JPS63177997A - Composite welding material for build-up welding with plasma powder - Google Patents

Composite welding material for build-up welding with plasma powder

Info

Publication number
JPS63177997A
JPS63177997A JP876387A JP876387A JPS63177997A JP S63177997 A JPS63177997 A JP S63177997A JP 876387 A JP876387 A JP 876387A JP 876387 A JP876387 A JP 876387A JP S63177997 A JPS63177997 A JP S63177997A
Authority
JP
Japan
Prior art keywords
powder
chromium carbide
welding
granulated
build
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP876387A
Other languages
Japanese (ja)
Other versions
JPH0262117B2 (en
Inventor
Hisashi Hiraishi
平石 久志
Hiroshi Hayashi
洋志 林
Nobuhiro Kuribayashi
伸碩 栗林
Nobuyoshi Moriwaki
森脇 伸佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKKO YOUZAI KOGYO KK
Kubota Corp
Original Assignee
NIKKO YOUZAI KOGYO KK
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKKO YOUZAI KOGYO KK, Kubota Corp filed Critical NIKKO YOUZAI KOGYO KK
Priority to JP876387A priority Critical patent/JPS63177997A/en
Publication of JPS63177997A publication Critical patent/JPS63177997A/en
Publication of JPH0262117B2 publication Critical patent/JPH0262117B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • B23K35/327Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C comprising refractory compounds, e.g. carbides

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the characteristics of a build-up layer and to reduce the cost of production by forming a component compsn. of metal powder and specific weight % of chromium carbide powder and limiting the grain size of the granulated powder after calcination to a prescribed mesh range. CONSTITUTION:The metal powder of Ni, Cr, etc., and the chromium carbide powder of Cr3C2, etc., are respectively prepd. as the powder having the grain sizes smaller than the grain sizes of the desired granulated powders. These powders are calcined and the granulated powder is formed. The content of such chromium carbide powder is limited to 1-90wt.% of the entire part and the grain size of the granulated powder after the calcination is limited within a 300-60 mesh range. Since the component of the chromium carbide occupies 1-90%, the fine chromium carbide particles are uniformly dispersed in the build-up layer at the time of welding and since the grain size of the granulated powder is adequate, the feeding of the granulated powder at the time of executing the welding is stabilized and smoothed. The process for production is simple and, therefore, the various characteristics of the build-up welded layer are improved and the cost of production is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラズマ粉体肉盛溶接法により、金属マトリ
ックスと該金属マトリックスに分散相として炭化クロム
粒子が混在する複合組織を有する肉盛層を形成するため
の複合溶接材料に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an overlay layer having a composite structure in which a metal matrix and chromium carbide particles are mixed as a dispersed phase in the metal matrix using a plasma powder overlay welding method. This invention relates to composite welding materials for forming.

〔従来の技術〕[Conventional technology]

金属マトリックスに、分散相として炭化クロム粒子を混
在させた複合物は、炭化クロム粒子の分散強化効果によ
る、すぐれた耐彦耗性、高温強度、耐圧縮変形性、耐熱
性等を有する。
A composite in which chromium carbide particles are mixed as a dispersed phase in a metal matrix has excellent wear resistance, high temperature strength, compressive deformation resistance, heat resistance, etc. due to the dispersion strengthening effect of the chromium carbide particles.

鋼材圧延ロール、ハースロール、熱処理炉の炉内ロール
等のロール類、あるいは熱処理炉の炉内金物、例えばス
キッドビーム構成部材等の部材表面に、肉盛溶接を行っ
て複合組織を有する肉盛層(複合肉盛層)を形成し部材
表面を被覆することは、これらの部材の前記緒特性を強
化し、その耐久性を高めるための極めて有効な方法であ
る。
Overlay welding is performed on the surfaces of rolls such as steel rolling rolls, hearth rolls, and inner rolls of heat treatment furnaces, or hardware inside heat treatment furnaces, such as skid beam components, to create overlay layers with a composite structure. Forming a (composite build-up layer) to cover the surfaces of components is an extremely effective method for strengthening the properties of these components and increasing their durability.

