JPS6317842A - Production of quinone - Google Patents
Production of quinoneInfo
- Publication number
- JPS6317842A JPS6317842A JP61162009A JP16200986A JPS6317842A JP S6317842 A JPS6317842 A JP S6317842A JP 61162009 A JP61162009 A JP 61162009A JP 16200986 A JP16200986 A JP 16200986A JP S6317842 A JPS6317842 A JP S6317842A
- Authority
- JP
- Japan
- Prior art keywords
- chloride
- oxygen
- benzoquinone
- mol
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 title abstract description 29
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims abstract description 51
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims abstract description 39
- 150000002989 phenols Chemical class 0.000 claims abstract description 28
- 239000001301 oxygen Substances 0.000 claims abstract description 25
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 25
- 229960003280 cupric chloride Drugs 0.000 claims abstract description 19
- 239000002904 solvent Substances 0.000 claims abstract description 17
- 229910001514 alkali metal chloride Inorganic materials 0.000 claims abstract description 11
- 150000001879 copper Chemical class 0.000 claims abstract description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract 6
- 150000004053 quinones Chemical class 0.000 claims description 14
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 abstract description 26
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 abstract description 16
- -1 benzoquinone compound Chemical class 0.000 abstract description 4
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 36
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 25
- 230000003647 oxidation Effects 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 150000004057 1,4-benzoquinones Chemical class 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- FGDZQCVHDSGLHJ-UHFFFAOYSA-M rubidium chloride Chemical compound [Cl-].[Rb+] FGDZQCVHDSGLHJ-UHFFFAOYSA-M 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 5
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- QWBBPBRQALCEIZ-UHFFFAOYSA-N 2,3-dimethylphenol Chemical compound CC1=CC=CC(O)=C1C QWBBPBRQALCEIZ-UHFFFAOYSA-N 0.000 description 3
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000001103 potassium chloride Substances 0.000 description 3
- 235000011164 potassium chloride Nutrition 0.000 description 3
- 229940102127 rubidium chloride Drugs 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- NXXYKOUNUYWIHA-UHFFFAOYSA-N 2,6-Dimethylphenol Chemical compound CC1=CC=CC(C)=C1O NXXYKOUNUYWIHA-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 2
- 229910001626 barium chloride Inorganic materials 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- XRUGBBIQLIVCSI-UHFFFAOYSA-N 2,3,4-trimethylphenol Chemical compound CC1=CC=C(O)C(C)=C1C XRUGBBIQLIVCSI-UHFFFAOYSA-N 0.000 description 1
- HOLHYSJJBXSLMV-UHFFFAOYSA-N 2,6-dichlorophenol Chemical compound OC1=C(Cl)C=CC=C1Cl HOLHYSJJBXSLMV-UHFFFAOYSA-N 0.000 description 1
- WJQOZHYUIDYNHM-UHFFFAOYSA-N 2-tert-Butylphenol Chemical compound CC(C)(C)C1=CC=CC=C1O WJQOZHYUIDYNHM-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- 241001474791 Proboscis Species 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はフェノール類を分子状酸素により酸化してそれ
に対応するキノン類を製造する方法に関する。バラベン
ゾキノン特に置換基を有しないバラベンゾキノンは、水
素化によって対応するハイドロキノンを製造することが
出来、そのハイドロキノンは写真産業などで使用される
如(産業上有用な化合物である。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing quinones corresponding to phenols by oxidizing them with molecular oxygen. Parabenzoquinone, particularly parabenzoquinone without a substituent, can be hydrogenated to produce the corresponding hydroquinone, which is an industrially useful compound used in the photographic industry and the like.
銅塩の存在下で、且つ、溶剤中でフェノール類即ち無置
換フェノールまたは置換フェノールを酸素と反応させて
キノ788ち無置換ベンゾキノンまたは置換ベンゾキノ
ンを製造する方法は知られている。しかしながら、従来
公知の方法によると、キノン類の収率は十分とはいい難
い0例えば特開昭48−434号明細書には、フェノー
ル類としてメチル基で置換された置換フェノールを用い
、銅及びハロゲンイオンの存在下において、溶媒中で酸
素ガスにより酸化して、対応するキノン類を製造する方
法が記載されているが、その収率は低い。It is known to produce Quino 788, unsubstituted or substituted benzoquinone, by reacting phenols, unsubstituted or substituted phenols, with oxygen in the presence of a copper salt and in a solvent. However, according to conventionally known methods, the yield of quinones cannot be said to be sufficient. A method for producing the corresponding quinones by oxidation with oxygen gas in a solvent in the presence of halogen ions has been described, but the yield is low.
