JPS63177123A - Projection exposing device - Google Patents

Projection exposing device

Info

Publication number
JPS63177123A
JPS63177123A JP62008033A JP803387A JPS63177123A JP S63177123 A JPS63177123 A JP S63177123A JP 62008033 A JP62008033 A JP 62008033A JP 803387 A JP803387 A JP 803387A JP S63177123 A JPS63177123 A JP S63177123A
Authority
JP
Japan
Prior art keywords
optical system
substrate
image
mirror
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62008033A
Other languages
Japanese (ja)
Inventor
Hiroshi Fukuda
宏 福田
Norio Hasegawa
昇雄 長谷川
Toshihiko Tanaka
稔彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62008033A priority Critical patent/JPS63177123A/en
Publication of JPS63177123A publication Critical patent/JPS63177123A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70325Resolution enhancement techniques not otherwise provided for, e.g. darkfield imaging, interfering beams, spatial frequency multiplication, nearfield lenses or solid immersion lenses
    • G03F7/70333Focus drilling, i.e. increase in depth of focus for exposure by modulating focus during exposure [FLEX]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection-Type Copiers In General (AREA)
  • Light Sources And Details Of Projection-Printing Devices (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To increase the effective depth of focus of an exposure optical system regardless of the flattening of a substrate by putting plural images which have conjugation planes of a pattern at different positions in the direction of an optical axis at the same position on the substrate and projecting the composite image on the substrate for exposure. CONSTITUTION:Light which is emitted by a light source 1 and passed through an illumination optical system 2 and a reticle 3 is split by a half-mirror 11 in two directions. One of the split light beams is incident on a projection lens 6 through a mirror 12, a mirror 13, and a half-mirror 14 to form an image of the mask pattern on the reticle 3 at a position 9 nearby the surface 8 of the substrate on a substrate stage 7. The other light beam is incident on a projection lens 6 through an auxiliary optical system 4 for image position correction, an auxiliary optical system 5 for magnification correction, and the half-mirror 14 to form an image of the pattern at a position 10 nearby the surface 8 of the substrate. At this time, the image formation position 9 and image formation position 10 do not match with each other in general because of the effect of the optical path difference between the two optical paths to be put together. Consequently, the light intensity contrast of the image can be maintained over a wider range in the optical-axis direction and the effective depth of focus increases.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、たとえば半導体装置、磁気パブルメそり装置
、超電導素子等の微細パターン形成に好適な投影露光装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a projection exposure apparatus suitable for forming fine patterns of, for example, semiconductor devices, magnetic bubble mesori devices, superconducting elements, and the like.

[従来の技術] 周知のように、半導体装置や磁気バブルメモリ装置など
の各種微細パターンの形成には、投影露免法が広く用い
られている。投影露光法、とくに縮小投影露光法は極め
て微細なパターンの形成に有用であるが、従来の投影露
光法においては、露光光学系の焦点裕度は投影レンズの
開口数と露光波長に強く依存していた。投影レンズの焦
点深度はその開口数の2乗に反比例し、又、露光波長に
比例するので、解像度を向上するために開口数を大きく
したり、露光波長を短波長化すると、それに伴なって焦
点深度は浅くなってしまう。このため、投影レンズの像
面歪や基板表面の凹凸段差によって生ずる障害への対処
が次第に困難となってきている。比較的微細なパターン
によって生ずる段差による障害については、これまで周
知の多層レジスト法による平滑化によって対処されてき
た。
[Prior Art] As is well known, the projection exposure method is widely used to form various fine patterns for semiconductor devices, magnetic bubble memory devices, and the like. Projection exposure methods, especially reduction projection exposure methods, are useful for forming extremely fine patterns, but in conventional projection exposure methods, the focus tolerance of the exposure optical system strongly depends on the numerical aperture of the projection lens and the exposure wavelength. was. The depth of focus of a projection lens is inversely proportional to the square of its numerical aperture and proportional to the exposure wavelength, so if you increase the numerical aperture or shorten the exposure wavelength to improve resolution, The depth of focus becomes shallow. For this reason, it is becoming increasingly difficult to deal with obstacles caused by image plane distortion of the projection lens and irregularities on the surface of the substrate. Problems caused by steps caused by relatively fine patterns have been dealt with by smoothing using a well-known multilayer resist method.

しかし、この方法を用いても大面積パターンによって生
じた段差を完全に平坦化することはできず、段差の上部
もしくは下部に、結像不良が生ずるのは避けられなかっ
た。
However, even if this method is used, it is not possible to completely flatten the level difference caused by the large-area pattern, and it is inevitable that imaging defects will occur above or below the level difference.

なお、多層レジスト法については例えば、ジャーナル 
オブ バキューム サイエンス アンドテクノロジー、
ビー1  (4)、(1983)第1235頁から第1
240頁(J 、 Vac、 Sci。
Regarding the multilayer resist method, for example, please refer to the journal
of Vacuum Science and Technology,
Bee 1 (4), (1983) pp. 1235-1
240 pages (J, Vac, Sci.

technol、 B l (1983)  p p 
l 235−1240)などに記載されている。
technol, B l (1983) p p
235-1240) and others.

