JPS63177061A - Control of immunoreaction - Google Patents

Control of immunoreaction

Info

Publication number
JPS63177061A
JPS63177061A JP819087A JP819087A JPS63177061A JP S63177061 A JPS63177061 A JP S63177061A JP 819087 A JP819087 A JP 819087A JP 819087 A JP819087 A JP 819087A JP S63177061 A JPS63177061 A JP S63177061A
Authority
JP
Japan
Prior art keywords
analyte
reaction
antibody
ligand
factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP819087A
Other languages
Japanese (ja)
Other versions
JP2521074B2 (en
Inventor
Atsushi Nishikawa
淳 西河
Seiichi Koda
甲田 誠一
Takeshi Fujita
剛 藤田
Isamu Kokawara
高河原 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oriental Yeast Co Ltd
Original Assignee
Oriental Yeast Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oriental Yeast Co Ltd filed Critical Oriental Yeast Co Ltd
Priority to JP62008190A priority Critical patent/JP2521074B2/en
Publication of JPS63177061A publication Critical patent/JPS63177061A/en
Application granted granted Critical
Publication of JP2521074B2 publication Critical patent/JP2521074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To accurately analyze and measure an analyte without diluting a specimen, in the reaction of the analyte with a labelled ligand, by allowing a factor inhibiting said reaction to act. CONSTITUTION:In the reaction of an analyte or a modified substance thereof with the corresponding labelled ligand, a factor inhibiting said reaction is allowed to coexist in a reaction liquid or the factor inhibiting said reaction is allowed to preliminarily act on the analyte or the modified substance thereof. Thereafter, the labelled ligand is allowed to act to control the measurable concn. region of the analyte or the modified substance thereof. By this method, the analyte can be accurately analyzed and measured without diluting a specimen to a large extent.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、免疫化学的反応を用いて物質を定量する際の
測定感度を調節する方法に関するものであり、更に詳細
には、アナライトと標識されたリガンドとの反応におい
て、この反応を阻害する因子を利用することにより、検
体の測定可能な濃度領域を調節する方法に関し、以って
、非常に希釈したサンプルを用いることなく正確に物質
の測定を可能とするものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for adjusting measurement sensitivity when quantifying a substance using an immunochemical reaction. A method for adjusting the measurable concentration range of an analyte by using a factor that inhibits the reaction with a labeled ligand. This makes it possible to measure

本発明は、各種物質の分析、測定、特に生体成分の微量
分析に有効であるので、医療、診断、臨床検査1分析、
定量等の各技術分野において重用されるものである。
The present invention is effective for analysis and measurement of various substances, especially trace analysis of biological components, so it can be used for medical treatment, diagnosis, clinical test 1 analysis,
It is heavily used in various technical fields such as quantitative determination.

(従来の技術) 近年、医学の発展に伴い、生体体液中に含まれる多くの
微量成分の生理的意義が明らかになってきた。これに伴
い臨床検査の分野においても、これら生体体液中の微量
成分の正確な定量法が増々重要なものとなってきている
。これらの微量成分の定量法の一つに、標識抗体と、抗
体を不溶化した不溶性担体を用いる標識抗体法が知られ
ている。
(Prior Art) In recent years, with the development of medicine, the physiological significance of many trace components contained in biological body fluids has become clear. Along with this, accurate methods for quantifying trace components in these biological body fluids are becoming increasingly important in the field of clinical testing. A labeled antibody method using a labeled antibody and an insoluble carrier in which the antibody is insolubilized is known as one of the methods for quantifying these trace components.

この標識抗体法は、抗原を抗体不溶化担体に結合せしめ
、次に該担体に結合した抗原に標識抗体を結合せしめた
後、該担体に結合した標識抗体量を測定することにより
定量し、この値より抗原の量を求めるものである。この
ほか、抗原不溶化担体及び標識第二抗体を用いて抗体量
を測定する方法7抗原を標識しておき、それと抗原を競
合させ、標識抗体との結合により抗原量を測定する方法
;も既に知られている。
In this labeled antibody method, an antigen is bound to an antibody-insolubilized carrier, a labeled antibody is bound to the antigen bound to the carrier, and the amount of labeled antibody bound to the carrier is quantified. This method determines the amount of antigen. In addition, a method of measuring the amount of antibody using an antigen-insolubilized carrier and a labeled secondary antibody (7) is already known, in which the antigen is labeled, the antigen is made to compete with the antigen, and the antigen amount is measured by binding with the labeled antibody. It is being