本発明はこの従来技術よりバラベンゾキノンの低収率を
特定の溶媒と特定の触媒を使用することにより高収率に
しようというものである。The present invention aims to improve the low yield of rosebenzoquinone by using a specific solvent and a specific catalyst compared to the conventional technique.
本発明者等は、上記問題点を、溶媒としてメチルアルコ
ールを使用し、且つ、特定の濃度の塩化第二銅及びアル
カリ金属の塩化物の存在下で反応を実施することにより
解決した。即ち、本発明は銅塩の存在下で、且つ、溶剤
中でフェノール類即ち無置換フェノールまたは置換フェ
ノールを酸素と反応させてキノン類即ち無置換ベンゾキ
ノンまたは置換ベンゾキノンを製造する方法において、
溶剤としてのメチルアルコール中で、メチルアルコール
1000gに対して塩化第二銅0.002〜0.167
モルの存在下で、且つ、塩化第二銅1モルにつきアルカ
リ金属の塩化Th 0.5〜10モルの存在下で前記反
応を実施することを特徴とするキノン類の製造方法であ
る。The present inventors solved the above problem by using methyl alcohol as a solvent and carrying out the reaction in the presence of specific concentrations of cupric chloride and alkali metal chlorides. That is, the present invention provides a method for producing quinones, i.e., unsubstituted benzoquinone or substituted benzoquinone, by reacting phenols, i.e., unsubstituted phenol or substituted phenol, with oxygen in the presence of a copper salt and in a solvent,
In methyl alcohol as a solvent, 0.002 to 0.167 cupric chloride per 1000 g of methyl alcohol
The method for producing quinones is characterized in that the reaction is carried out in the presence of 0.5 to 10 moles of alkali metal chloride Th per mole of cupric chloride.
本発明で用いられるフェノール類即ち無1換フ(式中、
R2、R2、R3およびR4は、同じもの又は異なるも
のであってもよく、水素、ハロゲン、シアノ、1〜12
個の炭素原子を含有するアルキル又はアルコキシ、6〜
16個の炭素原子を含有する未置換もしくは置換フェニ
ル又は未置換もしくは置換フェノキシ基を示す)で表わ
されるものであり、特にR3、R8、R1及びR9とし
て水素、塩素、臭素、沃素、シアノ、メチル、エチル、
プロピル、ブチル、ペンチル、メトキシ、エトキシ、フ
ェニル、フェノキシ等がある。本発明で用いられる好ま
しいフェノール類としては、フェノール即ち無置換フェ
ノール、0−クロルフェノール、2,6−ジクロルフェ
ノール、0−クレゾール、トクレゾール、2−第三級ブ
チルフェノール、2.6−ジメチルフェノール、2,3
−ジメチルフェノール、2.6−ジ第三ブチルフエノー
ル、2.3.5− )ジメチルフェノール、2,3゜6
−トリメチルフエノール、0−フェニルフェノール、Q
−ベンジルフェノールなどがある。The phenols used in the present invention, i.e. non-monocarbons (in the formula,
R2, R2, R3 and R4 may be the same or different, hydrogen, halogen, cyano, 1-12
alkyl or alkoxy containing from 6 to
unsubstituted or substituted phenyl or unsubstituted or substituted phenoxy group containing 16 carbon atoms), in particular as R3, R8, R1 and R9 hydrogen, chlorine, bromine, iodine, cyano, methyl ,ethyl,
Examples include propyl, butyl, pentyl, methoxy, ethoxy, phenyl, phenoxy, etc. Preferred phenols used in the present invention include phenol, unsubstituted phenol, 0-chlorophenol, 2,6-dichlorophenol, 0-cresol, tocresol, 2-tert-butylphenol, 2,6-dimethylphenol. ,2,3
-dimethylphenol, 2.6-ditert-butylphenol, 2.3.5-)dimethylphenol, 2,3゜6
-trimethylphenol, 0-phenylphenol, Q
- Benzylphenol, etc.