また、縮小投影露光装置に関しては、種々のものが知ら
れており、たとえばセミコンダクター・ワールド(Se
m1conductor World ) 、 198
4年7月号第110〜114頁などに示されている。
Furthermore, various types of reduction projection exposure apparatuses are known, such as Semiconductor World (Se
m1conductor World), 198
It is shown in the July 2004 issue, pages 110-114.

[発明が解決しようとする問題点コ 近年の半導体集積回路の高集積化に伴ない、パターンの
微細化が進んだ一方基板表面凹凸段差が著しく増大し、
それらへの対応が要求されている。
[Problems to be solved by the invention] As semiconductor integrated circuits have become more highly integrated in recent years, patterns have become finer, while the unevenness of the substrate surface has increased significantly.
Responses to these are required.

パターン形成に投影露光法を用いる場合、凹凸段差の増
大に対応するためには、露光光学系としてはより大きな
焦点深度が必要となる。しかし、解像度を向上させるた
めには上記のように投影レンズの開口数を大きくする必
要があるため、焦点深度は逆に浅くなっている。さらに
また、投影レンズの像面歪により結像面は完全平面では
ないため、露光領域全面にわたり、その表面凹凸段差に
対応して焦点深度を確保するのが困難となってきている
When a projection exposure method is used to form a pattern, the exposure optical system needs to have a larger depth of focus in order to cope with an increase in uneven steps. However, in order to improve the resolution, it is necessary to increase the numerical aperture of the projection lens as described above, so the depth of focus is conversely becoming shallow. Furthermore, because the image plane is not completely flat due to image plane distortion of the projection lens, it has become difficult to ensure a depth of focus corresponding to the unevenness of the surface over the entire exposure area.

前記多層レジスト法では大面積パターンの凹凸段差を完
全に平坦化することはできず、又、完全平坦化が達成さ
れたとしてもレンズの像面歪と基板の全体的な傾斜のた
めマスクパターンの結像面は基板表面と一致せず、上記
問題点に対処するのが困難であった。
With the multilayer resist method, it is not possible to completely flatten the unevenness of a large-area pattern, and even if complete flattening is achieved, the mask pattern may be distorted due to the field distortion of the lens and the overall inclination of the substrate. The image plane does not coincide with the substrate surface, making it difficult to deal with the above problem.

本発明の目的は、基板の平坦化に拠らず、露光光学系の
実効的焦点深度を増大することのできる新しい装置を提
供し、基板の凹凸段差の増大とレンズの像面歪、基板の
傾斜、投影レンズの高開口数化と露光光の短波長化に伴
なう焦点裕度の減少に対処することにある。
An object of the present invention is to provide a new device that can increase the effective depth of focus of an exposure optical system without relying on flattening the substrate, and to reduce the increase in unevenness of the substrate and the field distortion of the lens. The objective is to cope with the decrease in focus latitude due to tilting, the increase in the numerical aperture of the projection lens, and the shortening of the wavelength of exposure light.

[問題点を解決するための手段] 本発明の検討によれば、露光光学系の実効的焦点深度は
、同一マスクパターンの結像面を同一光軸上の相対的に
異なる位置に有する複数の像を重ね合せることにより増
大することが明らかになった。
[Means for Solving the Problems] According to the study of the present invention, the effective depth of focus of the exposure optical system is determined by It has been revealed that the amount increases by superimposing images.

上記像の重ね合せは、マスクパターンを投影露光すべき
基板表面近傍に各々異なる結像面を有する複数の光路を
経た光を、光軸を一致させて投影レンズの手前で合成し
、この合成された光を投影レンズへ入射し、投影するこ
とによりなされる。
The above images are superimposed by combining the lights that have passed through a plurality of optical paths, each having a different imaging plane near the surface of the substrate on which the mask pattern is to be projected and exposed, in front of the projection lens with their optical axes aligned. This is done by entering the reflected light into a projection lens and projecting it.

[作用] 露光領域の全面で基板表面凹凸段差の上下においてレジ
スト層にパターンが良好に解像するためには、投影レン
ズの像面歪、基板の平坦度、基板表面凹凸段差の高さで
決まる光軸方向のある一定範囲内において、一定水準以
上の光強度コントラストが保持されていることが好まし
い。一方、投影露光法においては、レジスト層にパター
ンを形成するための光強度のコントラストがマスクパタ
ーンを忠実に反映する十分な値を有するのは、マスクパ
ターンの結像面の近傍(いわゆる焦点深度の範囲内)の
みであり、そこから遠ざかるにつれコントラストは急激
に低下する。従って、焦点深度が浅くなると、一定水準
以上の光強度コントラストを必要とする範囲内に必要な
コントラストを保持することができなくなり、その結果
解像不良が発生する。
[Function] In order for the pattern to be well resolved on the resist layer above and below the uneven steps on the substrate surface over the entire exposed area, it is determined by the image plane distortion of the projection lens, the flatness of the substrate, and the height of the uneven steps on the substrate surface. It is preferable that a light intensity contrast of a certain level or higher is maintained within a certain range in the optical axis direction. On the other hand, in the projection exposure method, the light intensity contrast for forming a pattern on the resist layer has a sufficient value to faithfully reflect the mask pattern near the imaging plane of the mask pattern (so-called depth of focus). (within the range), and the contrast decreases rapidly as you move away from it. Therefore, when the depth of focus becomes shallow, it becomes impossible to maintain the necessary contrast within a range that requires light intensity contrast above a certain level, resulting in poor resolution.