上記複合肉盛層は、炭化クロム粉末と金属粉末との混合
粉末を溶接材とし、これを部材の表面に供給しながら、
TIG溶接やプラズマ溶接等の溶接熱を加熱源として肉
盛溶接を行うことにより形成することができる。このよ
うな肉盛溶接による複合肉盛層の形成およびその混合粉
末溶接材について、本出願人は既出側(特開昭60−5
4294号、特願昭60−275606号)により提案
している。
The above-mentioned composite overlay layer uses a mixed powder of chromium carbide powder and metal powder as a welding material, and while supplying this to the surface of the member,
It can be formed by overlay welding using welding heat such as TIG welding or plasma welding as a heat source. Regarding the formation of a composite build-up layer by build-up welding and its mixed powder welding material, the present applicant has previously published (JP-A-60-5
No. 4294, Japanese Patent Application No. 60-275606).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

炭化クロム粉末と金属粉末とは、比重差が大きく、かつ
粉末の表面特性等が異なるために、その混合粉末に偏析
が生じ易い。肉盛溶接材である混合粉末の偏析は、形成
される肉盛層の複合組織の不均一性(分散相である炭化
クロム粒子の分布の偏り)の原因となり、肉盛層の硬度
・耐摩耗性等の材料特性にムラが生じる。また、炭化ク
ロム粒子の濃化した部分は、靭性に乏しいため、熱的・
機械的衝撃によりクラックが生じ易いという問題がある
Since chromium carbide powder and metal powder have a large difference in specific gravity and different surface characteristics of the powder, segregation is likely to occur in the mixed powder. Segregation of the mixed powder, which is the overlay welding material, causes non-uniformity of the composite structure of the built-up layer (unbalanced distribution of chromium carbide particles, which is the dispersed phase), and reduces the hardness and wear resistance of the overlay layer. Unevenness occurs in material properties such as elasticity. In addition, the concentrated part of chromium carbide particles has poor toughness, so it
There is a problem in that cracks are likely to occur due to mechanical impact.

殊に、プラズマ粉体肉盛溶接法により複合肉盛層を形成
する場合には、混合粉末貯留タンクから、Arガス等を
キャリアガスとして粉体送給管を介して溶接トーチまで
混合粉末を送給する過程、および溶接トーチ部から、そ
の直下の溶融プールに混合粉末を散布する過程で、炭化
クロム粉末と金属粉末の比重差による分離・偏析が生じ
易い。また、複合組織における炭化クロム粒子の分散強
化効果を高めるべく、炭化クロム粉末として微細な粉末
を用いると、金属粉末との分離・偏析が著しくなり、均
質な複合肉盛層を形成することは一層困難となる。この
ため、混合粉末としては、約300メツシユより粗粒の
ものを使用せざるを得す、それより微細な炭化クロム粒
子が分散した複合組織を有する肉盛層を形成することは
実際上不可能である。
In particular, when forming a composite build-up layer by plasma powder build-up welding, the mixed powder is sent from a mixed powder storage tank to a welding torch via a powder feed pipe using Ar gas or the like as a carrier gas. During the feeding process and the process of dispersing the mixed powder from the welding torch into the molten pool directly below, separation and segregation are likely to occur due to the difference in specific gravity between the chromium carbide powder and the metal powder. In addition, if fine chromium carbide powder is used to enhance the dispersion-strengthening effect of chromium carbide particles in the composite structure, separation and segregation from the metal powder becomes significant, making it even more difficult to form a homogeneous composite overlay layer. It becomes difficult. For this reason, it is necessary to use a mixed powder with particles coarser than approximately 300 mesh, and it is practically impossible to form a built-up layer with a composite structure in which finer chromium carbide particles are dispersed. It is.