一方、生体体液中には多種多様の成分が様々な濃度で含
まれており、又、同一成分であっても個体差があるため
、臨床検査の分野における各目的測定成分の臨床上必要
な測定が出来なければならない濃度幅(以下、「必要レ
ンジ」という)は個々の成分についてそれぞれ異なって
いる。しかし、標識抗体法においても、用いる抗体の性
能、酵素放射性物質、蛍光物質等標識の性能、反応条件
等により、それらを用いて組み立てられた一つの測定系
(以下、「キット」という)には、正確に測定出来る検
体の濃度領域(以下、「測定レンジ」という)が存在す
る。
On the other hand, biological body fluids contain a wide variety of components at various concentrations, and even the same component has individual differences, so clinically necessary measurements of each objective measurement component in the field of clinical testing are required. The concentration range that must be possible (hereinafter referred to as the "required range") differs for each component. However, even in the labeled antibody method, the performance of the antibody used, the performance of the labels such as enzyme radioactive substances, fluorescent substances, etc., the reaction conditions, etc., and the measurement system assembled using these (hereinafter referred to as "kit") There is a concentration range (hereinafter referred to as "measurement range") of the sample that can be measured accurately.

故に各キットにおいて最も重要なことがらは、測定レン
ジの中に必要レンジが納まることである。
Therefore, the most important thing for each kit is that the required range is included in the measurement range.

この問題を解決するために、現在、標識抗体法において
、特に1例えば次のような測定成分については、予じめ
検体を非常に薄く希釈する方法が、わずかに行われてい
るにすぎない:β2−ミクログロブリン(以下、「β肛
」という)、α1−ミクログロブリン、C反応性蛋白質
、免疫グロブリン(IgG、IgA、 IgE等)、補
体成分(C3,04等)、トランスフェリン、プロティ
ンC(プロティンS)、各種ホルモン又はホルモン様物
質(トリヨードサイロニン、サイロキシン結合グロブリ
ン、コルチゾール結合蛋白質、性ホルモン結合グロブリ
ン、hPL (hu■anPlacental Lac
togen)等)。
To solve this problem, in the labeled antibody method, there are currently only a few methods in which the sample is diluted very thinly in advance, especially for the following components to be measured: β2-microglobulin (hereinafter referred to as “β-anal”), α1-microglobulin, C-reactive protein, immunoglobulin (IgG, IgA, IgE, etc.), complement components (C3,04, etc.), transferrin, protein C ( protein S), various hormones or hormone-like substances (triiodothyronine, thyroxine-binding globulin, cortisol-binding protein, sex hormone-binding globulin, hPL (hu an Placental Lac)
togen) etc.).

1例として、 BMGは、現在、腎機能障害や種々の悪
性腫瘍の診断治療効果の判定等における1つの指標とし
て臨床検査の分野においてさかんに測定されている測定
成分である。現在汎用されている標識抗体法の1種であ
る酵素免疫測定法(以下。
As an example, BMG is a measurement component that is currently frequently measured in the field of clinical testing as an index for determining the efficacy of diagnosis and treatment of renal dysfunction and various malignant tumors. Enzyme immunoassay (hereinafter referred to as "enzyme immunoassay") is a type of labeled antibody method that is currently widely used.

rFIAJ ということもある)によってBMGを測定
する場合においては、それぞれのキットの測定レンジ特
性にあうよう、緩衝液で100〜1000倍程度に希釈
した検体を10−100μQ’/l定に使用している。
When measuring BMG by RFIAJ (sometimes referred to as rFIAJ), use a sample diluted 100 to 1000 times with a buffer solution at a constant concentration of 10 to 100 μQ'/l to match the measurement range characteristics of each kit. There is.