そこで、一定水準以上の光強度コントラストの必要とさ
れる光軸上の範囲内の異なる位置に結像面を有する同一
パターンの複数の像を重ね合せてみる。第3図a)〜C
)は各々、光軸上の位置Z=+1.5pmに結像する像
、Z=−1,5μmに結像する像、及び上記2つの機番
合成して得られた像の光強度分布の計算結果を、光軸方
向のいくつかの位置に対して示したもので本発明の原理
を示すものである。パターンは0.5μmの穴パターン
を仮定している1合成の結果、単一結像面の上下におけ
る光強度と比べて、光軸方向のより広い範囲でパターン
形成に有効な光強度分布が実現されている。第3図より
わかるように、結像面から離れるにつれて光強度はOに
近づく。このため重ね合せの結果、パターン形成に有効
な光強度のみが残る。この性質は穴パリターンをはじめ
とする遮光部中の孤立露光部に特徴的なことがある。
Therefore, a plurality of images of the same pattern having imaging planes at different positions on the optical axis where a light intensity contrast of a certain level or higher is required are superimposed. Figure 3 a)-C
) are the light intensity distributions of the image formed at the position Z = +1.5 pm on the optical axis, the image formed at Z = -1.5 μm, and the image obtained by combining the above two machine numbers. The calculation results are shown for several positions in the optical axis direction to illustrate the principle of the present invention. The pattern is assumed to be a 0.5 μm hole pattern.1 As a result of synthesis, a light intensity distribution effective for pattern formation is realized over a wider range in the optical axis direction than the light intensity above and below a single imaging plane. has been done. As can be seen from FIG. 3, the light intensity approaches O as the distance from the image plane increases. Therefore, as a result of superposition, only the light intensity effective for pattern formation remains. This property may be characteristic of isolated exposed areas in light shielding areas such as hole pattern returns.

ライン・アンド・スペースをはじめとするより一般的な
パターンでは、結像面より離れるにつれ光強度分布は一
様にある水準に近づく、従って。
In more general patterns such as line and space, the light intensity distribution uniformly approaches a certain level as you move away from the image plane, thus.

この一様な光強度分布をパターン形成に有効な光強度分
布に重ね合せることにより、光強度のコントラストは低
下する。しかし、この場合もやはり実効的焦点深度は、
増大する。
By superimposing this uniform light intensity distribution on the light intensity distribution effective for pattern formation, the contrast of the light intensity is reduced. However, in this case as well, the effective depth of focus is
increase

第4図に、光軸方向の位置と0.7μmラインアンドス
ペースの光強度コントラストの計算値の関係を、単一結
像点の場合と、互いに2μm、4μm、6μm離れた2
点を結像点とする光の合成による場合の各々に対して示
す、第4図において光軸方向位置の原点は単−結像点及
び2つの結像点の中心点としである。第4図が示す様に
、異なる結像点を有する光の合成により、単一結像点の
場合に比べて光強度コントラストの絶対値は一般に減少
するものの、より広範囲に一定水準以上のコントラスト
が維持されていることがわかる。又、2つの結像点間の
距離を適当な値とすることにより、光軸方向のある範囲
内で一定の光強度コントラストが得られる。本方法によ
る実効的焦点深度増加率は、使用するレジスト、現像液
、コントラスト・エンハンスメント・マテリアル等の材
料とプロセスで解像し得る光強度コントラストの下限界
により決定される。第4図によれば、本方法を用いるこ
とによる実効的焦点深度の増加率は、2結像点間距離を
3.5μmとすると、上記光強度コントラストの下限界
が0.5のとき45%であるのに対し、上記光強度コン
トラストの下限界が0.4のときには約70%となる。
Figure 4 shows the relationship between the position in the optical axis direction and the calculated value of the light intensity contrast of 0.7 μm line and space.
In FIG. 4, which is shown for each case of light synthesis using a point as an imaging point, the origin of the position in the optical axis direction is a single imaging point and the center point of two imaging points. As shown in Figure 4, although the absolute value of the light intensity contrast generally decreases due to the combination of light having different imaging points compared to the case of a single imaging point, the contrast above a certain level is maintained over a wider area. It can be seen that it is maintained. Further, by setting the distance between the two image forming points to an appropriate value, a constant light intensity contrast can be obtained within a certain range in the optical axis direction. The effective depth of focus increase rate by this method is determined by the lower limit of the light intensity contrast that can be resolved by the materials and processes used, such as the resist, developer, and contrast enhancement material. According to FIG. 4, the increase rate of the effective depth of focus by using this method is 45% when the lower limit of the light intensity contrast is 0.5, assuming that the distance between the two imaging points is 3.5 μm. On the other hand, when the lower limit of the light intensity contrast is 0.4, it becomes about 70%.

さらに」二言己下限界が0.3の場合、結像面の異なる
光を3つ重ね合せることにより実効的焦点深度は150
%向上する60.3のコントラストはCELを用いれば
十分に解像可能であり、又0.5のコントラストは東京
応化(株)製のTSMR8800のようなγが2.5以
上のレジストを用いれば十分解像可能である。
Furthermore, if the lower limit is 0.3, the effective depth of focus is 150 by superimposing three lights with different imaging planes.
% contrast of 60.3 can be sufficiently resolved by using CEL, and contrast of 0.5 can be resolved by using a resist with γ of 2.5 or more such as TSMR8800 manufactured by Tokyo Ohka Co., Ltd. It is sufficiently resolvable.

