JPS6317767B2 - - Google Patents

Info

Publication number
JPS6317767B2
JPS6317767B2 JP13626881A JP13626881A JPS6317767B2 JP S6317767 B2 JPS6317767 B2 JP S6317767B2 JP 13626881 A JP13626881 A JP 13626881A JP 13626881 A JP13626881 A JP 13626881A JP S6317767 B2 JPS6317767 B2 JP S6317767B2
Authority
JP
Japan
Prior art keywords
caustic soda
soda
aqueous solution
organic
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13626881A
Other languages
Japanese (ja)
Other versions
JPS5841716A (en
Inventor
Yoshuki Imakire
Koyo Murakami
Hiroshi Asano
Takio Adachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITTETU CHEM ENG
Original Assignee
NITTETU CHEM ENG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITTETU CHEM ENG filed Critical NITTETU CHEM ENG
Priority to JP13626881A priority Critical patent/JPS5841716A/en
Publication of JPS5841716A publication Critical patent/JPS5841716A/en
Publication of JPS6317767B2 publication Critical patent/JPS6317767B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paper (AREA)
  • Compounds Of Iron (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ソーダ含有有機廃液より鉄酸ソーダ
を経て回収される苛性ソーダを有機物中の有機酸
性物質の抽出に、あるいは有機物の処理工程に繰
り返し使用する場合に起る不純物の蓄積を防止す
る方法に関する。 パルプ工業においてアルカリパルプ蒸解工程か
らの廃液(いわゆる黒液)および石油化学工業に
おいてシクロヘキサノンの空気酸化反応によりシ
クロヘキサノンを合成する際副生する廃液等の如
くソーダ分と有機物の両方を含有する廃液はソー
ダ含有有機廃液と一般に呼ばれている。この廃液
には苛性ソーダとして回収可能なソーダ分が多量
に含まれていることから従来から工業的に利用さ
れている焼却による炭酸ソーダの回収と消石灰に
よる苛性化とを組み合せた苛性ソーダ回収方法に
代る新しい苛性ソーダ回収方法が提案されている
(特公昭56−1160)。 これは、ソーダ含有有機廃液と酸化第2鉄とを
適当な比率で混合後ロータリーキルンまたは流動
床の様な反応器を用いて酸化性雰囲気下において
850〜1000℃でソーダ含有有機廃液中の有機物を
燃焼すると共に鉄酸ソーダ(Na2Fe2O4)を合成
し、次いで該鉄酸ソーダを高温水を用いて加水分
解して苛性ソーダ水溶液と酸化第2鉄に転化せし
め、固液分離後の苛性ソーダ水溶液と酸化第2鉄
は、夫々有機酸の抽出あるいは有機物の処理並び
に鉄酸ソーダの合成に再利用するという提案であ
る。 本発明者らは工業化を目的として特公昭56−
1160につき種々検討した結果、回収苛性ソーダを
繰り返し使用していると循環液(苛性ソーダ水溶
液)中に不純物が蓄積し、有機酸の抽出工程でシ
ステムの運転ないし管理上好ましくない問題が発
生し、工業化するに当たり改良の余地のあること
が明らかとなつた。即ち、ソーダ含有有機廃液と
酸化第2鉄とから、耐火物で内張されたロータリ
ーキルン、あるいは流動床を用いて焙焼すること
によつて合成された鉄酸ソーダの加水分解生成物
である苛性ソーダをくりかえし使用していると、
不純物、特にアルミニウムおよびシリシウム化合
物が循環液中に畜積してくる。そして、これら不
純物が工程の種類に応じてある濃度以上となる
と、たとえば有機酸の抽出工程では、いずれか一
つの化合物濃度が元素として約1wt%になると、
製品中の有機酸の抽出工程でゲル状物質などの沈
澱トラブルが発生し製品の品質が低下すると共に
装置の安定操業が出来ず好ましくないことがわか
つた。そこで発明者らは更に該不純物の発生源並
びに該不純物の蓄積防止法につき鋭意研究した結
果、不純物の発生源の主なものの一つは市販の酸
化第2鉄であり、もう一つは鉄酸ソーダ合成の反
応器に内張されている耐火物であることが判明し
た。即ち、該酸化第2鉄および該耐火物に含まれ
るアルミニウムとシリシウムの化合物が高温で鉄
酸ソーダを合成する過程で恐らくまだ酸化第2鉄
と結合していない炭酸ソーダのようなソーダ化合
物と徐々に反応して、水ないし苛性ソーダ水溶液
に溶解しやすい化合物となり、これが鉄酸ソーダ
の加水分解の際に苛性ソーダ水溶液側に移行し、
回収苛性ソーダ水溶液を繰りかえし利用する過程
で循環液中に次第に蓄積されていくことが実験的
に明らかとなり、更にこのようにして循環液中に
蓄積されたアルミニウムおよびシリシウム化合物
の不純物は炭酸ガス、あるいはそれを含有する気
体、例えばソーダ含有有機廃液より鉄酸ソーダを
合成する際の燃焼ガスで循環液をPH値9.5〜11で
曝気処理することにより効率よく同時に除去でき
ることを見出した。そして、この際得られる母液
中のモノ珪酸イオンの濃度は、上記PH値から予想
される濃度よりも約1桁近くも小さいことを見出
して本願発明に到達したのである。即ち、本発明
はソーダ含有有機廃液と酸化第2鉄より合成され
た鉄酸ソーダを加水分解して得られる苛性ソーダ
水溶液を有機物中の有機酸の抽出あるいは有機物
の処理工程に繰り返して利用するシステムにおい
て、苛性ソーダ水溶液に蓄積されるアルミニウム
およびシリシウム化合物を炭酸ガスを含有するガ
ス、好適には燃焼ガス中の炭酸ガスを利用して水
ないしアルカリ水溶液に不溶性の化合物に転化せ
しめて、これらを該システムより分離して有機酸
の抽出あるいは有機物の処理工程における沈澱等
操業上のトラブルを回避することを特徴とするソ
ーダ含有有機廃液からの苛性ソーダ回収方法を提
供するものである。 さて炭酸ソーダおよび酸化第2鉄のいずれも純
粋なものを用いて鉄酸ソーダを合成し、次いでこ
の鉄酸ソーダを水で加水分解して苛性ソーダに転
化せしめる反応はLowig反応として古くから知ら
れている。また、先きに述べた通りソーダ含有有
機廃液を酸化第2鉄の存在下で燃焼して鉄酸ソー
ダを合成し、次いで該鉄酸ソーダを高温水で加水
分解して苛性ソーダ水溶液を得る方法についても
すでに公知である(特開昭54−52697)。 このように酸化第2鉄を用いて炭酸ソーダない
しソーダ含有有機廃液より苛性ソーダを回収する
基本化学原理並びに基本技術については公知であ
る。 さて、酸化性雰囲気でソーダ含有有機廃液と酸
化第2鉄より鉄酸ソーダを合成する反応は、
Lowing反応(2)を内在するものであり、一般的に
次の反応で示すことができる 2NaxCyHzOA+1/2(x+4y+Z−2A)O2 =xNa2CO3+(2y−x)CO2+ZH2O ……(1) xNa2CO3+xFe2O3=xNa2Fe2O4+xCO2 ……(2) (1)+(2) 2NaxCyHzOA+1/2(x+4y+z−2A)O2 +xFe2O3=xNa2Fe2O4+2yCO2+ZH2O ……(3) 不純物蓄積の機構は明らかではないが次の様に
推定される。 上記の反応に於いて(1)の反応は比較的速かであ
り、(2)の反応は(1)に比して遅い。その結果、反応
器内で生じた炭酸ソーダが高温において酸化鉄と
反応する前に炉材中のアルミナ、シリカ等の成分
と反応して生じたアルミン酸塩や珪酸塩等の反応
生成物が、本来の目的物である鉄酸ナトリウム中
に混入し、これが鉄酸ソーダの加水分解に際して
回収苛性ソーダ中に溶解し、長期の循環使用によ
つて次第に蓄積して来るものであろう。また上記
以外にも市販の酸化鉄は微量ではあるがアルミ
ナ、シリカ等の成分を不純物として含有するもの
であり、これ等は炉材中のそれら化合物よりも一
般に反応性に富み、これらもメークアツプの酸化
鉄補給につれて、回収苛性ソーダ中に次第に蓄積
してくるものと考えられる。以上の外、鉄酸ソー
ダとアルミナ、シリカ等との直接反応も考えられ
るが、通常の反応条件では固体間の反応であり、
発明者らの経験では余り問題とはならないものと
考えられる。このようにして鉄酸ソーダ中に移行
したアルミニウムおよびシリシウム化合物の不純
物は鉄酸ソーダを加水分解する際、苛性ソーダ側
に相当な部分が移行する。アルミニウムおよびシ
リシウム系の不純物の蓄積防止法ないし除去法と
してすでに知られている方法は (1) システム内を循環している液(例えば苛性ソ
ーダ水溶液)を1部系外に抜き出して中和後廃
棄する方法あるいは別の用途に使途を見出すこ
と。 (2) システム内から抜き出した苛性ソーダ水溶液
を消石灰で処理する方法である。 (1)の方法は有効苛性ソーダを中和してすてるこ
とになり、あるいは新用途を探さねばならず、オ
ンサイトの処理は困難化する。そして抜出分に相
当する新鮮な苛性ソーダの補給と中和剤(酸)が
必要となり、プロセス経済性の点から好ましくな
い。また(2)の消石灰による処理方法は実験的に検
討してみると苛性ソーダ水溶液中のシリシウム化
合物の低減に多少の効果が認められるもののアル
ミニウム化合物の除去にはほとんど効果がなくア
ルミニウムおよびシリシウム化合物の蓄積防止法
として採用することは適当でない。このように公
知の方法でアルミニウムおよびシリシウム化合物
の蓄積に伴う沈澱トラブルを解決することは問題
点が多く、新たなアルミニウムおよびシリシウム
の蓄積防止法を見出すべく鋭意研究を行い、その
結果、発明者らは公知法とは全く異なる新規な炭
酸ガスを含む気体による処理という方法を発明し
た。 即ち、循環使用によつて不純物の蓄積した鉄酸
ソーダを加水分解に先立つて湿式粉砕する際に生