フェノール類の濃度は反応液に対して0.5〜70重量
%程度である。0.5重量%未満では反応機の容積効率
が悪く、70重量%をこえると反応中にキノン類の結晶
が析出し操作性が悪くなる。酸素源としては、純酸素の
他に空気や窒素で希釈した酸素を用いることができる。The concentration of phenols is about 0.5 to 70% by weight based on the reaction solution. If it is less than 0.5% by weight, the volumetric efficiency of the reactor will be poor, and if it exceeds 70% by weight, crystals of quinones will precipitate during the reaction, resulting in poor operability. As the oxygen source, in addition to pure oxygen, oxygen diluted with air or nitrogen can be used.
本発明では溶剤としてメチルアルコールを用いる。エチ
ルアルコールやプロピルアルコールでは、キノン類への
選択性がメチルアルコールを溶剤として使用した場合に
(らべて低い。In the present invention, methyl alcohol is used as a solvent. Ethyl alcohol and propyl alcohol have lower selectivity towards quinones than when methyl alcohol is used as a solvent.
銅塩としては、本発明では塩化第二銅を使用する。その
使用量はメチルアルコール1000.に対して0.00
2〜0.167モルを使用する。 0.002モル未満
ではフェノール類の酸化速度が遅い、一方0.167モ
ルをこえる高濃度では副反応が多くなり目的とするキノ
ン類の収率は低い、好ましくはo、oso〜0.140
モルを使用する。この範囲であれば、フェノール類の酸
化速度が大きく且つキノン類への選択率も高い。As the copper salt, cupric chloride is used in the present invention. The amount used is 1000 ml of methyl alcohol. 0.00 against
2 to 0.167 mol is used. If the concentration is less than 0.002 mol, the phenol oxidation rate is slow, while if the concentration exceeds 0.167 mol, side reactions will increase and the yield of the desired quinone will be low. Preferably o, oso ~ 0.140
Use moles. Within this range, the oxidation rate of phenols is high and the selectivity to quinones is also high.
本発明では塩化第二銅と共にアルカリ金属の塩化物の存
在下で実施する。アルカリ金属の塩化物としては塩化リ
チウム、塩化ナトリウム、塩化カリウム、塩化ルビジウ
ム、塩化セシウムがあり、これらを塩化第二銅と併用す
ることによりフェノール類の酸化速度が速くなり、且つ
対応するキノン類の収率が高(なる。The present invention is carried out in the presence of an alkali metal chloride together with cupric chloride. Alkali metal chlorides include lithium chloride, sodium chloride, potassium chloride, rubidium chloride, and cesium chloride, and when these are used in combination with cupric chloride, the oxidation rate of phenols increases, and the oxidation rate of the corresponding quinones increases. The yield is high.
このアルカリ金属の塩化物の使用量は塩化第二銅1モル
につき0.5〜10モル使用する。0.5モル未満では
その効果は少なく、10モルをこえるとフェノール類の
酸化速度はかえって低下し、対応するキノン類への選択
性も低くなる。より好ましくは2.5モル〜5モル使用
する。この範囲ではフェノール類の酸化速度が大きく、
且つ対応するキノン類への選択率が高い、アルカリ金属
の塩化物としては塩化リチウムが好ましい、塩化リチウ
ムは、他のアルカリ金属の塩化物よりもメチルアルコー
ルに対する溶解度が大きいので、溶液中の濃度が高(出
来好ましい。The amount of the alkali metal chloride used is 0.5 to 10 moles per mole of cupric chloride. If it is less than 0.5 mol, the effect will be small, and if it exceeds 10 mol, the oxidation rate of phenols will be rather reduced, and the selectivity to the corresponding quinones will also be lowered. More preferably, 2.5 mol to 5 mol is used. In this range, the oxidation rate of phenols is high;
In addition, lithium chloride is preferable as the alkali metal chloride, which has a high selectivity to the corresponding quinones.Lithium chloride has a higher solubility in methyl alcohol than other alkali metal chlorides, so the concentration in the solution is low. High (good quality)
本発明の方法では、反応圧力は常圧でも良く、所望なら
ば加圧、減圧のいずれでも良い、但し酸素圧力は0.1
〜500Kg/ cdである。通常、酸素圧力が高いほ
ど、無置換フェノールの酸化速度が大きくなり、且つ対
応する無置換ベンゾキノンへの選択率が高くなる。無置
換フェノールよりもアルキル又はアルコキシで置換され
た置換フェノールは同じ酸素圧力ではより酸化速度が太
き(、且つ対応する置換ベンゾキノンへの選択率が高い
、即ち、より低い酸素圧力を使用できる。In the method of the present invention, the reaction pressure may be normal pressure, or if desired, either increased pressure or reduced pressure, provided that the oxygen pressure is 0.1
~500Kg/cd. Generally, the higher the oxygen pressure, the higher the oxidation rate of unsubstituted phenol and the higher the selectivity to the corresponding unsubstituted benzoquinone. Substituted phenols substituted with alkyl or alkoxy have a faster oxidation rate (and higher selectivity to the corresponding substituted benzoquinone) at the same oxygen pressure than unsubstituted phenols, i.e. lower oxygen pressures can be used.
