水冷して室温に近い
構造になった金属端子9まで二重波[18で導電させる
という構造を採用している。この為、基体管6の100
0℃から室温までの温度変化及び熱応力を考慮して数十
cam単位の長さが必要になる。しかも、金属材料の電
気抵抗(固有抵抗)は第9図に示すように温度が高くな
ると大きくなる傾向にある。従って、電流取出し部の抵
抗も無視出来ない程度に大きくなり、5OFG出力端子
での出力は低下する。As mentioned above, in the conventional example, the resistance of the battery part is set to 0.
Efforts have been made to lower the current to the order of 0.01 Ω, but the current extraction method uses a double wave [18] structure to conduct electricity from the operating temperature of the 5OFG to the metal terminal 9, which is water-cooled and has a structure close to room temperature. For this reason, 100 of the base tube 6
In consideration of temperature changes from 0° C. to room temperature and thermal stress, a length of several tens of cam units is required. Moreover, the electrical resistance (specific resistance) of metal materials tends to increase as the temperature increases, as shown in FIG. Therefore, the resistance of the current extraction section also increases to an extent that cannot be ignored, and the output at the 5OFG output terminal decreases.
■前記金属端子9は水冷機構10を有し、当然基体管6
より大きなスペースを占めることになる。■The metal terminal 9 has a water cooling mechanism 10, and naturally the base tube 6
It will take up more space.
従って、基体管6の設置ピッチは水冷機構10の寸法よ
りも小さくすることが出来ず、基体管6の高密度配置が
出来ない。Therefore, the installation pitch of the base tubes 6 cannot be made smaller than the dimensions of the water cooling mechanism 10, and the base tubes 6 cannot be arranged in high density.
■5OFCは約1000℃の高温で運転する必要があり
、発電装置も含めたトータルとしての燃料熱効率の向上
には、a)いかにして高温の発電部の熱を保持、即ち発
電部以外への熱の放散を少なくするか、及びb)高温部
ガスの熱をいかに利用するか、ということが非常に重要
である。しかしながら、従来の場合、ガス給排気を兼ね
た基体管6の両端を水冷した金属端子9に固定するため
、この方向への熱の放散が非常に大きく、発電部の加熱
に多大なエネルギーを必要とする。また、廃ガスも室温
近くまで冷却されており、その熱の再利用は燃料熱効率
という点ではほとんど期待できない。■5OFC needs to be operated at a high temperature of approximately 1000℃, and in order to improve the total fuel thermal efficiency including the power generation equipment, there are two ways to a) retain the heat in the high temperature power generation section, that is, transfer it to areas other than the power generation section. It is very important to reduce heat dissipation and b) how to utilize the heat of the hot gas. However, in the conventional case, since both ends of the base tube 6, which also serves as gas supply and exhaust, are fixed to water-cooled metal terminals 9, heat dissipation in this direction is extremely large, and a large amount of energy is required to heat the power generation section. shall be. In addition, the waste gas is also cooled to near room temperature, and reuse of that heat is hardly expected in terms of fuel thermal efficiency.
本発明は上記事情に鑑みてなされたもので、電池群とし
ての品質を飛躍的に向上して大型発電プラントの可能性
が大きい円筒型固体電解質燃料電池を提供することを目
的とする。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a cylindrical solid electrolyte fuel cell that dramatically improves the quality of a battery group and has great potential for use in large-scale power generation plants.
[問題点を解決するための手段と作用]本発明は、複数
の単電池を直列に配置した基体管を複数本同一方向に1
列配置し、前記基体管同志を導電性材料で複数箇所電気
的に接続することを要旨とする。本発明によれば、電池
群としての信頼性が飛躍的に向上する等の効果を有する
。[Means and effects for solving the problems] The present invention has a plurality of base tubes in which a plurality of unit cells are arranged in series, one in the same direction.
The gist is to arrange the base tubes in rows and electrically connect the base tubes to each other at a plurality of locations using a conductive material. According to the present invention, there are effects such as dramatically improving reliability as a battery group.
[実施例]
以下、本発明の一実施例を第1図〜第3図を参照して説
明する。ここで、第1図は本発明の一実施例に係る円筒
型固体電解質燃料電池の斜視図、第2図は第1図のx−
xsiaに沿う断面図、第3図は同燃料電池の等価回路
図を示す。[Example] Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 3. Here, FIG. 1 is a perspective view of a cylindrical solid electrolyte fuel cell according to an embodiment of the present invention, and FIG.