ずるスラリーの上澄液である比較的稀薄な苛性ソ
ーダ水溶液、あるいは加水分解後の苛性ソーダ水
溶液の少くとも一部を採り、そのまゝ、もしくは
適当な濃度とした後、炭酸ガスを含むガス(勿論
純炭酸ガスも含まれる)で処理しPHを11.5〜9、
好ましくは11〜9.5とすることによりアルミニウ
ム及びシリシウム化合物を同時不溶性の化合物と
して沈澱除去することが可能となつた。PH11.5以
上では特にシリシウム化合物の分離除去が悪く、
またPH9以下ではアルミニウム化合物の分離は良
いが、シリシウム化合物の分離効果が落ち、総合
的に見て不得策となる。そしてこのPH範囲内では
通常考えられるシリシウム不純物であるモノ珪酸
の溶解度以下にシリシウム化合物を減少させるこ
とが可能であることを見出した。この際処理すべ
き苛性ソーダ水溶液の量は全量である必要はな
く、限度以上の不純物の蓄積を防ぐために見合つ
た最少限度のものを抜き出して処理すれば良いの
は勿論である。この様にして処理した炭酸ソーダ
及び重炭酸ソーダを含み、アルミニウム及びシリ
シウム化合物の濃度が低減した水溶液は、その
まゝあるいは濃縮した後、ソーダ含有有機廃液と
混合して通常の鉄酸ソーダ化処理を行えば良い。
尚、本プロセスは苛性ソーダ処理を要する有機物
の含有する無機質に帰因して回収アルカリに蓄積
する同様の不純物がある場合にも当然適用しうる
ものである。 以下図面に従つて本発明の実施態様の一つを説
明する。 有機物の有機酸抽出器11からのソーダ含有有
機廃液1は新鮮な酸化第2鉄または回収酸化第2
鉄スラツジ13と共に混合槽2に装入され均質な
スラリーになるように混合される。得られたスラ
リー状の混合物は耐火物で内張りされた燃焼反応
炉3に送りこまれる。燃焼反応炉3は補助燃料の
燃焼により800−1050℃、好ましくは900〜1000℃
に維持され、更に空気率1.2〜2.0好ましくは1.3〜
1.8の酸化雰囲気に保たれる。このような条件で、
該廃液中のソーダ分は酸化第2鉄と反応してほぼ
定量的に鉄酸ソーダに転化する。燃焼反応炉がロ
ータリーキルン型の場合、該鉄酸ソーダを主成分
とする固体反応生成物は該反応炉の中を燃焼ガス
と並流的に移動しながら固気分離器4に入つてい
く。ここで該固体反応生成物14と燃焼ガス15
とが分離される。該燃焼ガス15は廃熱回収のた
めに廃熱回収ボイラー8に送られる。固気分離器
4からの粒状の固体反応生成物14は湿式粉砕機
5に装入され、水で間接冷却されながら60℃以下
の温度下、100mesh〜200mesh(タイラー篩)に
粉砕される。この水による湿式粉砕の過程で固体
反応生成物14に含まれるアルミニウムおよびシ
リシウム化合物の少くとも一部が抽出され、上澄
液16に移行する。上澄液16の一部が曝気槽9
におくられる。曝気槽9におくられる上澄液の割
合は燃焼反応炉3の耐火物材質および使用する酸
化第2鉄の品質並びに循環苛性ソーダ液中の不純
物許容濃度によつて異なるが通常全上澄液の数程
度である。曝気槽9では廃熱ボイラー8を経由し
た燃焼ガスの一部で上澄液16が曝気され該液1
6のPH値が9.5〜11になる。この曝気処理により
該液16中に溶解しているアルミニウムおよびシ
リシウム化合物は同時に効率よく不溶性の化合物
に転化される。曝気槽9からの該不溶性化合物を
含んだ上澄液は固液分離器10に流下し、ここで
該不溶性の分離物22は系外へ排出される。固液
分離器10からの分離液12は鉄酸ソーダの合
成原料となるソーダ分を含んでいるので混合槽2
に戻される。 湿式粉砕機5で粉砕された固体反応生成物1
4′はスラリー状で加水分解槽6におくりこまれ、
ここで廃熱回収ボイラー8からのスチーム19で
熱補給を受けながら150〜220℃にて30分〜1時間
加水分解されて20〜25wt%の苛性ソーダ水溶液
と酸化第2鉄となる。20〜25wt%の苛性ソーダ
水溶液を得るために必要な水の量は湿式粉砕機5
に装入される水20の量によつて制御される。加
水分解後の反応生成物は必要に応じて冷却器23
で冷却され後固液分離器7におくりこまれ苛性ソ
ーダ水溶液と酸化第2鉄とに分離される。分離さ
れた苛性ソーダ水溶液21は必要に応じて精密
過機24で過された後、有機酸抽出器11に供
給されて有機物27からの有機酸の抽出に利用さ
れる。 以上のごとく本発明によりソーダ含有有機廃液
より苛性ソーダを回収して繰り返し有機物中の有
機酸の抽出に利用する場合、該苛性ソーダ水溶液
中に蓄積される溶解性アルミニウムおよびシリシ
ウム化合物が同時に効率よく除去可能となり、従
来法で問題となつていた有機酸抽出工程での沈澱
トラブルが解消されるようになり、またソーダ含
有有機廃液の処理にも有効である。 実施例 公知の方法でシクロヘキサンを空気酸化してシ
クロヘキサノン、シクロヘキサノールおよび有機
酸からなる混合物を得た。この混合物を23wt%
の苛性ソーダ水溶液で有機酸の抽出を行い第1表
の組成のソーダ含有有機ソーダ廃液が生成した。
The present invention relates to a method for preventing the accumulation of impurities that occurs when caustic soda recovered from soda-containing organic waste liquid via ferric acid soda is repeatedly used for the extraction of organic acidic substances from organic substances or in the treatment process of organic substances. . Waste liquids containing both soda and organic substances, such as the waste liquid from the alkaline pulp cooking process (so-called black liquor) in the pulp industry and the waste liquid produced as a by-product when synthesizing cyclohexanone through the air oxidation reaction of cyclohexanone in the petrochemical industry, are called soda. It is generally called as containing organic waste liquid. Since this waste liquid contains a large amount of soda that can be recovered as caustic soda, the method of recovering caustic soda that combines the recovery of soda carbonate by incineration and causticization with slaked lime, which has been used industrially, is being replaced. A new method for recovering caustic soda has been proposed (Special Publication No. 56-1160). This is done by mixing soda-containing organic waste and ferric oxide in an appropriate ratio and then using a reactor such as a rotary kiln or fluidized bed in an oxidizing atmosphere.
The organic matter in the soda-containing organic waste liquid is combusted at 850 to 1000°C, and sodium ferrate (Na 2 Fe 2 O 4 ) is synthesized, and then the sodium ferrate is hydrolyzed using high-temperature water and oxidized with an aqueous solution of caustic soda. The proposal is to reuse the caustic soda aqueous solution and ferric oxide after conversion to ferric iron and solid-liquid separation for extraction of organic acids, treatment of organic matter, and synthesis of sodium ferrate, respectively. The inventors of the present invention have made a
As a result of various studies on 1160, we found that repeated use of recovered caustic soda causes impurities to accumulate in the circulating fluid (caustic soda aqueous solution), causing undesirable problems in system operation and management during the organic acid extraction process. It became clear that there was room for improvement. That is, caustic soda is a hydrolysis product of sodium ferrate synthesized from soda-containing organic waste liquid and ferric oxide by roasting it in a rotary kiln lined with a refractory or in a fluidized bed. If you repeatedly use