無置換フェノールの場合には、酸素圧力として30 K
g/−以上が好ましく、無置換ベンゾキノン製造の設備
費を考慮すると、酸素圧力として200Kg/−以下が
好ましい。In the case of unsubstituted phenol, the oxygen pressure is 30 K.
The oxygen pressure is preferably at least 200 Kg/-, and in consideration of equipment costs for producing unsubstituted benzoquinone, the oxygen pressure is preferably at most 200 Kg/-.
反応温度としては使用するフェノール類によって異なる
が、通常0〜120℃で、好ましくは20〜100℃で
ある。無置換フェノールよりもアルキル又はアルコキシ
で置換された置換フェノールの方が反応速度が大きいの
で、より低い温度で反応させることができる。また無買
換フェノールよりもアルキル又はアルコキシで置換され
た置換フェノールの方が対応する置換ベンゾキノンへの
j択率が高い。The reaction temperature varies depending on the phenol used, but is usually 0 to 120°C, preferably 20 to 100°C. Since the reaction rate of substituted phenol substituted with alkyl or alkoxy is higher than that of unsubstituted phenol, the reaction can be carried out at a lower temperature. Furthermore, a substituted phenol substituted with alkyl or alkoxy has a higher selectivity to the corresponding substituted benzoquinone than a non-purchased phenol.
反応時間は通常0,5〜10時間程度である。この方法
はバッチ式又は流通式で行うことが出来る9生成物と触
媒との分離は、例えば反応後の液からメチルアルコール
を蒸留により分離し、しかる後に水と、水に混合しない
有機溶剤により抽出して、触媒を含む水層と、生成物等
を含む有機溶剤層に分離し、有i溶剤層からベンゾキノ
ンを分離することにより行うことが出来る。The reaction time is usually about 0.5 to 10 hours. This method can be carried out in a batch or flow process.9 The product and catalyst can be separated, for example, by separating methyl alcohol from the reaction solution by distillation, followed by extraction with water and an organic solvent that is immiscible with water. This can be carried out by separating the aqueous layer containing the catalyst and the organic solvent layer containing the product, etc., and separating the benzoquinone from the organic solvent layer.
(実施例〕
実施例1
ガラスのビーカーを填込んだ300Illの撹拌機付の
ステンレス製のオートクレーブにフェノール18.82
g(0,200モル)、塩化第二銅1.34g(0,0
10モル)、塩化リチウム1.70g(0,040モル
)及びメタノール90gを仕込んだ、その後窒素で40
Kg/−G迄圧張りし、しかる後に酸素ガスを100K
g/c+JGまで圧入した(常温、この時点での酸素圧
力は60Kg/ad ) 、このオートクレーブを加
熱して70℃にし、反応により酸素が消費されて全圧が
100Kg/csiGになった時点より、純酸素を反応
機中に絶えず導入して、全圧を100Kg/c+jGに
保った0反応時間は70℃に昇温後3時間とした。しか
る後、常温まで冷却し、圧抜きを行い、内容物を取り出
して、液体クロマトグラフィーにより分析した。(Example) Example 1 Phenol 18.82 kg was placed in a 300 Ill stainless steel autoclave equipped with a stirrer filled with a glass beaker.