A cross-sectional view taken along xsia, and FIG. 3 shows an equivalent circuit diagram of the same fuel cell.
図中の21は、基体管である。この基体i!21の上に
は、酸素電極22.固体電解質1I23.インタコネク
タ24及び燃料電極25を積層した単電池26が複数個
直列に配置され、このようにしてスタック27が形成さ
れている。このスタック27は第1図に示す如く複数本
同一方向に一列に配置され、スタック列28をなしてい
る。前記スタック27を構成する単電池26同志は、ニ
ッケルなどの金属フェルト又は金属板29により横方向
に接続されている。しかるに、第3図の等価回路図にお
いて、例えば033という単電池が断線している場合、
C32という単電池と034という単電池との電気的結
合は、C13、C23。21 in the figure is a base tube. This base i! Above 21 is an oxygen electrode 22. Solid electrolyte 1I23. A plurality of unit cells 26 in which interconnectors 24 and fuel electrodes 25 are stacked are arranged in series, thus forming a stack 27. As shown in FIG. 1, a plurality of stacks 27 are arranged in a line in the same direction to form a stack row 28. The unit cells 26 constituting the stack 27 are laterally connected by a metal felt or metal plate 29 made of nickel or the like. However, in the equivalent circuit diagram of Fig. 3, for example, if the cell 033 is disconnected,
The electrical connection between the single cell C32 and the single cell 034 is C13 and C23.
C43という単電池を介して行われ、全体として性能低
下は非常に小さい。This is done via a single cell called C43, and overall the performance drop is very small.
上記実施例によれば、複数本のスタック27を同一方向
に1列に配置し、スタック長手方向の複数箇所で金属板
29などを介して単電池26同志を電気的に接続するた
め、単電池2−6が複数個並列に接続された後、直列に
接続されたことになる。According to the above embodiment, a plurality of stacks 27 are arranged in a row in the same direction, and the cells 26 are electrically connected to each other via metal plates 29 or the like at a plurality of locations in the longitudinal direction of the stack. After a plurality of 2-6 are connected in parallel, they are connected in series.
この為、万一、単電池1個が断線したとしても並列に並
んだ他の単電池26を通して電流が流れるため、性能の
劣る電池の影響をほとんど受けなくなり、電池群として
の品質が飛躍的に向上する。Therefore, even if one cell breaks, the current will flow through the other cells 26 arranged in parallel, making it virtually unaffected by batteries with inferior performance, dramatically improving the quality of the battery group. improves.
また、品質が飛躍的に向上することにより、膨大な数の
電池の集合が可能となり、大型発電プラントの可能性が
出てきた。In addition, the dramatic improvement in quality has made it possible to assemble vast numbers of batteries, creating the possibility of large-scale power generation plants.
なお、本発明に係る円筒型固体電解質燃料電池は、上記
実施例のものに限らず、第4図及び第5図に示すもので
もよい。ここで、第4図は、上記スタック列28を電流
の流れる向きが1列ずつ交互に逆になるように配置し、
スタック列28の左右交互にスタック列同志を接続させ
た構造となっている。ここで、スタック列28は1列ず
つ逆向きに配置され、スタック列の長手方向両端の単電
池で隣接する方何のスタック列へと左右交互に前記金属
板29等で電気的に接続されるため、回路的には第5図
に示す等価回路となる。即ち、複数個のスタック列29
では単電池が並列及び直列に接続した電池群を構成し、
この電池群が更に直列に接続した発電モジュール30を
構成している。Note that the cylindrical solid electrolyte fuel cell according to the present invention is not limited to the one described in the above embodiment, but may be one shown in FIGS. 4 and 5. Here, in FIG. 4, the stack rows 28 are arranged so that the direction of current flow is alternately reversed one row at a time,
The stack rows 28 have a structure in which the left and right stack rows are alternately connected to each other. Here, the stack rows 28 are arranged in opposite directions one by one, and the cells at both ends of the stack row in the longitudinal direction are electrically connected to the adjacent stack rows by the metal plates 29 or the like alternately on the left and right. Therefore, the circuit becomes an equivalent circuit shown in FIG. That is, a plurality of stack columns 29
In this case, cells are connected in parallel and in series to form a battery group.
This battery group constitutes a power generation module 30 further connected in series.