Impurities, especially aluminum and silicium compounds, accumulate in the circulating fluid. When these impurities reach a certain concentration depending on the type of process, for example, in an organic acid extraction process, when the concentration of any one compound reaches approximately 1 wt% as an element,
It was found that problems such as precipitation of gel-like substances occur during the extraction process of organic acids in the product, which deteriorates the quality of the product and prevents stable operation of the equipment, which is undesirable. Therefore, the inventors further conducted intensive research on the sources of impurities and methods for preventing the accumulation of impurities, and found that one of the main sources of impurities is commercially available ferric oxide, and the other is ferric oxide. It turned out to be a refractory lined in a soda synthesis reactor. That is, in the process of synthesizing sodium ferrate at high temperatures, the ferric oxide and the aluminum and silicium compounds contained in the refractory gradually combine with soda compounds such as soda carbonate that have not yet combined with ferric oxide. It reacts with and becomes a compound that is easily soluble in water or aqueous caustic soda solution, and this migrates to the aqueous caustic soda solution side during the hydrolysis of sodium ferrate.
It has been experimentally revealed that in the process of repeatedly using the recovered caustic soda aqueous solution, it gradually accumulates in the circulating fluid, and furthermore, the impurities of aluminum and silicium compounds accumulated in the circulating fluid in this way are carbon dioxide gas or other impurities. It has been found that by aerating the circulating liquid at a pH value of 9.5 to 11 with a gas containing, for example, the combustion gas used when synthesizing sodium ferrate from soda-containing organic waste liquid, it is possible to simultaneously remove it efficiently. The present invention was achieved by discovering that the concentration of monosilicate ions in the mother liquor obtained at this time was approximately one order of magnitude lower than the concentration expected from the above PH value. That is, the present invention provides a system in which a caustic soda aqueous solution obtained by hydrolyzing sodium ferrate synthesized from a soda-containing organic waste liquid and ferric oxide is repeatedly used in the process of extracting organic acids from organic substances or treating organic substances. The aluminum and silicium compounds accumulated in the caustic soda aqueous solution are converted into compounds insoluble in water or alkaline aqueous solution using a carbon dioxide-containing gas, preferably carbon dioxide gas in the combustion gas, and these are removed from the system. The object of the present invention is to provide a method for recovering caustic soda from a soda-containing organic waste solution, which is characterized by separating and avoiding operational troubles such as precipitation in the extraction of organic acids or treatment of organic substances. Now, the reaction of synthesizing sodium ferrate using pure sodium carbonate and ferric oxide, and then hydrolyzing this sodium ferrate with water to convert it into caustic soda has long been known as the Lowig reaction. There is. In addition, as mentioned earlier, a method for synthesizing sodium ferrate by burning a soda-containing organic waste liquid in the presence of ferric oxide, and then hydrolyzing the sodium ferrate with high-temperature water to obtain a caustic soda aqueous solution. is already known (Japanese Patent Application Laid-Open No. 54-52697). As described above, the basic chemical principles and techniques for recovering caustic soda from soda carbonate or soda-containing organic waste liquid using ferric oxide are well known. Now, the reaction to synthesize sodium ferrate from soda-containing organic waste liquid and ferric oxide in an oxidizing atmosphere is as follows.