この多大な希釈操作は、非常に繁雑であるだけでなく、
多数検体の迅速処理を目ざした全自動測定機の開発にお
いても、機械の複雑性を増しコスト高にもつながるもの
である。また、測定精度にも悪影響をおよぼす原因にな
りかねない、当然のことながら、検体をこのように多大
に希釈せずに測定することも理論的には一応可能であり
、その場合には、使用する検体量を10〜1000nQ
とすれば良いのであるが、これではサンプル液量が少な
すぎるため、正確にサンプルを分注することができず、
したがって測定精度の大巾低下は免れず、実用に供され
ていないのが現状である。
This extensive dilution operation is not only very complicated, but also
Even in the development of a fully automatic measuring machine that aims to quickly process a large number of samples, this increases the complexity of the machine and leads to higher costs. In addition, it is theoretically possible to measure the sample without diluting it to a large extent, which may adversely affect measurement accuracy. The amount of sample to be used is 10-1000nQ.
However, since the amount of sample liquid is too small, it is not possible to dispense the sample accurately.
Therefore, it is inevitable that the measurement accuracy will be greatly reduced, and the current situation is that it is not put into practical use.

それ故、現状では、繁雑ではあるが、この多大な希釈操
作を必要とする方法がやむを得ず実用に供されているの
である。
Therefore, at present, although complicated, this method which requires a large amount of dilution operation is unavoidably put into practical use.

(発明が解決しようとする問題点) 本発明は、このような標識抗体法のようにアナライトと
これに対応する標識されたリガンドとの反応を利用する
測定法において、上記した繁雑にして多大な希釈操作を
行う必要のない分析法を新たに開発する目的でなされた
ものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned complicated and time-consuming measurement method that utilizes the reaction between an analyte and a corresponding labeled ligand, such as the labeled antibody method. This was done with the aim of developing a new analytical method that does not require extensive dilution operations.

(問題点を解決するための手段) 上記目的を達成するために各方面から研究を行った結果
、全く予期せざることに、w識抗体法において、測定対
象成分であるアナライトとそれに対応する標識されたリ
ガンドとの反応の際にこの反応を阻害する因子を作用さ
せたところ、測定しンジをより高濃度域に移動させ得る
こと、換言すればサンプルを大巾に希釈することなく、
正確にアナライトの測定ができることを見出した。
(Means for solving the problem) As a result of conducting research from various angles to achieve the above purpose, it was completely unexpected that the analyte, which is the component to be measured, and its corresponding By applying a factor that inhibits this reaction during the reaction with a labeled ligand, it is possible to move the sample to a higher concentration range, in other words, without significantly diluting the sample.
We discovered that analytes can be measured accurately.

そして更に検討の結果、反応阻害因子は、アナライトと
ml!’lリガンドとを反応させる前に予じめアナライ
トと作用させても同様のすぐれた効果が得られることも
併せて確認した。
As a result of further investigation, the reaction inhibitory factor is the analyte and ml! It was also confirmed that the same excellent effect can be obtained even if the analyte is reacted with the analyte before reacting with the 'l ligand.

本発明は、これらの新知見を基礎にして、更に検討、研
究した結果、完成に到ったものである。
The present invention was completed as a result of further study and research based on these new findings.

本発明において、アナライトとは測定対象であり、リガ
ンドとはアナライトに生物学的な相関性を示す物質であ
って、これらは相対的なもので一方がアナライトとなる
場合には他方がリガンドとなるものである。これらのア
ナライト(リガンド)としては、各種の物質が広く挙げ
られるが、例えば次のような生体成分を列挙することが
できる:抗原(抗体)、抗体(第二抗体)、抗体(抗イ
ディオタイプ抗体)、ホルモン(リセプタ)、 DNA
(sRNA)、酵l!4(基質1反応生成物、コエンザ
イム、拮抗的阻害剤)。
In the present invention, an analyte is an object to be measured, and a ligand is a substance that has a biological correlation with the analyte. This serves as a ligand. These analytes (ligands) include a wide variety of substances, including the following biological components: antigens (antibodies), antibodies (secondary antibodies), antibodies (anti-idiotypes). antibodies), hormones (receptors), DNA
(sRNA), yeast l! 4 (substrate 1 reaction product, coenzyme, competitive inhibitor).