g (0,200 mol), cupric chloride 1.34 g (0,0
10 moles), 1.70 g (0,040 moles) of lithium chloride, and 90 g of methanol were charged, and then nitrogen was added to
Pressurize to Kg/-G, then apply oxygen gas to 100K.
g/c+JG (at room temperature, oxygen pressure at this point is 60 Kg/csiG), this autoclave was heated to 70°C, and from the time when the oxygen was consumed by the reaction and the total pressure became 100 Kg/csiG, Pure oxygen was constantly introduced into the reactor to maintain the total pressure at 100 Kg/c+jG, and the zero reaction time was 3 hours after the temperature was raised to 70°C. Thereafter, it was cooled to room temperature, the pressure was released, and the contents were taken out and analyzed by liquid chromatography.
結果を表1に示した。The results are shown in Table 1.
実施例2〜6及び比較例1
塩化第二銅と塩化リチウムの添加量のみを変化させ、そ
の他は実施例1と全(同一の条件で反応させた。結果を
表1に示した。Examples 2 to 6 and Comparative Example 1 Only the added amounts of cupric chloride and lithium chloride were changed, and the reactions were otherwise carried out under the same conditions as in Example 1. The results are shown in Table 1.
表1 フェノールの酸化の結果
■
注
本 濃度 CuClzモル/1000g CH3
0H実施例7
ガラスのビーカーを填込んだ70m1の攪拌機付のステ
ンレス製のオートクレーブにフェノール0.941g(
0,01モル)、塩化第二銅0.134g(0,001
モル)、塩化リチウム0.170g(0,004モル)
及びメチルアルコール20gを仕込んだ、その後窒素で
50Kg/aiGまで圧張りし、しかる後に酸素ガスを
100Kg/c*”Gまで圧入した(酸素圧力4150
Kg/d)、このオートクレーブを加熱して70℃にし
、それから3時間保持した。しかる後常温まで冷却し、
圧抜きを行い、内容物を取り出し、ガスクロマトグラフ
ィーで分析した。結果を表2に示した。Table 1 Results of oxidation of phenol ■ Notebook Concentration CuClz mol/1000g CH3
0H Example 7 0.941 g of phenol (
0,01 mol), cupric chloride 0.134 g (0,001 mol), cupric chloride 0.134 g (0,001
mol), lithium chloride 0.170g (0,004 mol)
and 20 g of methyl alcohol were charged, then the pressure was increased to 50 Kg/aiG with nitrogen, and then oxygen gas was injected to 100 Kg/c*"G (oxygen pressure 4150
Kg/d), the autoclave was heated to 70°C and then held for 3 hours. Then cool to room temperature,
The pressure was released and the contents were taken out and analyzed by gas chromatography. The results are shown in Table 2.
実施例8〜15
塩化リチウムの添加量のみ変化させ、その他は実施例7
と全(同一の条件下で反応させた。結果を表2に示した
。Examples 8 to 15 Only the amount of lithium chloride added was changed, and the rest was the same as Example 7.
and total (reacted under the same conditions. The results are shown in Table 2.
比較例2
塩化リチウムを添加せず、その他は実施例7と全(同一
の条件下で反応させた。結果を表2に示した。Comparative Example 2 The reaction was carried out under the same conditions as in Example 7 except that lithium chloride was not added. The results are shown in Table 2.
表2 塩化リチウムの添加効果
注
率CuC14度; (:uC11モル/ 1000g
CkOH錦 ベンゾキノン選択率:生成したハイドロ
キノンを含むハイドロキノン+ ベンゾキノン
の合計の選択率
実施例16〜19
塩化リチウムの代わりに塩化ナトリウム、塩化カリウム
、塩化ルビジウム又は塩化セシウムを0.001モル添
加し、その他は実施例7と全く同一の条件下で反応させ
た。結果を表3に示した。Table 2 Effect of addition of lithium chloride Note ratio CuC 14 degrees; (: uC 11 mol/1000 g
CkOH brocade Benzoquinone selectivity: Total selectivity of hydroquinone including generated hydroquinone + benzoquinone Examples 16 to 19 0.001 mol of sodium chloride, potassium chloride, rubidium chloride or cesium chloride was added instead of lithium chloride, and the other The reaction was carried out under exactly the same conditions as in Example 7. The results are shown in Table 3.