It involves the Lowing reaction (2) and can generally be expressed as the following reaction: 2NaxCyHzOA+1/2(x+4y+Z-2A)O 2 = xNa 2 CO 3 + (2y-x) CO 2 + ZH 2 O... …(1) xNa 2 CO 3 +xFe 2 O 3 =xNa 2 Fe 2 O 4 +xCO 2 …(2) (1) + (2) 2NaxCyHzO A +1/2 (x+4y+z−2 A ) O 2 +xFe 2 O 3 =xNa 2 Fe 2 O 4 +2yCO 2 +ZH 2 O...(3) The mechanism of impurity accumulation is not clear, but it is estimated as follows. In the above reaction, reaction (1) is relatively fast, and reaction (2) is slow compared to (1). As a result, before the sodium carbonate produced in the reactor reacts with iron oxide at high temperatures, reaction products such as aluminate and silicate, which were produced by reacting with components such as alumina and silica in the furnace material, It will be mixed into the sodium ferrate, which is the original target, and will be dissolved in the recovered caustic soda during the hydrolysis of sodium ferrate, and will gradually accumulate over a long period of cyclic use. In addition to the above, commercially available iron oxide contains trace amounts of impurities such as alumina and silica, which are generally more reactive than those compounds found in furnace materials, and these are also used in make-up. It is thought that as iron oxide is replenished, it gradually accumulates in the recovered caustic soda. In addition to the above, a direct reaction between sodium ferrate and alumina, silica, etc. is also possible, but under normal reaction conditions, it is a reaction between solids.
Based on the experience of the inventors, this does not seem to be much of a problem. When the sodium ferrate is hydrolyzed, a considerable portion of the aluminum and silicium compound impurities transferred to the sodium ferrate is transferred to the caustic soda side. Already known methods for preventing or removing aluminum and silicium-based impurities are: (1) Part of the liquid circulating in the system (for example, a caustic soda aqueous solution) is extracted from the system, neutralized, and then disposed of. To find use in a method or another use. (2) A method in which the caustic soda aqueous solution extracted from the system is treated with slaked lime. In method (1), effective caustic soda must be neutralized and discarded, or a new use must be found, making on-site treatment difficult. Furthermore, it is necessary to replenish fresh caustic soda corresponding to the extracted amount and to use a neutralizing agent (acid), which is not preferable from the point of view of process economy. In addition, when the treatment method using slaked lime (2) was examined experimentally, it was found that it was somewhat effective in reducing the silicium compounds in the caustic soda aqueous solution, but it was hardly effective in removing the aluminum compounds, and the accumulation of aluminum and silicium compounds. It is not appropriate to adopt it as a prevention method. There are many problems in solving the precipitation problem caused by the accumulation of aluminum and silicium compounds using known methods, and the inventors conducted intensive research to find a new method for preventing the accumulation of aluminum and silicium compounds. invented a new method of treatment using a gas containing carbon dioxide, which is completely different from known methods. In other words, at least a relatively dilute aqueous caustic soda solution, which is the supernatant liquid of the slurry produced when ferric acid soda, which has accumulated impurities due to cyclic use, is wet-pulverized prior to hydrolysis, or at least an aqueous caustic soda solution after hydrolysis. Take a portion, leave it as is, or adjust it to an appropriate concentration, and then treat it with gas containing carbon dioxide (including pure carbon dioxide, of course) to bring the pH to 11.5-9.
Preferably, by setting the value to 11 to 9.5, it became possible to simultaneously precipitate and remove aluminum and silicium compounds as insoluble compounds. Separation and removal of silicium compounds is particularly difficult at pH 11.5 or above.
Further, if the pH is below 9, the separation of aluminum compounds is good, but the separation effect of silicium compounds decreases, making it a bad idea overall. We have also found that within this pH range, it is possible to reduce the silicium compound to a level below the solubility of monosilicic acid, which is a commonly thought impurity of silicium. At this time, the amount of caustic soda aqueous solution to be treated does not need to be the entire amount, and it is of course only necessary to extract and treat the minimum amount appropriate to prevent the accumulation of impurities exceeding the limit. The aqueous solution containing soda carbonate and bicarbonate and having a reduced concentration of aluminum and silicium compounds treated in this way can be used as is or after being concentrated, mixed with an organic waste solution containing soda and subjected to the usual ferric acid soda treatment. It's fine.