アナライトとしては、これにアビジン、ビオチン、プロ
ティンA等を結合せしめてリガンドとの反応性を更に高
めるよう修飾を施してもよいし、これとは逆に、リガン
ドとの反応に直接関係を有しない部分を除去したり、サ
ブユニットにしたりして修飾を施すことも可能である。
The analyte may be modified to further increase its reactivity with the ligand by binding it with avidin, biotin, protein A, etc., or conversely, it may be modified with avidin, biotin, protein A, etc. to further increase its reactivity with the ligand. It is also possible to carry out modifications by removing parts that do not exist or by forming subunits.

リガンドは、反応後の測定を容易ならしめるよう標識し
ておき、本発明においてはこの標識されたリガンド(以
下、「標識リガンド」ともいう)を使用する。標識化処
理は、常法にしたがって行えばよく、標識としては、酵
素、蛍光物質、放射性物質、フェリチン等が常法にした
がって適宜使用される。
The ligand is labeled to facilitate measurement after the reaction, and this labeled ligand (hereinafter also referred to as "labeled ligand") is used in the present invention. The labeling treatment may be carried out according to a conventional method, and enzymes, fluorescent substances, radioactive substances, ferritin, etc. are appropriately used as labels according to a conventional method.

本発明においては、アナライト(及び/又はその修飾物
)と標識リガンドとの反応に、この反応を阻害する因子
を作用させ、それによって、検体を大巾に希釈すること
なくしかも正確にアナライト(修飾物)を分析、311
定することを可能にしたものである。したがって、該因
子とは、上記反応を阻害するものであればすべての物質
を使用することができ、例えば、アナライト(詳しくは
測定されるべき抗JM:抗体等)やその修飾物に反応す
ることのできる抗体、抗原、又はその修飾断片等のほか
、これらの含有物(血液、血清、体液等)も場合によっ
ては使用することができる。また、例えば、エチレング
リコールといった溶離剤のように、免疫反応を弱める作
用を及ぼす物質を該因子として使用することも可能であ
るし、バッファー、溶解液、基質、反応阻害剤も場合に
よっては使用できる。なお、これらの物質は単に例示の
ために挙げたものであって、上記反応を阻害する物質で
あればすべての物が使用できることは勿論のことである
。該因子は、アナライトの量、標識リガンドとの結合性
、検体の種類、その他各条件を勘案しながら、適度な濃
度となるよう調節添加する。
In the present invention, a factor that inhibits the reaction between the analyte (and/or a modified substance thereof) and a labeled ligand acts on the reaction, thereby allowing the analyte to be accurately reacted without diluting the sample to a large extent. (modified substance) analysis, 311
This makes it possible to determine the Therefore, the factor can be any substance as long as it inhibits the above reaction, for example, it reacts with the analyte (specifically, the anti-JM antibody to be measured) or its modified substance. In addition to antibodies, antigens, or modified fragments thereof, substances containing these (blood, serum, body fluids, etc.) can also be used in some cases. In addition, it is also possible to use a substance that weakens the immune response, such as an eluent such as ethylene glycol, and buffers, lysis solutions, substrates, and reaction inhibitors can also be used in some cases. . It should be noted that these substances are merely mentioned for illustrative purposes, and it goes without saying that any substance that inhibits the above reaction can be used. The factor is adjusted and added to an appropriate concentration, taking into consideration the amount of analyte, the binding property with the labeled ligand, the type of specimen, and other conditions.

この反応阻害因子は、上記反応に作用させればよく、そ
の添加処理の時期は問わない、したがって、アナライト
と標識リガンドとの反応時に反応液中に該因子を共存さ
せてもよいし、予じめアナライトと該因子を作用せしめ
た後に、標識リガンドを作用させてもよいのである。
This reaction inhibitory factor only needs to act on the above reaction, and the timing of its addition does not matter. Therefore, the factor may be present in the reaction solution during the reaction between the analyte and the labeled ligand, or it may be added in advance. After the analyte and the factor are allowed to act, a labeled ligand may be made to act.

次に本発明の実施例について述べる。Next, embodiments of the present invention will be described.