穴パターン等の遮光部中の孤立露光部に対しては1重ね
合せによるコントラストの低下は殆んどないので、設定
するする結像面の数を増やすことにより、事実上限りな
く実効的焦点深度を増大することができる。
For isolated exposed areas in light-shielding areas such as hole patterns, there is almost no decrease in contrast due to one overlapping, so by increasing the number of image forming planes to be set, the effective depth of focus can be virtually unlimited. can be increased.

本投影露光装置は、異なる複数の光路を経た同−又は同
一種のマスクパターンの像を合成した後、同一基板上の
同一位置に同時に投影露光する。この際、異なる複数の
光路を経た各々の像は、各光路の光路長の差、又は各光
路中の光学系の構造の相違等により、光軸方向の異なる
位置に結像する。
This projection exposure apparatus combines images of the same or the same type of mask pattern that have passed through a plurality of different optical paths, and then projects and exposes the images at the same position on the same substrate at the same time. At this time, the images that have passed through a plurality of different optical paths are formed at different positions in the optical axis direction due to the difference in the optical path length of each optical path or the difference in the structure of the optical system in each optical path.

従って、本装置によれば、同一光軸上の異なる位置に結
像する複数の像の合成像を用いて露光を行なうことがで
きる。即ち、本装置は多重結像露光機能を実現する。上
記のように、この機能により像の光強度コントラストが
光軸方向のより広い範囲で維持でき、実効的焦点深度が
増大する。
Therefore, according to the present apparatus, exposure can be performed using a composite image of a plurality of images formed at different positions on the same optical axis. That is, this apparatus realizes a multiple imaging exposure function. As described above, this function allows the light intensity contrast of the image to be maintained over a wider range in the optical axis direction, increasing the effective depth of focus.

[実施例] 実施例1 以下、本発明の一実施例を第1図により説明する。[Example] Example 1 An embodiment of the present invention will be described below with reference to FIG.

本装置は光源1.照明光学系2.投影光学系15、基板
ステージ7、及びその他通常の投影露光装置に必要な各
種構成要素をそなえている。投影光学系15は、2枚の
ハーフミラ−11,14゜2枚のミラー12,13.結
像位置補正用補助光学系49倍率補正用補助光学系5.
投影レンズ6を含む。これらの構成要素は第1図に示す
様に配置されている。
This device uses light source 1. Illumination optical system 2. It is equipped with a projection optical system 15, a substrate stage 7, and other various components necessary for a normal projection exposure apparatus. The projection optical system 15 includes two half mirrors 11, 14° and two mirrors 12, 13 . Auxiliary optical system for image formation position correction 49 Auxiliary optical system for magnification correction 5.
It includes a projection lens 6. These components are arranged as shown in FIG.

光源1を発し照明光学系2を経てレチクル3を通過した
光はハーフミラ−11により2方向に分割される。分割
された光の一方はミラー12.ミラー13及びハーフミ
ラ−14を経て投影レンズ6へ入射し、基板ステージ7
上の基板の表面8近傍の位置9に上記レチクル3上のマ
スクパターンを結像する。ハーフミラ−11により分割
された他方の光は、結像位置補正用補助光学系49倍率
補正用補助光学系5.及びハーフミラ−14を経て投影
レンズ6へ入射し、上記基板表面8近傍の位置10に上
記パターンを結像する。
Light emitted from a light source 1, passed through an illumination optical system 2, and a reticle 3 is split into two directions by a half mirror 11. One of the divided lights is mirrored 12. The light enters the projection lens 6 through the mirror 13 and the half mirror 14, and then the substrate stage 7.
The mask pattern on the reticle 3 is imaged at a position 9 near the surface 8 of the upper substrate. The other light split by the half mirror 11 is sent to the auxiliary optical system 49 for correcting the imaging position and the auxiliary optical system 5 for magnification correction. The light enters the projection lens 6 via the half mirror 14, and forms an image of the pattern at a position 10 near the substrate surface 8.

結像位置補正用補助光学系4.又はハーフミラ−11に
より分割されハーフミラ−14て合成される2つの光路
の光路差の効果により、結像位置9と結像位v110は
一般に一致しない。従って、本装置により、同一光軸上
の異なる位置に結像面を有する複数の像を重ね合せて露
光するいわゆる多重結像露光法を用いて露光を行なうこ
とができる。
Auxiliary optical system for image formation position correction 4. Or, due to the effect of the optical path difference between the two optical paths divided by the half mirror 11 and combined by the half mirror 14, the image forming position 9 and the image forming position v110 generally do not coincide. Therefore, with this apparatus, it is possible to perform exposure using a so-called multiple imaging exposure method in which a plurality of images having imaging planes at different positions on the same optical axis are superimposed and exposed.