本発明は、上記問題点を解決するための改良された肉盛
溶接材を提供するものである。
The present invention provides an improved overlay welding material for solving the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のプラズマ粉体肉盛溶接用溶接材は、金属粉末と
、1〜90重量%の炭化クロム粉末とからなる、粒径3
00〜60メツシユの焼成された造粒粉であることを特
徴としている。
The welding material for plasma powder overlay welding of the present invention consists of metal powder and chromium carbide powder of 1 to 90% by weight, and has a particle size of 3.
It is characterized by being a fired granulated powder of 0.00 to 60 mesh.

本発明の肉盛溶接材である造粒粉の一方の構成分である
炭化クロム粒子は、Cr3cffi 、Cr。
The chromium carbide particles, which are one component of the granulated powder that is the overlay welding material of the present invention, are Cr3cffi, Cr.

C1、Cr a C等の粒子である。These are particles such as C1, Cr a C, etc.

また、もう一方の成分である金属は、例えばコバルト、
ニッケル、またはクロム、あるいは鉄系、非鉄系合金(
Cr−Fe系、Cr−Ni−Fe系、Cr−Ni−Mo
−Fe系、Cr −N i系、Cr−MO系、Cr−N
i−Mo系、Cr−Ni−Co系など)が、対象部材の
用途・使用条件等に応じて選ばれる。
In addition, the metal that is the other component is, for example, cobalt,
Nickel, or chromium, or ferrous or non-ferrous alloys (
Cr-Fe system, Cr-Ni-Fe system, Cr-Ni-Mo
-Fe system, Cr-Ni system, Cr-MO system, Cr-N
(i-Mo type, Cr-Ni-Co type, etc.) is selected depending on the purpose and usage conditions of the target member.

上記炭化クロム粉末および金属粉末は、むろん所望の造
粒粉の粒径より小さい粒径を有するものであり、例えば
400メソシュ若しくはそれより微細な粒径を有する粉
末を用いることができる。
The chromium carbide powder and metal powder have a particle size smaller than the desired granulated powder, and for example, a powder having a particle size of 400 mesosh or finer than that can be used.

炭化クロム粉末の混合割合の下限値を1重量%に規定し
たのは、それより少ないと、造粒粉の焼成工程、あるい
は肉盛溶接時に、炭化クロム粒子が金属中に固溶し、所
期の複合組織を有する肉盛層の形成が困難となるからで
あり、他方90重量%を上限値としたのは、それを越え
ると、形成される肉盛層が靭性の乏しいものとなり、肉
盛溶接過程でクラックが生じ易く、またその部材の実使
用時に熱的もしくは機械的衝撃による割れが生じ易くな
るからである。このため、炭化クロム粒子の混合割合は
、1〜90重量%とじたのであり、特に炭化クロム粒子
の分散効果と、靭性確保の両面から規定される好ましい
範囲は30〜80重量%である。
The reason why the lower limit of the mixing ratio of chromium carbide powder is set at 1% by weight is that if it is less than that, chromium carbide particles will dissolve into the metal during the firing process of the granulated powder or during overlay welding, and the desired result will not be achieved. This is because it becomes difficult to form a build-up layer with a composite structure of This is because cracks are likely to occur during the welding process, and cracks are likely to occur due to thermal or mechanical impact when the member is actually used. For this reason, the mixing ratio of chromium carbide particles is limited to 1 to 90% by weight, and the preferred range is 30 to 80% by weight, which is determined from both the dispersion effect of chromium carbide particles and ensuring toughness.