Note that this process can naturally be applied to cases where there are similar impurities that accumulate in the recovered alkali due to inorganic substances contained in organic substances that require treatment with caustic soda. One embodiment of the present invention will be described below with reference to the drawings. The soda-containing organic waste liquid 1 from the organic matter organic acid extractor 11 is fresh ferric oxide or recovered ferric oxide.
It is charged into the mixing tank 2 together with the iron sludge 13 and mixed to form a homogeneous slurry. The resulting slurry mixture is fed into a combustion reactor 3 lined with refractory material. The combustion reactor 3 has a temperature of 800-1050℃, preferably 900-1000℃ due to combustion of auxiliary fuel.
Furthermore, the air ratio is maintained at 1.2 to 2.0, preferably 1.3 to 2.0.
Maintained in an oxidizing atmosphere of 1.8. Under these conditions,
The soda content in the waste liquid reacts with ferric oxide and is almost quantitatively converted to sodium ferrate. When the combustion reactor is of the rotary kiln type, the solid reaction product containing sodium ferrate as a main component enters the solid-gas separator 4 while moving in parallel with the combustion gas in the reactor. Here, the solid reaction product 14 and the combustion gas 15
are separated. The combustion gas 15 is sent to a waste heat recovery boiler 8 for waste heat recovery. The granular solid reaction product 14 from the solid-gas separator 4 is charged into a wet pulverizer 5 and pulverized to 100 mesh to 200 mesh (Tyler sieve) at a temperature of 60° C. or lower while being indirectly cooled with water. During this wet milling process with water, at least a portion of the aluminum and silicium compounds contained in the solid reaction product 14 is extracted and transferred to the supernatant liquid 16. A portion of the supernatant liquid 16 is transferred to the aeration tank 9.
I will be sent to The proportion of supernatant liquid sent to the aeration tank 9 varies depending on the refractory material of the combustion reactor 3, the quality of the ferric oxide used, and the permissible concentration of impurities in the circulating caustic soda solution, but usually the total number of supernatant liquids is That's about it. In the aeration tank 9, the supernatant liquid 16 is aerated with part of the combustion gas that has passed through the waste heat boiler 8, and the liquid 1
The pH value of 6 becomes 9.5-11. By this aeration treatment, the aluminum and silicium compounds dissolved in the liquid 16 are simultaneously efficiently converted into insoluble compounds. The supernatant liquid containing the insoluble compounds from the aeration tank 9 flows down to the solid-liquid separator 10, where the insoluble separated substances 22 are discharged out of the system. The separated liquid 12 from the solid-liquid separator 10 contains soda, which is a raw material for the synthesis of sodium ferrate.
will be returned to. Solid reaction product 1 pulverized by wet pulverizer 5
4' is fed into the hydrolysis tank 6 in slurry form,
Here, while being supplied with heat by steam 19 from the waste heat recovery boiler 8, it is hydrolyzed at 150 to 220°C for 30 minutes to 1 hour to become a 20 to 25 wt% caustic soda aqueous solution and ferric oxide. The amount of water required to obtain a 20-25wt% caustic soda aqueous solution is
controlled by the amount of water 20 charged. The reaction product after hydrolysis is stored in a cooler 23 as necessary.
After being cooled, it is sent to a solid-liquid separator 7 where it is separated into a caustic soda aqueous solution and ferric oxide. The separated caustic soda aqueous solution 21 is passed through a precision filter 24 if necessary, and then supplied to an organic acid extractor 11 and used for extracting organic acids from organic substances 27. As described above, according to the present invention, when caustic soda is recovered from a soda-containing organic waste liquid and repeatedly used for extracting organic acids from organic substances, soluble aluminum and silicium compounds accumulated in the caustic soda aqueous solution can be efficiently removed at the same time. The problem of precipitation in the organic acid extraction step, which was a problem with the conventional method, can now be resolved, and it is also effective in treating organic waste liquid containing soda. EXAMPLE Cyclohexane was air oxidized by a known method to obtain a mixture consisting of cyclohexanone, cyclohexanol and an organic acid. This mixture is 23wt%
The organic acid was extracted with an aqueous caustic soda solution to produce a soda-containing organic soda waste liquid having the composition shown in Table 1.