結像位置10は、結像位置補正用補助光学系4の条件変
更により定められた範囲内で任意の位置に設定すること
ができる。又、基板ステージ7を光軸方向へ駆動するこ
とにより、結像位置9の基板表面8に対する相対位置を
変化させることができる。従って、結像位置8.及び1
0の基板表面に対する相対位置は各々任意に設定できる
。結像位置補正用補助光学系はハーフミラ−11で分割
された2つの光路の両方に設けてもよい。又、ミラー1
2.13の位置を変える等して上記ミラーを介する光路
の光路長を変化させることにより結像位置9が変化する
場合、結像位置補正用補助光学系4は省略してもよい。
The imaging position 10 can be set at any position within a range determined by changing the conditions of the auxiliary optical system 4 for correcting the imaging position. Further, by driving the substrate stage 7 in the optical axis direction, the relative position of the imaging position 9 with respect to the substrate surface 8 can be changed. Therefore, the imaging position 8. and 1
0 relative to the substrate surface can be set arbitrarily. The auxiliary optical system for correcting the imaging position may be provided in both of the two optical paths divided by the half mirror 11. Also, mirror 1
In the case where the imaging position 9 is changed by changing the optical path length of the optical path through the mirror by changing the position of 2.13, etc., the auxiliary optical system 4 for correcting the imaging position may be omitted.

この場合は2つの光路の光路長を調整することによって
、2つの結像点9又は10の位置の設定を行なう。
In this case, the positions of the two imaging points 9 or 10 are set by adjusting the optical path lengths of the two optical paths.

結像位置補正用補助光学系4や光路差の影響により、一
般に2つの光路を経た像の各結像位置における倍率は等
しくない。そこで、倍率補正用補助光学系5を第1図に
示す位置に設けた。倍率補正用補助光学系5は結像位置
補正用補助光学系4のマスク側に設けてもよい。又1倍
率補正用補助光学系は結像位置補正用補助光学系同様2
つの光路の両方に設けることができる。又、結像位置の
設定が光路差により行なわれる場合には、結像位置補正
用補助光学系の有無にかかわらず倍率補正用補助光学系
を設けてよい。結像位置の変更に伴なう倍率の変化がパ
ターンの形成に悪影響を与えないならば、倍率補正用補
助光学系は省略することができる。
Due to the effects of the auxiliary optical system 4 for correcting the imaging position and the optical path difference, the magnifications of the images that have passed through the two optical paths are generally not equal at each imaging position. Therefore, the auxiliary optical system 5 for magnification correction was provided at the position shown in FIG. The magnification correction auxiliary optical system 5 may be provided on the mask side of the imaging position correction auxiliary optical system 4. Also, the auxiliary optical system for magnification correction is the same as the auxiliary optical system for image formation position correction.
can be provided in both of the two optical paths. Further, when the imaging position is set by the optical path difference, an auxiliary optical system for magnification correction may be provided regardless of whether or not there is an auxiliary optical system for correcting the imaging position. If a change in magnification due to a change in the imaging position does not adversely affect pattern formation, the auxiliary optical system for magnification correction can be omitted.

本実施例では光路を2つに分割したが、さらにハーフミ
ラ−を加えて光路を3つ以上に分割し、その各々を経た
光を光軸方向の異なる位置に結像させてもよい。結像面
数を増やすと、光学系の実効的焦点深度はさらに大きく
なった。
In this embodiment, the optical path is divided into two, but a half mirror may be further added to divide the optical path into three or more parts, and the light passing through each part may be imaged at different positions in the optical axis direction. Increasing the number of imaging planes further increased the effective depth of focus of the optical system.

異なる光路を経た光の光量は、ハーフミラ−の反射率と
透過率、ミラーの反射率、各光路に挿入する補助光学系
等により決定される。多重結像露光においては、一般に
各結像点毎の露光量はほぼ等しいことが望ましい。従っ
て1分割光路数がこの場合ハーフミラ−11,14の反
射率と透過率をほぼ等しく設定した。分割光路が数が3
つ以上の場合にも、投影レンズに反射する各光路を経た
光の光量の割合が均等になる様各ハーフミラ−の反射率
、透過率を調整しなけばならない。
The amount of light passing through different optical paths is determined by the reflectance and transmittance of the half mirror, the reflectance of the mirror, the auxiliary optical system inserted into each optical path, and the like. In multiple imaging exposure, it is generally desirable that the exposure amount for each imaging point be approximately equal. Therefore, in this case, the reflectance and transmittance of the half mirrors 11 and 14 are set to be approximately equal to the number of optical paths divided into one. The number of divided optical paths is 3
Even in the case of more than one half mirror, the reflectance and transmittance of each half mirror must be adjusted so that the ratio of the amount of light that passes through each optical path and is reflected on the projection lens becomes equal.

なお、第1図において各光学系は最小限のレンズ構成で
示されているが、実際の装置ではもつと複雑な光学要素
より組み立てられている。
In FIG. 1, each optical system is shown with a minimum lens configuration, but in actual equipment, it is assembled from more complex optical elements.

本装置を用いて0.5μm程度の大きさをもつ穴パター
ンやライン・アンド・スペースパターンを、表面にいろ
いろいな高さの凹凸段差を有する基板上に投影露光を行
ない現像した。単一結像面による露光を行なう従来型の
装置では、基板表面に凹凸段差が存在しない場合にもこ
れらのパターンを露光領域の全面で解像することは不可
能であった。但し、この装置の投影レンズは幅1.5μ
mの像面歪を有し、又実験に用いた基板には露光領域内
に幅1μmの傾斜が存在する。
Using this apparatus, a hole pattern or a line and space pattern having a size of about 0.5 μm was projected onto a substrate having irregularities of various heights on the surface and developed. With conventional apparatuses that perform exposure using a single imaging plane, it has been impossible to resolve these patterns over the entire exposed area even when there are no uneven steps on the substrate surface. However, the width of the projection lens of this device is 1.5μ.
The substrate used in the experiment has a slope of 1 μm in width within the exposure area.