また、造粒粉の粒径を300〜60メツシユの範囲に規
定したのは、肉盛溶接施工時の造粒粉の送給を安定・円
滑に行わせるためである。すなわち、造粒粉の粒径が3
00メツシユより細かいと、例えば造粒粉を溶接トーチ
に送給する粉体送給配管の内壁面に対する造粒粉の静電
吸着等が生じることにより造粒粉の安定した送給が妨げ
られ、また溶接トーチに到達した造粒粉が溶接トーチの
先端からその直下の溶融プールに供給(散布)される際
に、プラズマアークを被包するシールドガスの流れによ
り散乱し、溶着歩留りが低下するからであり、一方その
粒径が60メツシユより粗大であると、粉体送給配管内
で造粒粉の流れが局部的に渋滞する棚吊りに似た状態が
生じ易く、この場合にも造粒粉の安定した送給をなし得
なくなるからである。
Moreover, the reason why the particle size of the granulated powder is specified in the range of 300 to 60 mesh is to ensure stable and smooth feeding of the granulated powder during overlay welding. In other words, the particle size of the granulated powder is 3
If the mesh is finer than 0.00 mesh, for example, electrostatic adsorption of the granulated powder to the inner wall surface of the powder feeding pipe that feeds the granulated powder to the welding torch will occur, which will prevent the stable feeding of the granulated powder. In addition, when the granulated powder that has reached the welding torch is supplied (sprayed) from the tip of the welding torch to the molten pool directly below, it is scattered by the flow of shielding gas surrounding the plasma arc, reducing the welding yield. On the other hand, if the particle size is larger than 60 mesh, the flow of granulated powder tends to be locally congested in the powder feeding pipe, resembling a hanging shelf, and in this case, the granulated powder This is because stable feeding of powder cannot be achieved.

本発明の肉盛溶接材である造粒粉の製造工程例について
説明すると、まず所望の粒度、好ましくは400メツシ
ユより細粒に調整された炭化クロム粉末と金属粉末とを
混合し、これに糊剤としてパラフィン等のワックスを適
量(例えば、混合粉末:100重量部に対し、2〜3重
量部)添加したうえ、前記混合粉末を、約90〜110
倍量(重量比)のアルコール、または水等の分散媒に懸
濁し、十分に混合したのち、そのスラリーを湿式噴霧乾
燥機(スプレードライヤ)に供給して、300〜60メ
ツシュの造粒粉を造粒する。ついで、その造粒粉を不活
性雰囲気下で加熱する一次焼成処理に付して脱ワツクス
を行ったのち、不活性雰囲気下で加熱する本焼成処理を
行う。これにより、理論密度の約90%の緻密な造粒粉
(焼結体)に焼成される。焼成された造粒粉は、その焼
成過程で、造粒粉同士の部分的な融着が生じ、クラスタ
ー状となっているので、粉砕機により解砕処理を施す。
To explain an example of the manufacturing process of granulated powder, which is an overlay welding material of the present invention, first, chromium carbide powder adjusted to a desired particle size, preferably finer than 400 mesh, and metal powder are mixed, and then glue is added to the mixture. An appropriate amount of wax such as paraffin is added as an agent (for example, 2 to 3 parts by weight to 100 parts by weight of mixed powder), and the mixed powder is heated to about 90 to 110 parts by weight.
After suspending in twice the amount (weight ratio) of a dispersion medium such as alcohol or water and thoroughly mixing, the slurry is fed to a wet spray dryer to produce 300 to 60 mesh granulated powder. Granulate. Next, the granulated powder is subjected to a primary firing process in which it is heated in an inert atmosphere to remove wax, and then a main firing process is performed in which it is heated in an inert atmosphere. As a result, the powder is fired into a dense granulated powder (sintered body) having approximately 90% of the theoretical density. The fired granulated powder is partially fused to each other during the firing process, forming a cluster shape, so it is crushed using a pulverizer.

これにより、粒径300〜60メッシュの焼成された緻
密な造粒粉が得られる。
Thereby, a fired, dense granulated powder with a particle size of 300 to 60 mesh is obtained.

〔作用〕[Effect]

本発明の肉盛溶接材は、炭化クロム粉末と金属粉末とか
らなる焼成造粒粉であるので、肉盛溶接施工過程で、炭
化クロム粉末と金属粉末との分離(偏析)が生じること
がなく、またその造粒粉は300〜60メツシユの粒径
を有しているので、粉体貯留タンクから溶接トーチへの
送給がスムースに行われ、流量の調節も容易であり、ま
た溶接トーチからその直下の溶融プールに散布される際
にも、シールドガス流等による散乱をうけることなく、
適確に溶融プールに供給される。
Since the overlay welding material of the present invention is a fired granulated powder consisting of chromium carbide powder and metal powder, separation (segregation) of chromium carbide powder and metal powder does not occur during the overlay welding process. Also, since the granulated powder has a particle size of 300 to 60 mesh, it can be smoothly fed from the powder storage tank to the welding torch, and the flow rate can be easily adjusted. Even when sprayed into the molten pool directly below, it is not scattered by shielding gas flow, etc.
Properly supplied to the melt pool.