【表】 この廃液に対して市販の酸化鉄をFe/Naモル
比が1.3となる様に混合し、シヤモツト質キヤス
タブルで内張りをした小型のロータリーキルンを
用い、温度約950℃平均滞留時間2hrsの条件で焙
焼した。得られた鉄酸ナトリウム(Na基準収率
97%)を振動ミルで粉砕し、次いで180℃、60分
間の条件で加水分解を行つた。得られた苛性ソー
ダ水溶液の品質は次の第2表の通りである。
[Table] Commercially available iron oxide was mixed with this waste liquid so that the molar ratio of Fe/Na was 1.3, and a small rotary kiln lined with chamomile castable was used at a temperature of about 950℃ and an average residence time of 2 hours. It was roasted. Obtained sodium ferrate (Na standard yield
97%) was ground in a vibration mill, and then hydrolyzed at 180°C for 60 minutes. The quality of the obtained caustic soda aqueous solution is shown in Table 2 below.

【表】 こゝで得られた苛性ソーダ水溶液に炭酸ガスを
吹き込んでPHの調整を行い、沈澱を除いた上澄液
中の不純物の濃度を測定した所、第3表の結果を
得た。これらの液は炭酸ソーダ重炭酸ソーダ及び
少量の不純物の混合物であり、苛性ソーダの再生
に使用して不都合はなかつた。
[Table] The PH was adjusted by blowing carbon dioxide gas into the caustic soda aqueous solution obtained, and the concentration of impurities in the supernatant liquid after removing the precipitate was measured, and the results shown in Table 3 were obtained. These liquids were a mixture of sodium carbonate, sodium bicarbonate, and a small amount of impurities, and could be used to regenerate caustic soda without causing any inconvenience.