なお、図中の31は、スタック列28を支える支持台で
ある。以上の構成をとることにより、電流はA−8−4
0−+D→E→Fと高温域を最短長さで流れる。しかる
に、上記構造の円筒型5OFGによれば、高温下でスタ
ック列28を次々接続し電流を取出すことにより、以下
の効果を有する。Note that 31 in the figure is a support stand that supports the stack rows 28. By adopting the above configuration, the current is A-8-4
Flows through the high temperature range from 0-+D→E→F in the shortest length. However, the cylindrical 5OFG having the above structure has the following effects by connecting the stack rows 28 one after another under high temperature and extracting current.
(イ)電流取出し部での電気的ロスが少なく特性が向上
する。(a) Electrical loss at the current extraction section is reduced and characteristics are improved.
(ロ)冷却が不要になり、高密度な電池配置が可能とな
る。(b) Cooling becomes unnecessary, allowing for high-density battery arrangement.
(ハ)冷却が不要の為、加熱エネルギが少なくて済むと
ともに、廃ガスの熱エネルギを回収することが可能とな
る。(c) Since cooling is not required, less heating energy is required and it is possible to recover thermal energy from waste gas.
[発明の効果]
以上詳述した如く本発明によれば、電池群としての品質
を飛躍的に向上するとともに、電流取出し部での電気的
ロスを少なくして特性を向上し、かつ高密度な電池配置
、廃ガスの熱エネルギの回収を可能にしえるなど種々の
効果を有した円筒型固体電解質燃料電池を提供できる。[Effects of the Invention] As described in detail above, according to the present invention, the quality of the battery group is dramatically improved, the electrical loss at the current extraction part is reduced, the characteristics are improved, and the high-density It is possible to provide a cylindrical solid electrolyte fuel cell that has various effects such as battery arrangement and recovery of thermal energy from waste gas.
第1図は本発明の一実施例に係る円筒型固体電解質燃料
電池の斜視図°、第2図は第1図のX−X線に沿う断面
図、第3図は同燃料電池の等価回路図、第4図は本発明
の他の実施例に係る円筒型固体電解質燃料電池の説明図
、第5図は同燃料電池の等価回路図、第6図は従来の円
筒型固体電解質燃料電池に係る単電池の配列状態の説明
図、第7図は同燃料電池の断面図、第8図は同燃料電池
の電流取出し状態の説明図、第9図は各種金属の固有抵
抗と温度との関係を示す特性図である。
21・・・基体管、22・・・酸素電極、23・・・固
体電解質膜、24・・・インタコネクタ、25・・・燃
料電慟、26・・・単電池、27・・・スタック、28
・・・スタック列、29.30・・・金属板、31・・
・発電モジュール。
出願人代理人 弁理士 鈴江武彦
第1図
第2図
第4図
】
第6図
第7図
11118図
第9図Fig. 1 is a perspective view of a cylindrical solid electrolyte fuel cell according to an embodiment of the present invention, Fig. 2 is a sectional view taken along the line X-X in Fig. 1, and Fig. 3 is an equivalent circuit of the same fuel cell. 4 is an explanatory diagram of a cylindrical solid oxide fuel cell according to another embodiment of the present invention, FIG. 5 is an equivalent circuit diagram of the same fuel cell, and FIG. 6 is an explanatory diagram of a conventional cylindrical solid oxide fuel cell. Fig. 7 is a cross-sectional view of the fuel cell, Fig. 8 is an explanatory drawing of the current extraction state of the fuel cell, and Fig. 9 is the relationship between the specific resistance of various metals and temperature. FIG. 21... Base tube, 22... Oxygen electrode, 23... Solid electrolyte membrane, 24... Interconnector, 25... Fuel electrode, 26... Cell, 27... Stack, 28
...Stack row, 29.30...Metal plate, 31...