実施例1゜ うさぎより得られたBMGに対する抗体を常法によって
ポリスチレン製試験管の内面に固相化したく以後これを
「固相化」チューブと記す)、グルコースオキシダーゼ
標識抗体は、うさぎより得られた抗BMG抗体とグルコ
ースオキシダーゼを用いて、「酵素免疫測定法」第2版
(医学書院) P、105〜P。
Example 1 An antibody against BMG obtained from a rabbit was immobilized on the inner surface of a polystyrene test tube (hereinafter referred to as a "immobilized" tube). A glucose oxidase-labeled antibody was obtained from a rabbit. "Enzyme immunoassay" 2nd edition (Igaku Shoin) P, 105-P. using anti-BMG antibody and glucose oxidase.

108に記載されている方法にしたがって作製した。It was produced according to the method described in 108.

阻害する因子としては、固相化に用いた抗体と同一のも
のを使用し、抗体濃度は、lOug/IQとなるように
、0.1%のアルブミン、100mMの食塩を含む10
ffiMリン酸緩衝液(以下「溶解液」と記す)を用い
て調製した。
The same antibody used for immobilization was used as the inhibiting factor, and the antibody concentration was 10 μg/IQ containing 0.1% albumin and 100 mM sodium chloride.
It was prepared using ffiM phosphate buffer (hereinafter referred to as "dissolution solution").

一方、0.1Mグルコース、15mMフェノールを含む
0、IN+ノン酸緩衝液(pl+7.5)300mak
= 、バーオキシダーゼ10鵬gと50%グリセロール
を含む50■Nリン酸緩衝液(pH7,5)を1−塁、
そして15朧Nの4−アミノアンチビリン溶液を10m
fl順次加えて、基質溶液を作製した。
On the other hand, 300 ma.
= 1-base of 50 N phosphate buffer (pH 7.5) containing 10 g of peroxidase and 50% glycerol;
Then, add 10 m of 15 N of 4-aminoantivirine solution.
fl were sequentially added to prepare a substrate solution.

そしてまず、同相化チューブ9本に、それぞれ溶解液0
.5IQを入れ、さらに阻害する因子の溶液0.1+l
1flを加えた0次に、あらかじめBNGを0.01゜
0.03.0.1.0.3.1.0.3.0.10.3
0.1100u/atfiの各濃度に調製しておいた溶
液をそれぞれlOμΩずつ分注し攪拌した。37℃で2
時間反応させた後、反応液を除去し、リン酸緩衝液で洗
浄後、グルコースオキシダーゼ標識抗体を0.1u/m
flとなるように希釈液に溶解したものを0.6票Q加
えて攪拌した。
First, add 0 solution to each of the 9 in-phase tubes.
.. Add 5IQ and 0.1+l of inhibitory factor solution
0th order with 1fl added, BNG in advance by 0.01°0.03.0.1.0.3.1.0.3.0.10.3
Each solution prepared at a concentration of 0.1100 u/atfi was dispensed in an amount of 10 μΩ and stirred. 2 at 37℃
After reacting for an hour, the reaction solution was removed, and after washing with phosphate buffer, the glucose oxidase-labeled antibody was added at 0.1 u/m
0.6 Q of the diluent dissolved in the diluent was added and stirred.

37℃で2時間放置後、基質溶液を1mff1加えて攪
拌した。37℃で90分放置後、分光光度計で反応液の
505nmにおける吸収を測定した。得られた各スタン
ダード溶液のBNG濃度と吸光度の関係を両対数目盛の
グラフにプロットし、第1図の結果を得た。
After standing at 37° C. for 2 hours, 1 mff1 of the substrate solution was added and stirred. After being left at 37° C. for 90 minutes, the absorption of the reaction solution at 505 nm was measured using a spectrophotometer. The relationship between the BNG concentration and the absorbance of each standard solution obtained was plotted on a logarithmic scale graph, and the results shown in FIG. 1 were obtained.

実施例2゜ 固相化チューブや酵素標識抗体は、実施例1と同様の方
法で作製したものを使用した。阻害する因子は、固相化
に使用した抗体を得たうさぎとは異なる。別のうさぎよ
り得られたBMGに対する抗体を用い、その濃度が0.
10.100.500ug/+12のものを準備した。
Example 2 Solid-phase tubes and enzyme-labeled antibodies prepared in the same manner as in Example 1 were used. The inhibiting factor is different from the rabbit from which the antibody used for immobilization was obtained. An antibody against BMG obtained from another rabbit was used, and its concentration was 0.
10.100.500ug/+12 was prepared.