比較fM3〜5
塩化リチウムの代わりに塩化マグネシウム、塩化カルシ
ウム、又は塩化バリウムをo、ooosモル添加し、そ
の他は実施例7と全く同一の条件下で反応させた。結果
を表3に示した。Comparison fM3-5 O, oos moles of magnesium chloride, calcium chloride, or barium chloride were added instead of lithium chloride, and the reaction was otherwise carried out under exactly the same conditions as in Example 7. The results are shown in Table 3.
表3 添顎吻の効果
実7
比
注
率CuC1z濃度−−−−−−−CuC11モル/ 1
000g C!(sOH錦 ベンゾキノン選択率−一一
−−生成したハイドロキノンを含むハイドロキノン+
ベンゾキノン
台(十のi訂尺率
実施例20
フェノールの代わりに2.3.6−トリメチルフエノー
ルを使用し、それ以外は実施例7と全(同じ条件下で反
応を行った。Table 3 Effect of proboscis 7 Specific injection rate CuC1z concentration---CuC11 mol/1
000g C! (sOH Nishiki Benzoquinone selectivity - 11 - Hydroquinone containing generated hydroquinone +
Benzoquinone base (10 i scale Example 20) 2.3.6-trimethylphenol was used instead of phenol, and the reaction was carried out under the same conditions as in Example 7 except for that.
2.3.6− )リメチルフェノールの転化率100χ
2.3.5−トリメチルベンゾキノンへの選択率99.
5χ
比較例6
溶媒としてメチルアルコールの代わりにスルホランを2
0g使用し、他は比較例2と全く同一の条件下で反応さ
せた。結果を表4に示した。2.3.6-) Conversion rate of trimethylphenol 100χ 2.3. Selectivity to 5-trimethylbenzoquinone 99.
5χ Comparative Example 6 Using sulfolane instead of methyl alcohol as a solvent
0 g was used, and the reaction was carried out under the same conditions as in Comparative Example 2. The results are shown in Table 4.
比較例7
塩化リチウムを0.003モル添加し、他は比較例6と
全く同一の条件下で反応させた、結果を表4に示した。Comparative Example 7 The reaction was carried out under the same conditions as in Comparative Example 6 except that 0.003 mol of lithium chloride was added, and the results are shown in Table 4.
表4 溶媒の効果
注
” CuClx濃度−−−−−−−−−−−CuCl
xモル/1000gスルホラン韓 ベンゾキノン選択率
−−−−−一生成したハイドロキノンを含むハイドロキ
ノン÷ ベンゾキノン
合計の選択率
実施例21
オートクレーブへの仕込みの窒素の初圧を62Kg/c
dGとした以外は実施例1と全(同一の条件で反応を行
い(70℃で全圧100Kg/cdG 、酸素圧力は3
0Kg/d) 、次の結果を得た。Table 4 Effect of solvent Note: CuClx concentration-----CuCl
x mol/1000g sulfolane benzoquinone selectivity --- Hydroquinone including hydroquinone produced ÷ total selectivity of benzoquinone Example 21 The initial pressure of nitrogen charged into the autoclave was 62 Kg/c
The reaction was carried out under the same conditions as in Example 1 except that dG was used (70°C, total pressure 100 kg/cdG, oxygen pressure 3.
0 Kg/d), the following results were obtained.
フェノール転化率 87.5χベンゾキノ
ンへの選択率 73.9χハイドロキノンへの選
択率 4.1χ〔発明の効果〕
表1の結果から、塩化第二銅をメチルアルコール100
0.について0.002モルから0.167モル添加し
、且つ塩化リチウムを添加した反応系では、ベンゾキノ
ンへの選択率が高い、一方、塩化第二銅の添加量がメチ
ルアルコール1000gに対して0.222モルの場合
には本発明の範囲外であり、塩化リチウムを添加してい
るにもかかわらず、ベンゾキノンへの選択率が低い。Phenol conversion rate 87.5χ Selectivity to benzoquinone 73.9χ Selectivity to hydroquinone 4.1χ [Effects of the invention] From the results in Table 1, it can be seen that cupric chloride was converted into methyl alcohol by 100%
0. In the reaction system in which 0.002 to 0.167 mol of copper chloride was added and lithium chloride was added, the selectivity to benzoquinone was high; on the other hand, the amount of cupric chloride added was 0.222 mol per 1000 g of methyl alcohol. In the case of moles, it is outside the scope of the present invention, and the selectivity to benzoquinone is low despite the addition of lithium chloride.