【表】 注:* 原液
なお、可溶性モノ珪酸イオンの水に対する溶解
度は、PH11、10、9.5に於てSiとして夫々、約
1500、110、80(ppm)であり、本発明に於いてア
ルミニウム化合物の外、シリシウム化合物の除去
にも予想外の著しい効果のあることが認められ
る。 上記の実施例に於いては、比較的不純物濃度の
薄い回収苛性ソーダについて試験を行つたが、循
環使用に際して不都合を生じない限度のものであ
れば、更に高濃度の不純物を含有する場合でも、
本願発明を適用し得ることは明らかである。そし
てこの様な場合、本発明の適用によつて除かれる
不純物の、処理一回当りの量は当然増加するか
ら、処理のために抜出すべき量は循環量に比して
更に少くできるので、更に有利となることは勿論
である。 以上の様に本願発明によれば、回収循環使用さ
れる苛性ソーダ中に蓄積する有害な不純物を、比
較的単純な操作によつて効率よく除去することが
出来、有機酸性物質の抽出や、有機物のアルカリ
処理によつて生成するソーダ含有有機廃液をクロ
ーズドループによつて処理可能とするものである
から、公害防止上、並びに産業上極めて有利であ
る。
[Table] Note: * Stock solution The solubility of soluble monosilicate ion in water is approximately
1500, 110, and 80 (ppm), and it is recognized that the present invention has an unexpectedly remarkable effect on removing silicium compounds as well as aluminum compounds. In the above example, the test was conducted on recovered caustic soda with a relatively low impurity concentration, but even if it contains a higher concentration of impurities, as long as it does not cause any inconvenience when recycled.
It is clear that the present invention can be applied. In such a case, the amount of impurities removed per treatment will naturally increase by applying the present invention, so the amount to be extracted for treatment can be further reduced compared to the circulating amount. Of course, this is even more advantageous. As described above, according to the present invention, harmful impurities that accumulate in caustic soda used for recovery and circulation can be efficiently removed by relatively simple operations, and organic acid substances can be extracted and organic substances can be removed. Since the soda-containing organic waste liquid produced by alkali treatment can be treated in a closed loop, it is extremely advantageous in terms of pollution prevention and industry.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施態様を示す流れ図であり、
図中番号は以下のものに対応する。 1……ソーダ含有有機廃液、2……混合槽、3
……燃焼反応炉、4……固気分離器、5……湿式
粉砂機、6……加水分解槽、7,10……固液分
離器、8……廃熱回収ボイラー、9……曝気槽、
11……有機酸抽出器、12……分離液、13
……回収酸化鉄スラツジ、14……固体反応生成
物、15……燃焼ガス、16……上澄液、17…
…回収スチーム、18……燃焼排ガス、19……
スチーム、20……脱塩水、21……回収苛性ソ
ーダ水溶液、22……分離物、23……冷却器、
24……精密過機、25……排ガス、26……
燃焼空気、27……有機物。
The figure is a flowchart showing one embodiment of the present invention,
The numbers in the figure correspond to the following. 1...Soda-containing organic waste liquid, 2...Mixing tank, 3
... Combustion reactor, 4 ... Solid-gas separator, 5 ... Wet sand mill, 6 ... Hydrolysis tank, 7, 10 ... Solid-liquid separator, 8 ... Waste heat recovery boiler, 9 ... aeration tank,
11... Organic acid extractor, 12... Separation liquid, 13
... Recovered iron oxide sludge, 14 ... Solid reaction product, 15 ... Combustion gas, 16 ... Supernatant liquid, 17 ...
...Recovered steam, 18... Combustion exhaust gas, 19...
Steam, 20...Demineralized water, 21...Recovered caustic soda aqueous solution, 22...Separated material, 23...Cooler,
24... Precision machine, 25... Exhaust gas, 26...
Combustion air, 27...organic matter.