・Power generation module. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 4 Figure 6 Figure 7 11118 Figure 9
Claims (1)
に1列配置し、前記基体管同志を導電性材料で複数箇所
電気的に接続することを特徴とする円筒型固体電解質燃
料電池。A cylindrical solid electrolyte fuel cell characterized in that a plurality of base tubes each having a plurality of unit cells arranged in series are arranged in one row in the same direction, and the base tubes are electrically connected to each other at a plurality of points using a conductive material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62010349A JPS63178458A (en) | 1987-01-20 | 1987-01-20 | Cylindrical solid electrolyte fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62010349A JPS63178458A (en) | 1987-01-20 | 1987-01-20 | Cylindrical solid electrolyte fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63178458A true JPS63178458A (en) | 1988-07-22 |
Family
ID=11747713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62010349A Pending JPS63178458A (en) | 1987-01-20 | 1987-01-20 | Cylindrical solid electrolyte fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63178458A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02121266A (en) * | 1988-10-31 | 1990-05-09 | Mitsui Eng & Shipbuild Co Ltd | Solid electrolyte type fuel cell |
WO1998013892A1 (en) * | 1996-09-26 | 1998-04-02 | Wolfgang Winkler | Fuel cell installation with tubular high temperature fuel cells |
KR100286779B1 (en) * | 1991-10-11 | 2001-04-16 | 드폴 루이스 에이 | Solid oxide fuel cell generator |
WO2003023885A1 (en) * | 2001-09-06 | 2003-03-20 | Toto Ltd. | Solid state electrolytic fuel cell |
JP2010205619A (en) * | 2009-03-04 | 2010-09-16 | Kyocera Corp | Cell stack of horizontal solid oxide fuel cell, and fuel cell |
JP2011233334A (en) * | 2010-04-27 | 2011-11-17 | Kyocera Corp | Horizontal-stripe solid oxide fuel cell stack and fuel cell |
-
1987
- 1987-01-20 JP JP62010349A patent/JPS63178458A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02121266A (en) * | 1988-10-31 | 1990-05-09 | Mitsui Eng & Shipbuild Co Ltd | Solid electrolyte type fuel cell |
KR100286779B1 (en) * | 1991-10-11 | 2001-04-16 | 드폴 루이스 에이 | Solid oxide fuel cell generator |
WO1998013892A1 (en) * | 1996-09-26 | 1998-04-02 | Wolfgang Winkler | Fuel cell installation with tubular high temperature fuel cells |
WO2003023885A1 (en) * | 2001-09-06 | 2003-03-20 | Toto Ltd. | Solid state electrolytic fuel cell |
JP2010205619A (en) * | 2009-03-04 | 2010-09-16 | Kyocera Corp | Cell stack of horizontal solid oxide fuel cell, and fuel cell |
JP2011233334A (en) * | 2010-04-27 | 2011-11-17 | Kyocera Corp | Horizontal-stripe solid oxide fuel cell stack and fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7393605B2 (en) | Fuel cell end unit with integrated heat exchanger | |
US10714782B2 (en) | Cell stack device, module, and module housing device | |
US8802250B2 (en) | Fuel cell bypass diode structures and attachment methods | |
US6953633B2 (en) | Fiber cooling of fuel cells | |
EP2898560B1 (en) | Systems and methods for bypassing fuel cells | |
JPS63178458A (en) | Cylindrical solid electrolyte fuel cell | |
US11271240B2 (en) | Fuel cell column containing electrically insulated fuel manifold and manifold jumper | |
US8835072B2 (en) | Solid oxide fuel cell stacks and fuel cell module having the same | |
JP6273233B2 (en) | Method for manufacturing electrochemical reaction cell stack | |
JP6907081B2 (en) | Stack connector | |
JPS62200666A (en) | Fuel cell | |
KR102318475B1 (en) | electrochemical reaction cell stack | |
JP3244308B2 (en) | Solid oxide fuel cell system | |
JP2000182652A (en) | Solid electrolyte fuel cell assemby and solid electrolyte fuel cell module | |
US8697307B2 (en) | Solid oxide fuel cell stack | |
CN109361005A (en) | A kind of solid oxide fuel cell device | |
JPH0821416B2 (en) | Fuel cell | |
CN114824403B (en) | Module combined type high fault tolerance reversible battery stack | |
JP2018053314A (en) | Hydrogen production apparatus | |
US20220190377A1 (en) | Fuel cell cartridge, fuel cell module, and combined power generation system | |
JP2000182654A (en) | Solid electrolyte fuel cell module | |
JPH0624136B2 (en) | Fuel cell power generation system | |
JPS63178459A (en) | Solid electrolyte fuel cell | |
KR20240153559A (en) | Solid oxide battery stack system including multi-stream solid oxide battery stack heat exchanger | |
PARRY | Manifold, bus support and coupling arrangement for solid oxide fuel cells(Patent Application) |