しかし1本実施例に示した装置に、上記従来装置と同じ
投影レンズを搭載し、同じ基板を用いて互いに3μm離
れた2点に結像点を設定して多重結像露光を行なうこと
により、基板表面に高さ2μmの探査が存在する場合に
も、段差の上下に0.5μm以下のパターンを形成する
ことができた。
However, by equipping the apparatus shown in this embodiment with the same projection lens as the conventional apparatus described above, and using the same substrate, setting the imaging points at two points 3 μm apart from each other and performing multiple imaging exposure, Even when a probe with a height of 2 μm was present on the substrate surface, a pattern of 0.5 μm or less could be formed above and below the step.

パターン断面の急峻さはマスクパターンの種類や大きさ
、使用するレジスト等の材料・プロセス等に依存した。
The steepness of the pattern cross section depended on the type and size of the mask pattern, the material and process of the resist used, etc.

一般にライン・アンド・スペース等のパターンでは多重
結像露光法を用いるとレジストパターン断面の急峻さが
やや低下するので、CEL法や高γレジストプロセス等
を併用した。
Generally, in the case of line-and-space patterns, the steepness of the cross-section of the resist pattern is somewhat reduced when multiple imaging exposure method is used, so CEL method, high-gamma resist process, etc. were used in combination.

しかし、コンタクトホールの場合には多重結像露光法を
適用してもパターン形状の劣化は認められなかった。
However, in the case of contact holes, no deterioration of the pattern shape was observed even when the multiple imaging exposure method was applied.

実施例2 本発明の第2の実施例を第2図を用いて説明する。Example 2 A second embodiment of the present invention will be described using FIG. 2.

本装置は2つの副光学系100a、及び100b、像合
成用光学系111.投影レンズ106゜その他通常の投
影露光装置に必要な各種構成要素より成る。2つの副光
学系100a及び100bは各々、光源101a、10
1b、照明光学系LO2a、102b、露光シャッター
107a。
This apparatus includes two sub-optical systems 100a and 100b, an image-synthesizing optical system 111. It consists of a projection lens 106° and other various components necessary for a normal projection exposure apparatus. The two sub-optical systems 100a and 100b are light sources 101a and 10, respectively.
1b, illumination optical system LO2a, 102b, exposure shutter 107a.

107b、レチクル103a、103b、結像位置補正
用補助光学系104a、104b、倍率補正用補助光学
系105a、105bより構成されている。又、像合成
用光学系はミラー112.ハーフミラ−113より成る
。これらの構成要素は第1図に示した様に配置されてい
る。
107b, reticles 103a and 103b, auxiliary optical systems for image formation position correction 104a and 104b, and auxiliary optical systems for magnification correction 105a and 105b. The optical system for image synthesis includes a mirror 112. Consists of 113 half mirrors. These components are arranged as shown in FIG.

光源101aを発した光は、照明光学系102a、露光
シャッター107a、レチクル103a。
The light emitted from the light source 101a is transmitted to the illumination optical system 102a, the exposure shutter 107a, and the reticle 103a.

結像位置補正用補助光学系104a、倍率補正用補助光
学系105a、ミラー112.及びハーフミラ−113
を経て投影レンズ106に入射し。
Auxiliary optical system for image formation position correction 104a, auxiliary optical system for magnification correction 105a, mirror 112. and half mirror 113
The light then enters the projection lens 106.

基板表面108近傍の位[109にレクチル103a上
のパターンを結像する。一方、光源101bを発した光
は、照明光学系102b、露光シャッター107b、レ
チクル103b、結像位置補正用補助光学系104b、
倍率補正用補助光学系105b、ハーフミラ−113を
経て投影レンズ106へ入射し、基板表面108近傍の
位置110にレチクル103b上のパターンを結像する
The pattern on the reticle 103a is imaged at a position [109] near the substrate surface 108. On the other hand, the light emitted from the light source 101b includes an illumination optical system 102b, an exposure shutter 107b, a reticle 103b, an auxiliary optical system 104b for correcting the imaging position,
The light enters the projection lens 106 through the magnification correction auxiliary optical system 105b and the half mirror 113, and forms an image of the pattern on the reticle 103b at a position 110 near the substrate surface 108.

レチクル103a、103b上のパターンの結像位置1
09,110は各々結像位置補正用補助光学系104a
、104bにより設定され、一般に両省は一致しない。
Imaging position 1 of the pattern on the reticles 103a, 103b
09 and 110 are respectively auxiliary optical systems 104a for correcting the imaging position.
, 104b, and the two ministries generally do not agree.

付加、1各結像位置の位置調整は結像位置補正用補助光
学系に依らず、レチクル103a、103bを光軸方向
へ移動する等して、副光学系100a、100bの光路
長を各々変化させることによって行なってもかまわない
Additional, 1. Position adjustment of each imaging position does not depend on the auxiliary optical system for imaging position correction, but by moving the reticles 103a, 103b in the optical axis direction, etc., and changing the optical path length of the auxiliary optical systems 100a, 100b. You can do it by letting them do it.