Claims (1)

【特許請求の範囲】[Claims] 1 有機物を苛性ソーダを用いて処理する工程か
ら排出されるナトリウム分を含有する有機廃液
に、酸化鉄を混合して酸化性雰囲気の下、800℃
以上の高温下において焙焼することによつて、有
機物は燃焼除去すると共に、ナトリウム分は鉄酸
ソーダに転化し、次いで加水分解することによつ
て苛性ソーダ水溶液と酸化鉄を再生分離して、お
のおの繰返し使用する方法において、再生された
苛性ソーダ水溶液の少くとも一部をそのまま若し
くは稀釈した後、炭酸ガスを含有するガスで処理
し、生成する不純物の沈澱物を除去した母液を、
そのまま、もしくは濃縮して前記のナトリウム分
を含有する有機廃液と同様に処理することを特徴
とする苛性ソーダの回収方法。
1. Iron oxide is mixed with organic wastewater containing sodium discharged from the process of treating organic matter with caustic soda, and the mixture is heated at 800°C in an oxidizing atmosphere.
By roasting at the above-mentioned high temperature, organic matter is burnt and removed, and the sodium content is converted to sodium ferrate, which is then hydrolyzed to regenerate and separate the caustic soda aqueous solution and iron oxide. In the method of repeated use, at least a part of the regenerated caustic soda aqueous solution is treated as it is or after being diluted, and then treated with a gas containing carbon dioxide gas to remove the resulting impurity precipitate.
A method for recovering caustic soda, which comprises treating it as is or by concentrating it in the same manner as the above-mentioned organic waste liquid containing sodium.
JP13626881A 1981-08-31 1981-08-31 Recovering method of caustic soda Granted JPS5841716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13626881A JPS5841716A (en) 1981-08-31 1981-08-31 Recovering method of caustic soda

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13626881A JPS5841716A (en) 1981-08-31 1981-08-31 Recovering method of caustic soda

Publications (2)

Publication Number Publication Date
JPS5841716A JPS5841716A (en) 1983-03-11
JPS6317767B2 true JPS6317767B2 (en) 1988-04-15

Family

ID=15171211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13626881A Granted JPS5841716A (en) 1981-08-31 1981-08-31 Recovering method of caustic soda

Country Status (1)

Country Link
JP (1) JPS5841716A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100147U (en) * 1986-12-19 1988-06-29

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945923A (en) * 1982-09-04 1984-03-15 Babcock Hitachi Kk Recovery of caustic soda and its device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100147U (en) * 1986-12-19 1988-06-29

Also Published As

Publication number Publication date
JPS5841716A (en) 1983-03-11

Similar Documents

Publication Publication Date Title
US3525675A (en) Desalination distillation using barium carbonate as descaling agent
US4215094A (en) Method for the removal of organic substances from alkali metal aluminate solution
US8658119B2 (en) Production and/or recovery of products from waste sludge
CN101723461B (en) Neutralization aluminum removing method for sodium chromate alkali solution
US4668485A (en) Recovery of sodium aluminate from Bayer process red mud
US4100254A (en) Industrial process of preparing magnesia of high purity
US6074521A (en) Method of separating impurities from lime and lime sludge
ZA200105624B (en) Lime treatment.
JPS6317767B2 (en)
AU2003258077B2 (en) Aluminum hydroxide, made via the bayer process, with low organic carbon
US4519989A (en) Removal of organic contaminants from bauxite and other ores
CA1101636A (en) Upgrading of magnesium containing materials
JPS585845B2 (en) Method for processing alumina raw material ore containing organic impurities
US6024833A (en) Process for removing metals and recovering a chelating agent from a bleach plant waste liquor
JPH02111627A (en) Treatment of red mud
US5618507A (en) Process for removing SO2 from gases which contain it, with direct production of elemental sulfur
US3944486A (en) Process for treating sulfide-containing materials
US5324500A (en) Method for processing residues of barium sulfide or strontium sulfide leaching
JPS5836292A (en) Kraft overload recovery method
US6001316A (en) Method for treatment of waste material and recovering MgCl2
JP3780358B2 (en) Treatment method for petroleum combustion ash
US1284739A (en) Process of treating waste sulfite-cellulose liquors.
JPS61171583A (en) Treatment of petroleum combusted ash
JPH0461709B2 (en)
JPS5825047B2 (en) Processing method for alumina raw material ore containing organic impurities