まず固相化チューブ9本にそれぞれ希釈液0.4raQ
を入れ1次に阻害する因子の濃度Oug/mRのものを
0.1m12ずつ加えた。
First, 0.4raQ of diluted solution was added to each of the 9 solid phase tubes.
First, 0.1 ml of the inhibitory factor at a concentration of Oug/mR was added.

以下実施例1と同様に、9種類のBMGスタンダード溶
液について、吸光度を求めた0次に阻害する因子の溶液
を濃度to、 100.500ug/+aRに変えて同
様の操作を繰り返した。得られた各阻害する因子の濃度
に対するスタンダード溶液の濃度と吸光度との関係を両
対数目盛りのグラフにプロットして第2図の結果を得た
Thereafter, in the same manner as in Example 1, the same operation was repeated for nine types of BMG standard solutions, changing the concentration of the zero-order inhibiting factor solution whose absorbance was determined to 100.500 ug/+aR. The relationship between the concentration of the standard solution and the absorbance with respect to the concentration of each inhibiting factor obtained was plotted on a graph on a logarithmic scale, and the results shown in FIG. 2 were obtained.

実施例3゜ 固相化チューブや酵素標識抗体は、実施例1と同様の方
法で作製したものを使用した。阻害する因子は、山羊よ
り得られたBMGに対する抗体を用い、その濃度を50
ug/mflに調製した。以下実施例1の操作と同様に
して各スタンダード溶液に対する505rv+の吸光度
を求めた。得られた結果を、両対数目盛りのグラフにプ
ロットして第3図に示した。
Example 3: Immobilized tubes and enzyme-labeled antibodies prepared in the same manner as in Example 1 were used. For the inhibitory factor, an antibody against BMG obtained from goats was used, and the concentration was adjusted to 50%.
It was adjusted to ug/mfl. Thereafter, in the same manner as in Example 1, the absorbance of 505rv+ for each standard solution was determined. The obtained results are plotted on a logarithmic scale graph and shown in FIG.

実施例4゜ 山羊より得られたBMGに対する抗体を常法によってポ
リスチレン製試験管の内面に固相化した。
Example 4 An antibody against BMG obtained from a goat was immobilized on the inner surface of a polystyrene test tube by a conventional method.

阻害する因子は山羊より得られたBMGに対する抗体を
用い、濃度を0.1mg/anとなるように調製した。
As the inhibitory factor, an antibody against BMG obtained from a goat was used, and the concentration was adjusted to 0.1 mg/an.

まず、上記の同相化チューブ9本に溶解液を0.5mQ
ずつ分注し、さらに実施例1と同様のスタンダード溶液
を各10μΩずつ分注した6次に阻害する因子を、濃度
Omg7mfiのものを、100μΩずつ加え攪拌した
。以下の操作は実施例1と同様に行った。
First, add 0.5 mQ of the solution to the 9 in-phase tubes mentioned above.
Further, the same standard solution as in Example 1 was dispensed in 10 μΩ portions each, and 100 μΩ portions of the 6th order inhibiting factor with a concentration of Omg 7 mfi were added and stirred. The following operations were performed in the same manner as in Example 1.

次に阻害する因子の濃度が1 ragl−〇のものにつ
いても上記と同様の操作を行った。得られた結果を ・
両対数目盛りのグラフにプロットして、第4図に示した
Next, the same operation as above was performed for the inhibitory factor having a concentration of 1 ragl-0. The results obtained ・
The results are plotted on a logarithmic scale graph and shown in FIG.

(発明の効果) これらの実施例でも示す通り、この阻害する因子を用い
る本発明方法を利用すれば今まで繁雑であった検体の多
大な希釈操作を行わずども測定出来、かつ測定精度も保
たれているため、検体の多量迅速処理には最適の手段と
なる。そして、機械による全自動化測定を押し進めるに
あたっても。
(Effects of the Invention) As shown in these examples, if the method of the present invention using this inhibiting factor is used, measurement can be performed without the large amount of dilution of the sample, which has been complicated up until now, and measurement accuracy can also be maintained. This makes it ideal for rapid processing of large quantities of specimens. And also in pushing forward with fully automated measurement using machines.