この場合、結像位置補正用補助光学系は省略してよい。In this case, the auxiliary optical system for correcting the imaging position may be omitted.

倍率補正用補助光学系105a、105bは実施例1同
様各結像位置109,110におけるレチクル103a
、103b上のパターンの倍率が指定された値となる様
、倍率の調整を行なう。倍率補正用補助光学系の配置は
第2図に示した位置に限らず、又、実施例1同様必要な
い場合には省略可能である。
Auxiliary optical systems 105a and 105b for magnification correction are used for the reticle 103a at each imaging position 109 and 110 as in the first embodiment.
, 103b is adjusted so that the magnification of the pattern becomes the specified value. The arrangement of the auxiliary optical system for magnification correction is not limited to the position shown in FIG. 2, and as in the first embodiment, it can be omitted if unnecessary.

副光学系の数は本実施例に示した2コに限らす3コ以上
としてもよい。
The number of sub-optical systems is limited to two as shown in this embodiment, but may be three or more.

副光学系の数を増やすことにより、基板表面近傍の結像
面数を増加させることができる。結像面数を増やすこと
により、光学系の焦点深度はさらに大きくなった。
By increasing the number of sub-optical systems, the number of imaging planes near the substrate surface can be increased. By increasing the number of imaging planes, the depth of focus of the optical system was further increased.

各副光学系の露光への寄与はハーフミラ−113の反射
率と透過率、露光シャッター107a、107bの開放
時間等を調整することにより任意に設定できる。
The contribution of each sub-optical system to exposure can be arbitrarily set by adjusting the reflectance and transmittance of the half mirror 113, the open time of the exposure shutters 107a and 107b, etc.

本実施例に示した装置を用いて、実施例1に示した実験
を行ない同様の効果を確認した。
Using the apparatus shown in this example, the experiment shown in Example 1 was conducted and similar effects were confirmed.

[発明の効果] 上記説明より明らかなように、本発明によれば、投影露
光法における実効的焦点深度を増大させることができる
ので、投影レンズの高開口数化、露光光の短波長化、投
影レンズの像面歪、載板表面の傾斜や凹凸段差の増大に
対処することが可能である。本発明とCEL法をはじめ
とする高コントラストレジストプロセスを併用すると、
サブミクロンパターンの実効的焦点深度を従来法と比入
で設定結像面数が2つの場合約70〜100%、3つの
場合約150〜200%程度増大させることができる。
[Effects of the Invention] As is clear from the above description, according to the present invention, the effective depth of focus in the projection exposure method can be increased, so that the numerical aperture of the projection lens can be increased, the wavelength of the exposure light can be shortened, It is possible to cope with the image plane distortion of the projection lens, the inclination of the mounting plate surface, and the increase in uneven steps. When the present invention is combined with a high contrast resist process such as the CEL method,
The effective depth of focus of a submicron pattern can be increased by about 70 to 100% when the number of set imaging planes is two, and by about 150 to 200% when the number of set imaging planes is three, compared to the conventional method.

これにより、例えば基板表面に2μm以上の高段差が存
在する場合にも、レンズの像面歪、基板の傾斜度等に特
別の改善を行なうことなく、露光領域の全面に0.5μ
m以下のパターンを解像することができる。
As a result, even if there is a height difference of 2 μm or more on the substrate surface, for example, it is possible to apply 0.5 μm to the entire exposed area without making any special improvements to the image plane distortion of the lens, the inclination of the substrate, etc.
Patterns smaller than m can be resolved.

従来は、焦点深度の不足により′0.5μmの線巾を有
するLSIの製造に光りソグラフィを適用することは事
実上不可能であったが1本発明を採用することにより、
これを80%以上の歩留まりで行なうことが可能となっ
た。
Conventionally, it was virtually impossible to apply optical lithography to the production of LSIs with a line width of 0.5 μm due to the lack of depth of focus, but by adopting the present invention,
It has become possible to do this with a yield of 80% or more.

また最近光りソグラフィ用光源としてエキシマレーザ−
が注目されているが、これを用いた場合、露光波長はさ
らに短かくなり焦点裕度はますます減少する。従ってエ
キシマレーザ−の利用技術としても本発明は非常に有効
である。
In addition, excimer lasers have recently been used as light sources for optical lithography.
is attracting attention, but when this is used, the exposure wavelength becomes even shorter and the focus latitude decreases further. Therefore, the present invention is very effective as a technology for utilizing excimer lasers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の構成図である。 第2図は、本発明の一実施例の構成図である。 第3図は、本発明の原理を示す概念図である。 第4図は、本発明の効果を示す曲線図である。 1・・・・・・光源、2・・・・・・照明光学系、3・
・・・・・レチク゛ル、4・・・・・結像位置補正用補
助光学系、5・・・・・・倍率補正用補助光学系、6・
・・・・・投影レンズ、7・・・・・・基板ステージ、
8・・・・・・基板表面、9・・・・・・第1結像点、
10・・・・・・第2結像点、11.14・・・・・・
ハーフミラ−,12,13・・・・・・ミラー、15・
・・・・・投影光学系。 (第2図)   110a、100b−副光学系、10
1a、101b−光源、 102a、102b・・・・・・照明光学系、103a
、103b・・・・・・レチクル、104a、104b
・・・・・・結像位置補正用補助光学系、105a、1
05b・・・・・・倍率倍率補正用補助光学系、106
・・・・・・投影レンズ、107a、107b・・・・
・・露光シャッター、108・・・・・・基板表面、1
09・・・・・・第1結像点、110・・・・・・第2
結像点、111・・・・・・伶合成用光学系、112・
・・・・・ミラー、113・・・・・・ハーフミラ−0
第10 拓4 配 む軸方前体1〔騨〕
FIG. 1 is a configuration diagram of an embodiment of the present invention. FIG. 2 is a configuration diagram of an embodiment of the present invention. FIG. 3 is a conceptual diagram showing the principle of the present invention. FIG. 4 is a curve diagram showing the effects of the present invention. 1...Light source, 2...Illumination optical system, 3.
... Reticle, 4... Auxiliary optical system for image formation position correction, 5... Auxiliary optical system for magnification correction, 6.
...Projection lens, 7...Substrate stage,
8... Substrate surface, 9... First imaging point,
10...Second imaging point, 11.14...
Half mirror, 12, 13...Mirror, 15.
...Projection optical system. (Figure 2) 110a, 100b - sub-optical system, 10
1a, 101b-light source, 102a, 102b... illumination optical system, 103a
, 103b...Reticle, 104a, 104b
...... Auxiliary optical system for image formation position correction, 105a, 1
05b...Auxiliary optical system for magnification correction, 106
...Projection lens, 107a, 107b...
...Exposure shutter, 108...Substrate surface, 1
09...First imaging point, 110...Second
Image forming point, 111... Optical system for merging, 112.
...Mirror, 113...Half mirror-0
10th Taku 4 Axial front body 1 [anchor]

Claims (1)

【特許請求の範囲】 1、マスクのパターンを基板上へ投影露光する装置にお
いて、基板上の同一位置において各々光軸方向の異なる
位置に上記パターンの共役面を有する複数の像を合成し
て、上記基板上に投影露光する多重結像露光機能を有す
る投影露光装置。 2、上記マスクは1枚であり、かつ前記マスクに対して
異なる複数の光路を有することを特徴とする特許請求の
範囲第1項記載の投影露光装置。 3、上記マスクが2枚以上であり、かつ前記マスクの各
々に対して互いに異なる光路が存在することを特徴とす
る特許請求の範囲第1項記載の投影露光装置。
[Claims] 1. In an apparatus for projecting and exposing a mask pattern onto a substrate, a plurality of images each having a conjugate plane of the pattern at different positions in the optical axis direction at the same position on the substrate are synthesized, A projection exposure apparatus having a multiple imaging exposure function for projecting exposure onto the substrate. 2. The projection exposure apparatus according to claim 1, characterized in that the number of the masks is one, and the mask has a plurality of different optical paths. 3. The projection exposure apparatus according to claim 1, wherein there are two or more masks, and each of the masks has a different optical path.
JP62008033A 1987-01-19 1987-01-19 Projection exposing device Pending JPS63177123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62008033A JPS63177123A (en) 1987-01-19 1987-01-19 Projection exposing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62008033A JPS63177123A (en) 1987-01-19 1987-01-19 Projection exposing device

Publications (1)

Publication Number Publication Date
JPS63177123A true JPS63177123A (en) 1988-07-21

Family

ID=11682020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62008033A Pending JPS63177123A (en) 1987-01-19 1987-01-19 Projection exposing device

Country Status (1)

Country Link
JP (1) JPS63177123A (en)

Similar Documents

Publication Publication Date Title
US4937619A (en) Projection aligner and exposure method
US6611316B2 (en) Method and system for dual reticle image exposure
JP2940553B2 (en) Exposure method
KR100586912B1 (en) Lithographic Apparatus, Device Manufacturing Method, and Device Manufactured Thereby
JPH0254103A (en) Alignment device of exposure apparatus
JPH10319321A (en) Illuminator, projection aligner using illuminator, production of device using the projection aligner and production of the projection aligner
US9632413B2 (en) Apparatus and method for compensating a defect of a channel of a microlithographic projection exposure system
JP3916877B2 (en) Lithographic apparatus, device manufacturing method, and device manufactured thereby
KR100675918B1 (en) Lithographic Apparatus, Device Manufacturing Method, and Device Manufactured Thereby
KR100609109B1 (en) Device Manufacturing Method, Mask Set for use in the Method, Data Set for Controlling a Programmable Patterning Device, Method of Generating a Mask Pattern and a Computer Program
JP2006186369A (en) Semiconductor wafer and lithography process using the same
JP2004343079A (en) Device manufacturing method
JPH06124872A (en) Image forming method and manufacture of semiconductor device using the method
US6600166B2 (en) Scanning exposure method
JP3406957B2 (en) Optical element and exposure apparatus using the same
JP2001244194A (en) Abbe arm correction system used in lithography system
JP2004349686A (en) Lithographic apparatus and device-manufacturing method
TWI768243B (en) Method and apparatus for determining positions of a plurality of pixels to be introduced in a substrate of a photolithographic mask
JP3296296B2 (en) Exposure method and exposure apparatus
JPS63177123A (en) Projection exposing device
JPH01258419A (en) Pattern formation
JP2590478B2 (en) Projection exposure apparatus and projection exposure method
JPS63177124A (en) Projection exposing device
US8982325B2 (en) Microlithographic projection exposure apparatus
JP2998637B2 (en) Exposure method