また、その造粒粉の粒径は、送給の安定性確保の点から
、上記のように300〜60メツシユと、比較的粗な粒
径に規定されるけれども、造粒粉を構成する炭化クロム
粉末自身については、そのような制約を全くうけないの
で、例えば400メツシユより細かい炭化クロム粉末を
使用することにより、肉盛層の複合組織の微細化、炭化
クロム粒子の分散強化効果の向上環を図ることも容易で
ある。
In addition, the particle size of the granulated powder is specified as a relatively coarse particle size of 300 to 60 mesh as mentioned above in order to ensure stable feeding. Since chromium powder itself is not subject to such restrictions, for example, by using chromium carbide powder finer than 400 mesh, it is possible to refine the composite structure of the overlay layer and improve the dispersion and strengthening effect of chromium carbide particles. It is also easy to aim for.

〔実施例〕〔Example〕

(1)肉盛溶接材(造粒粉)の製造: 炭化クロム(CrzCz)粉末と、コバルト粉末(いず
れも、粒径:3〜5μm)の混合粉末に3重量%のパラ
フィンを加え、分散媒としてメチルアルコールと混合し
てスラリー(混合粉末濃度:54重重量)を調製し、つ
いでそのスラリーをスプレードライヤに供給して粒度:
300〜60メツシユの造粒粉に造粒する。この造粒粉
を、アルゴンガス雰囲気に保持された焼成炉内において
、600℃X2Hrの焼成を行って脱ワツクスし、つい
で炉内温度を1280℃に上げ、同温度で1時間を要し
て本焼成を完了することにより造粒粉(焼結体)を得、
これを粉砕機により解砕することにより、粒度:300
〜60メツシユの焼成造粒粉を回収する。
(1) Production of overlay welding material (granulated powder): Add 3% by weight of paraffin to a mixed powder of chromium carbide (CrzCz) powder and cobalt powder (particle size: 3 to 5 μm), and add a dispersion medium. A slurry (mixed powder concentration: 54 wt.) is prepared by mixing with methyl alcohol, and then the slurry is fed to a spray dryer to obtain a particle size of:
Granulate into granulated powder of 300 to 60 mesh. This granulated powder was dewaxed by firing at 600°C for 2 hours in a firing furnace maintained in an argon gas atmosphere, and then the temperature inside the furnace was raised to 1280°C, and the final product was heated at the same temperature for 1 hour. Granulated powder (sintered body) is obtained by completing the firing,
By crushing this with a crusher, particle size: 300
Collect ~60 mesh of fired granulated powder.

上記工程を経て、炭化クロム粉末混合比率が、50重量
%の造粒粉(A)と、70重量%の造粒粉(B)とを製
造した。各造粒粉(A)および(B)の密度は、いずれ
も理論密度の約90%であった。
Through the above steps, granulated powder (A) with a chromium carbide powder mixing ratio of 50% by weight and granulated powder (B) with a 70% by weight were produced. The density of each granulated powder (A) and (B) was about 90% of the theoretical density.