検体の多大な希釈という前処理操作が不要となるため、
より簡素に設計することが出来、好都合である。
There is no need for pre-treatment operations such as extensive dilution of the specimen.
This is advantageous because it can be designed more simply.

又、本発明方法では阻害する因子の作用させる量を変化
させることにより、測定レンジを微妙に調節することが
出来る。つまり、作用させる阻害する因子の量を増加さ
せるにしたがって測定レンジも高濃度域に移動して行く
ため、各生体体液について微妙に異なる必要レンジに最
適に対応することが出来、好都合である。
Furthermore, in the method of the present invention, the measurement range can be finely adjusted by changing the amount of the inhibiting factor. In other words, as the amount of the inhibiting factor to be acted on increases, the measurement range moves to a high concentration range, which is convenient because it can optimally accommodate the slightly different required ranges for each biological body fluid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1より得られたスタンダード溶液のB
MG濃度と吸光度の関係を両対数目盛りのグラフにプロ
ットし各点を曲線で結んだもの(以下、「検量線」と記
す)である。 第2図は、実施例2より得られた結果を基に。 加えた阻害する因子の濃度別に検量線を描いたものであ
る、(尚、阻害する因子の濃度がOug/s+Ωのもの
は−・−で、10ug/s+jiのものは一ム一で、1
100u/lIQのものは一〇−で、500ug/mQ
のものは一Δ−で、それぞれ示しである。) 第3図は、実施例3より得られた結果を検量線として描
いたものである。(尚、阻害する因子の効果を判定しや
すいように、阻害する因子を加えなかった場合に得られ
る検量線(実施例2参照)も・・・で付記した。)
Figure 1 shows the B of the standard solution obtained in Example 1.
The relationship between MG concentration and absorbance is plotted on a logarithmic scale graph, and each point is connected by a curved line (hereinafter referred to as a "calibration curve"). FIG. 2 is based on the results obtained in Example 2. A calibration curve is drawn for each concentration of the added inhibitory factor.
100u/lIQ is 10-, 500ug/mQ
Those shown are -Δ-, respectively. ) FIG. 3 depicts the results obtained in Example 3 as a calibration curve. (In order to make it easier to judge the effect of the inhibiting factor, the calibration curve obtained when the inhibiting factor is not added (see Example 2) is also appended with...)

Claims (6)

【特許請求の範囲】[Claims] (1)アナライト若しくはその修飾物と対応する標識さ
れたリガンドとの反応において、反応液中にこの反応を
阻害する因子を共存させるか;又は、この反応を阻害す
る因子とアナライト若しくはその修飾物とを予じめ作用
させた後、標識されたリガンドを作用させること;を特
徴とする当該アナライト若しくはその修飾物の測定可能
な濃度領域を調節する方法。
(1) In the reaction between the analyte or its modified product and the corresponding labeled ligand, a factor that inhibits this reaction is allowed to coexist in the reaction solution; or a factor that inhibits this reaction and the analyte or its modification 1. A method for adjusting the measurable concentration range of the analyte or its modified substance, the method comprising: reacting the analyte or its modified substance with a labeled ligand in advance;
(2)反応を阻害する因子が、アナライトに対応する抗
体であることを特徴とする特許請求の範囲第1項に記載
の方法。
(2) The method according to claim 1, wherein the factor that inhibits the reaction is an antibody corresponding to the analyte.
(3)アナライトが抗原であり、リガンドが該抗原に対
応する抗体であることを特徴とする特許請求の範囲第1
項に記載の方法。
(3) Claim 1, characterized in that the analyte is an antigen and the ligand is an antibody corresponding to the antigen.
The method described in section.
(4)アナライトが抗体であり、リガンドが該抗体に対
する第二抗体であることを特徴とする特許請求の範囲第
1項に記載の方法。
(4) The method according to claim 1, wherein the analyte is an antibody and the ligand is a second antibody against the antibody.
(5)アナライトが抗体であり、リガンドが該抗体に対
する抗イディオタイプ抗体であることを特徴とする特許
請求の範囲第1項に記載の方法。
(5) The method according to claim 1, wherein the analyte is an antibody and the ligand is an anti-idiotypic antibody against the antibody.
(6)アナライトが抗体であり、リガンドが該抗体と反
応する抗原であることを特徴とする特許請求の範囲第1
項に記載の方法。
(6) Claim 1, characterized in that the analyte is an antibody and the ligand is an antigen that reacts with the antibody.
The method described in section.
JP62008190A 1987-01-19 1987-01-19 How to regulate the immune response Expired - Fee Related JP2521074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62008190A JP2521074B2 (en) 1987-01-19 1987-01-19 How to regulate the immune response