表2の結果から塩化リチウムを無添加の場合は、フェノ
ールの転化率が低く、且つ、ベンゾキノンへの選択率も
低いが、塩化リチウムを塩化第二銅1モルに対して0.
5モル〜10モル添加した場合ニハフェノールの転化率
が高く、且つベンゾキノンへの選択率も高い。From the results in Table 2, when lithium chloride is not added, the conversion rate of phenol is low and the selectivity to benzoquinone is also low, but lithium chloride is added at 0.0% per mole of cupric chloride.
When 5 mol to 10 mol is added, the conversion rate of nihaphenol is high and the selectivity to benzoquinone is also high.
表3の結果から塩化ナトリウム、塩化カリウム、塩化ル
ビジウム及び塩化セシウムは塩化リチウムと同様に添加
効果が認められるが、塩化マグネシウム、塩化カルシウ
ム、塩化バリウムはベンゾキノンへの選択率を向上させ
る効果はない。From the results in Table 3, it is observed that sodium chloride, potassium chloride, rubidium chloride, and cesium chloride have the same addition effect as lithium chloride, but magnesium chloride, calcium chloride, and barium chloride have no effect on improving the selectivity to benzoquinone.
実施例20に示したように、アルキル基で置換された置
換フェノールでは対応するバラベンゾキノンへの選択率
が増大する。As shown in Example 20, substituted phenols substituted with alkyl groups increase selectivity to the corresponding parabenzoquinone.
表4の結果から溶媒としてスルホランを使用した場合に
は、塩化リチウムを添加することによりフェノールの転
化率が低くなり、且つベンゾキノンへの選択率が低下し
ている。このように特定の溶媒と特定の触媒との組合せ
により、初めてベンゾキノンを高収率で製造することが
出来る。The results in Table 4 show that when sulfolane is used as a solvent, the addition of lithium chloride lowers the conversion rate of phenol and lowers the selectivity to benzoquinone. In this way, benzoquinone can be produced in high yield for the first time by combining a specific solvent and a specific catalyst.
実施例1 (70℃に於ける酸素圧力は55Kg/aa
)と実施例21(70℃に於ける酸素圧力は30Kg/
−)より、酸素圧力を下げるとフェノールの転化率が下
り、且つベンゾキノンへの選択率も低くなることが明ら
かである0本発明では酸素圧力として30に、/−以上
が好ましい。Example 1 (Oxygen pressure at 70°C is 55Kg/aa
) and Example 21 (oxygen pressure at 70°C is 30 kg/
-), it is clear that lowering the oxygen pressure lowers the conversion rate of phenol and also lowers the selectivity to benzoquinone. In the present invention, the oxygen pressure is preferably 30, /- or higher.
Claims (1)
応させてキノン類を製造する方法において、溶剤として
のメチルアルコール中で、メチルアルコール1000g
に対して塩化第二銅0.002〜0.167モルの存在
下で、且つ塩化第二銅1モルにつきアルカリ金属の塩化
物0.5〜10モルの存在下で前記反応を実施すること
を特徴とするキノン類の製造方法。 2)アルカリ金属の塩化物が塩化第二銅1モルにつき2
.5〜5モルである特許請求の範囲第1項記載の方法。 3)フェノール類が無置換フェノールである特許請求の
範囲第1項または第2項記載の方法。 4)フェノール類を酸素と反応させてキノン類を製造す
るに際し酸素圧力として30Kg/cm^2以上を用い
る特許請求の範囲第3項記載の方法。[Claims] 1) A method for producing quinones by reacting phenols with oxygen in the presence of a copper salt in a solvent, in which 1000 g of methyl alcohol is used as a solvent.
and in the presence of 0.5 to 10 mol of alkali metal chloride per mol of cupric chloride. Characteristic method for producing quinones. 2) Alkali metal chloride is 2 per mole of cupric chloride
.. The method according to claim 1, wherein the amount is 5 to 5 mol. 3) The method according to claim 1 or 2, wherein the phenol is an unsubstituted phenol. 4) The method according to claim 3, in which an oxygen pressure of 30 kg/cm^2 or more is used when producing quinones by reacting phenols with oxygen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61162009A JPH0776192B2 (en) | 1986-07-11 | 1986-07-11 | Method for producing quinones |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61162009A JPH0776192B2 (en) | 1986-07-11 | 1986-07-11 | Method for producing quinones |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6317842A true JPS6317842A (en) | 1988-01-25 |
JPH0776192B2 JPH0776192B2 (en) | 1995-08-16 |
Family
ID=15746311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61162009A Expired - Lifetime JPH0776192B2 (en) | 1986-07-11 | 1986-07-11 | Method for producing quinones |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0776192B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5932753A (en) * | 1997-02-19 | 1999-08-03 | Chuo Chemical Co., Inc. | Process for producing 2-methyl-1,4-benzoquinone |
JP2016526549A (en) * | 2013-07-02 | 2016-09-05 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Method for producing 2,3,5-trimethylbenzoquinone by oxidation of 2,3,6-trimethylphenol |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6051144A (en) * | 1983-08-31 | 1985-03-22 | Showa Denko Kk | Production of quinone |
-
1986
- 1986-07-11 JP JP61162009A patent/JPH0776192B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6051144A (en) * | 1983-08-31 | 1985-03-22 | Showa Denko Kk | Production of quinone |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5932753A (en) * | 1997-02-19 | 1999-08-03 | Chuo Chemical Co., Inc. | Process for producing 2-methyl-1,4-benzoquinone |
JP2016526549A (en) * | 2013-07-02 | 2016-09-05 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Method for producing 2,3,5-trimethylbenzoquinone by oxidation of 2,3,6-trimethylphenol |
Also Published As
Publication number | Publication date |
---|---|
JPH0776192B2 (en) | 1995-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111484400B (en) | Preparation method of 2-methyl-4- (2,6, 6-trimethylcyclohexene-1-yl) -2-butenal | |
US6077979A (en) | Manufacture of 3,3',5,5'-tetramethyl-2,2'-biphenol | |
EP0107427A1 (en) | Process for oxidizing a phenol to a p-benzoquinone | |
US7045666B2 (en) | Bromination of hydroxyaromatic compounds and further conversion to dihydroxyaromatic compounds | |
JPS6317842A (en) | Production of quinone | |
US4965384A (en) | Production of copper amine salt complexes for catalysts for the oxidative coupling of alkylphenols | |
CA1101436A (en) | Process for the preparation of polyhydric phenols | |
US4491545A (en) | Preparation of 2,3,5-trimethyl-p-benzoquinone | |
US3948958A (en) | Process for making 3-prenylated menaquinones and ether intermediates | |
CN113735696B (en) | Preparation method of quinone compound | |
EP0104937A2 (en) | Process for oxidizing a phenol to a p-benzoquinone | |
EP0150967B1 (en) | Process for producing 4,4'-dihydroxydiphenyls | |
EP0219117B1 (en) | A method for producing alpha,alpha-dimethyl-delta-valerolactone | |
US3978141A (en) | Process for splitting alkylaromatic hydroperoxides into phenolic compounds | |
US4568497A (en) | Preparation of monoalkylated dihydroxybenzenes | |
EP0203195B1 (en) | Fluorine-substituted phenyl benzoates and process for their prep aration | |
JPH0657669B2 (en) | Method for producing quinones | |
US4851589A (en) | Oxidative coupling of alkylphenols by copper catalysts | |
JPS6341438A (en) | Production of quinone compound | |
US3700701A (en) | Preparation of benzoquinones by oxidation of para-substituted phenols | |
JPH0621086B2 (en) | Process for producing 3,3 ', 5,5'-tetramethyl-4,4'-dihydroxydiphenyl | |
JP3441189B2 (en) | Stabilized alicyclic epoxy-containing (meth) acrylate compound and method for producing the same | |
EP0129851B1 (en) | Preparation of monoalkylated dihydroxybenzenes and novel compounds prepared thereby | |
US4691042A (en) | Preparation of monaoalkylated dihydroxybenzenes and novel compounds prepared thereby | |
JP2732906B2 (en) | Method for producing quinones |