CII)プラズマ粉体肉盛溶接の施工:上記造粒粉(A
)および(B)を溶接材とし、180A −50K W
のプラズマ粉体肉盛溶接装置により、JIS  5US
304ステンレス鋼板(30t×100?tl)の表面
に二層盛り溶接を行うことにより、層厚5mmの複合肉
盛層を形成した。また、比較例として、炭化クロム粉末
とコバルト粉末(いずれも、粒径:300〜60メツシ
ユ)を混合した混合粉末(A’)(炭化クロム粉末50
重量%)と混合粉末(B’)(炭化クロム粉末70重量
%)を溶接材として使用し、上記と同じ溶接条件により
複合肉盛層を形成した。
CII) Construction of plasma powder overlay welding: The above granulated powder (A
) and (B) as welding materials, 180A -50K W
JIS 5US with our plasma powder overlay welding equipment.
A composite build-up layer with a layer thickness of 5 mm was formed by performing two-layer build-up welding on the surface of a 304 stainless steel plate (30t x 100?tl). In addition, as a comparative example, a mixed powder (A') (chromium carbide powder 50 to 60 mesh) was prepared by mixing chromium carbide powder and cobalt powder (particle size: 300 to 60 mesh).
% by weight) and mixed powder (B') (70% by weight of chromium carbide powder) were used as welding materials, and a composite overlay layer was formed under the same welding conditions as above.

上記各複合肉盛層について、複合組織の顕微鏡観察、お
よび表面硬度(Hv、25g)の測定を行い、第1表に
示す結果を得た。
Regarding each of the above composite overlay layers, the composite structure was observed under a microscope and the surface hardness (Hv, 25 g) was measured, and the results shown in Table 1 were obtained.

第1表 すなわち、混合粉末を溶接材として形成された肉盛層は
、マトリックス中の炭化クロム粒子の偏析が多く、また
表面硬度の分布のバラツキが大であるのに対し、本発明
の造粒粉を溶接材として形成された肉盛層の複合組織に
おける炭化クロム粒子は略完全に均一に分散しており、
また表面硬度のバラツキもきわめて小さい。
Table 1 shows that the build-up layer formed using mixed powder as a welding material has a large segregation of chromium carbide particles in the matrix and large variations in surface hardness distribution. The chromium carbide particles in the composite structure of the overlay layer formed using powder as a welding material are almost completely uniformly dispersed.
Also, the variation in surface hardness is extremely small.

〔発明の効果〕〔Effect of the invention〕

プラズマ粉体肉盛溶接の溶接材料として本発明の造粒粉
からなる溶接材料を使用することにより、金属マトリッ
クス中に微細な炭化クロム粒子を分散相として含む均質
性にすぐれた複合肉盛層を形成することができ、またそ
の肉盛溶接における溶接材の溶着歩留りも高い。従って
、本発明の溶接材は、プラズマ粉体肉盛溶接によるロー
ル類、炉内金物等、耐摩耗性、高温強度、耐圧縮変形性
、耐熱性等が要求される各種部材表面の肉盛層形成用溶
接材料として極めて好適である。
By using the welding material made of the granulated powder of the present invention as a welding material for plasma powder overlay welding, a composite overlay layer with excellent homogeneity containing fine chromium carbide particles as a dispersed phase in the metal matrix can be created. The welding yield of the welding material during overlay welding is also high. Therefore, the welding material of the present invention is a build-up layer on the surface of various parts that require wear resistance, high temperature strength, compression deformation resistance, heat resistance, etc., such as rolls and furnace hardware made by plasma powder build-up welding. It is extremely suitable as a forming welding material.

なお、炭化クロムと金属とを結合させた粉末の製造法と
して、例えば金属を真空溶解し、その溶融金属に炭化ク
ロム粉末を添加・混合したうえ、その固液混合物を、ア
トマイザにより粉末化する方法も考えられるが、その工
程は煩瑣であり、コストも高くつく。これに対し、本発
明の溶接材料は、炭化クロム粉末と金属粉末の混合、造
粒、焼成および解砕の各工程からなる簡素なプロセスに
より製造することができ、極めて経済的である。
In addition, as a method for manufacturing a powder that combines chromium carbide and metal, for example, a method of melting metal in vacuum, adding and mixing chromium carbide powder to the molten metal, and then pulverizing the solid-liquid mixture using an atomizer. Although it is possible to do so, the process is complicated and the cost is high. In contrast, the welding material of the present invention can be manufactured by a simple process consisting of the steps of mixing chromium carbide powder and metal powder, granulation, firing, and crushing, and is extremely economical.

Claims (1)

【特許請求の範囲】[Claims] (1)金属粉末と1〜90重量%の炭化クロム粉末とか
らなる、粒径300〜60メッシュの焼成された造粒粉
であることを特徴とするプラズマ粉体肉盛溶接用溶接材
料。
(1) A welding material for plasma powder overlay welding, which is a fired granulated powder with a particle size of 300 to 60 mesh, consisting of metal powder and 1 to 90% by weight of chromium carbide powder.
JP876387A 1987-01-16 1987-01-16 Composite welding material for build-up welding with plasma powder Granted JPS63177997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP876387A JPS63177997A (en) 1987-01-16 1987-01-16 Composite welding material for build-up welding with plasma powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP876387A JPS63177997A (en) 1987-01-16 1987-01-16 Composite welding material for build-up welding with plasma powder

Publications (2)

Publication Number Publication Date
JPS63177997A true JPS63177997A (en) 1988-07-22
JPH0262117B2 JPH0262117B2 (en) 1990-12-21

Family

ID=11701954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP876387A Granted JPS63177997A (en) 1987-01-16 1987-01-16 Composite welding material for build-up welding with plasma powder

Country Status (1)

Country Link
JP (1) JPS63177997A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03254391A (en) * 1990-01-26 1991-11-13 Isuzu Motors Ltd Material reforming method and wire used therein

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952748A (en) * 1972-09-22 1974-05-22
JPS6054294A (en) * 1983-09-05 1985-03-28 Kubota Ltd Cored wire for build-up by welding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952748A (en) * 1972-09-22 1974-05-22
JPS6054294A (en) * 1983-09-05 1985-03-28 Kubota Ltd Cored wire for build-up by welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03254391A (en) * 1990-01-26 1991-11-13 Isuzu Motors Ltd Material reforming method and wire used therein

Also Published As

Publication number Publication date
JPH0262117B2 (en) 1990-12-21

Similar Documents

Publication Publication Date Title
US10710156B2 (en) Process for additive manufacturing of parts by melting or sintering particles of powder(s) using a high-energy beam with powders adapted to the targeted process/material pair
US5049450A (en) Aluminum and boron nitride thermal spray powder
US6641917B2 (en) Spray powder and method for its production
US10781512B2 (en) Method of coating a body, granules for the method and method of making granules
KR20090053941A (en) Metal powder
JPH04228555A (en) Thermal spraying powder mixture
RU2682738C2 (en) Welded coat with titanium carbide and method for manufacture thereof
US8795448B2 (en) Wear resistant materials
US20050132843A1 (en) Chrome composite materials
US6162276A (en) Coating powder and method for its production
JPH06502691A (en) metal base alloy
JPS6033187B2 (en) Surface hardening treatment method
JPH026097A (en) Wear resistant overlay layer
JPH08104969A (en) Ceramic metal composite powder for thermal spraying, thermally sprayed coating film and its formation
JPS63177997A (en) Composite welding material for build-up welding with plasma powder
JP2006161132A (en) Ni-BASED SELF-FLUXING ALLOY POWDER FOR THERMAL SPRAYING AND ITS PRODUCTION METHOD
JP5207922B2 (en) Binderless powder for surface hardening
US3395030A (en) Carbide flame spray material
JP2005320557A (en) Abrasion resistant member and manufacturing method therefor
US4443255A (en) Hard facing of metal substrates
Naumov et al. Special features of fused welding flux granular forming in carbon steel surfacing during plasma granulation
JPH01212746A (en) Powder material for plasma arc welding
JPH0230800B2 (en) PURAZUMAFUNTAIYOSETSUNIKUMORYOFUKUGOYOSETSUZAI
JPH06158101A (en) Hard substance-dispersed alloy powder and it production
JP2006161131A (en) Co-BASED SELF-FLUXING ALLOY POWDER FOR THERMAL SPRAYING AND ITS PRODUCTION METHOD