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62008190A JP2521074B2 (en) 1987-01-19 1987-01-19 How to regulate the immune response

Publications (2)

Publication Number Publication Date
JPS63177061A true JPS63177061A (en) 1988-07-21
JP2521074B2 JP2521074B2 (en) 1996-07-31

Family

ID=11686370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62008190A Expired - Fee Related JP2521074B2 (en) 1987-01-19 1987-01-19 How to regulate the immune response

Country Status (1)

Country Link
JP (1) JP2521074B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141559A (en) * 1981-02-26 1982-09-01 Fujirebio Inc Immunological measuring method
JPS5960260A (en) * 1982-09-29 1984-04-06 Toyobo Co Ltd Enzyme immunological measurement
JPS6179164A (en) * 1984-09-26 1986-04-22 Amano Pharmaceut Co Ltd Reducing method of antigen-antibody reaction time

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141559A (en) * 1981-02-26 1982-09-01 Fujirebio Inc Immunological measuring method
JPS5960260A (en) * 1982-09-29 1984-04-06 Toyobo Co Ltd Enzyme immunological measurement
JPS6179164A (en) * 1984-09-26 1986-04-22 Amano Pharmaceut Co Ltd Reducing method of antigen-antibody reaction time

Also Published As

Publication number Publication date
JP2521074B2 (en) 1996-07-31

Similar Documents

Publication Publication Date Title
EP0289335A2 (en) Method to achieve a linear standard curve in a sandwich immunoassay
JPS5825980B2 (en) Cyclic nucleotide quantification method
EP0713096B1 (en) Immunoassay and kit for insulin-like growth factors
CN105891508A (en) TRF (time-resolved fluorescence) immunochromatography reagent for rapidly and quantitatively detecting H-FABP (heart fatty acid-binding protein) and preparation method
JPH09304382A (en) Measuring method and kit for hemoglobin alc
Darwish et al. Kinetic-exclusion analysis-based immunosensors versus enzyme-linked immunosorbent assays for measurement of cancer markers in biological specimens
JP2935578B2 (en) Competitive binding assay with improved linearity
JPH0670629B2 (en) Method and reagent for measuring reaction components of immune reaction
JPS63127160A (en) Detection of specific protein
JPH07325083A (en) Method for measuring ratio of specific sugar chain of glycoprotein
JPS6271861A (en) Immunological-reaction component measurement method and reagent for executing said method
JPH0476628B2 (en)
JPS63177061A (en) Control of immunoreaction
Nechaeva et al. Rapid Automatic Determination of Four Cardiomarkers in the Blood Plasma of Patients with Cardiopathologies
JP2004325192A (en) Measuring method and measuring kit of hapten by gold colloid aggregation method
JPS61243363A (en) Highly sensitive assay of crp
JP3175822B2 (en) Hapten immunoassay
JPH06102275A (en) Measuring method of steroid hormone
JPH08304398A (en) Immunity measuring method
JPS6082966A (en) Assay of antigen
CN111896756A (en) Kit for determining free thyroxine
JPH0658936A (en) Method for measuring saccharifying protein
CN114316016A (en) Method for biotinylation of Jo-1 antigen and anti-Jo-1 antibody detection kit
Evans et al. Radial partition immunoassay
JP2010271270A (en) Reagent for measuring fatty-acid-binding protein derived from human cardiac muscle tissue

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees