JPS6317685A - Device and method for cell culture - Google Patents

Device and method for cell culture

Info

Publication number
JPS6317685A
JPS6317685A JP61159864A JP15986486A JPS6317685A JP S6317685 A JPS6317685 A JP S6317685A JP 61159864 A JP61159864 A JP 61159864A JP 15986486 A JP15986486 A JP 15986486A JP S6317685 A JPS6317685 A JP S6317685A
Authority
JP
Japan
Prior art keywords
porous membrane
membrane
cell culture
cell
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61159864A
Other languages
Japanese (ja)
Inventor
Hajime Yoshida
一 吉田
Yoshiaki Nitori
似鳥 嘉昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP61159864A priority Critical patent/JPS6317685A/en
Publication of JPS6317685A publication Critical patent/JPS6317685A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/16Hollow fibers

Abstract

PURPOSE:To achieve high growth performance in cell culture, by culturing a cell in a culture device consisting of a porous membrane having homogeneous pectinated network structure having pectinated rectangular shape encircled with micro-fibril and a knot part composed of stacked lamellas. CONSTITUTION:A porous membrane made of a hollow fiber having a wall thickness of 1-1,000mum and inner diameter of 0.01-10mm is produced from a polymer such as crystalline polyethylene, polypropylene, etc., by draw pore- forming process. Preferably, the core diameter of the membrane is 0.1-2.0mum and the porosity of the membrane is 50-80%. When the membrane is observed by a scanning electron microscope, the areal ratio of the knot part in the field is preferably 10-30%. The average length and diameter of the micro-fibril are controlled to 0.1-6.0mum and 0.02-0.3mum, respectively, A cell is placed outside of a hollow fiber partitioned with said porous membrane and a culture liquid is circulated through the hollow part from one opening to another opening to enable the supply of nutrients and oxygen or the removal of product or waste produced by the cultured cell.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多孔質膜から成る細胞培養器及び該多孔質膜
を用いた細胞培養方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a cell culture vessel comprising a porous membrane and a cell culture method using the porous membrane.

(従来技術とその問題点) KNAZEKらによる中空糸を用いた細胞培養法の報告
(Science、178:65,1972)以来、中
空糸を用いた細胞培養の試み(以下中空糸法と称す)は
数多く報告されている。
(Prior art and its problems) Since KNAZEK et al.'s report on a cell culture method using hollow fibers (Science, 178:65, 1972), attempts at cell culture using hollow fibers (hereinafter referred to as the hollow fiber method) have been made. Many cases have been reported.

中空系法は、限られた容積中に物質交換に重要な透液性
の膜表面、これは付着細胞にとってはその生育に必要な
基質としての役割をもはたすのであるが、を多く確保で
き、よって栄養素や酸素の供給並びに生成物や老廃物の
除去を、極めて効果的に行なえるのである。その為、細
胞培養による有用物質生産の有力な手法として期待され
ている。
The hollow system method can secure a large amount of liquid-permeable membrane surface, which is important for substance exchange in a limited volume, and which also serves as a substrate for adherent cells to grow. Therefore, nutrients and oxygen can be supplied and products and waste products can be removed extremely effectively. Therefore, it is expected to be a powerful method for producing useful substances by cell culture.

公知の中空糸法にはポリスルフォン、セルロースジアセ
テート等の中空糸の使用例が見られる。
Known hollow fiber methods include examples of using hollow fibers such as polysulfone and cellulose diacetate.

この中でもポリスルフォン中空糸は、セルロース系中空
糸に比べて基質としての性能が優れており、広く用いら
れている。しかしながら本発明者等の研究によれば、該
ポリスルフォン中空糸は細胞の初期接着性は満足できる
ものではなく、又、細胞の増殖速度はポリスチレン製デ
ィツシュに比べてはるかに劣っていることがわかった。
Among these, polysulfone hollow fibers have superior performance as a substrate compared to cellulose-based hollow fibers, and are widely used. However, according to the research conducted by the present inventors, it was found that the initial adhesion of cells to the polysulfone hollow fibers was not satisfactory, and the cell proliferation rate was far inferior to that of polystyrene dishes. Ta.

これは本発明者等の知見によれば、■ポリスルフォン中
空糸は実質部と空洞部とから成るのであるが、この部分
的構造差が透液の不均一性を生んでいる。
According to the findings of the present inventors, (1) Polysulfone hollow fibers consist of a parenchymal portion and a hollow portion, and this partial structural difference causes non-uniformity in liquid permeation.

(リボリスルフォン中空糸実質部の構造は、粒子状ポリ
スルフォンのつながったスポンジ様構造であり、空孔率
が低く、又その細孔は貫通孔では無く、よって透液性は
低い、ことより培養液の流れにバイパスが生じ、部分的
に培養液の供給不足の状態に陥り、細胞が局所的にしか
増殖しない、或いは細胞数が増加するに従い上記部分的
培養液の供給不足状態が促進され、よって結果的に細胞
の増殖速度が低くなってしまう。更に、一般に■多孔性
であってもその膜表面が比較的平坦な膜では、その膜表
面上で均一に細胞が増殖した場合、その膜表面の細孔を
ふさいでしまい、やはり同様の培養液の供給不足状態に
陥ってしまうのである。
(The structure of the riborisulfone hollow fiber parenchyma is a sponge-like structure in which particulate polysulfone is connected, and the porosity is low, and the pores are not through holes, so the liquid permeability is low. A bypass occurs in the flow of the liquid, resulting in a partial culture medium supply shortage, and cells proliferate only locally, or as the number of cells increases, the partial culture medium supply shortage is promoted, Therefore, as a result, the cell growth rate becomes low.Furthermore, in general, even if the membrane is porous, the membrane surface is relatively flat, and if cells grow uniformly on the membrane surface, the membrane This blocks the pores on the surface, resulting in a similar situation where the supply of culture fluid is insufficient.

以上1本発明者等は、膜及び孔壁構造が、細胞培養用中
空糸の性能にとって重要であるとの知見を得、これに基
づきポリスチレン製ディツシュレベルの増殖速度が得ら
れる中空糸が特定の膜壁構造を持つことを見い出した。
The inventors have obtained the knowledge that the membrane and pore wall structure are important for the performance of hollow fibers for cell culture, and based on this knowledge, they have identified a hollow fiber that can achieve a proliferation rate comparable to that of polystyrene dishes. It was discovered that it has a membrane wall structure.

(問題点を解決するための手段) 木発明者等の研究によれば、高い増殖速度を得るために
必要な細胞培養用の中空糸の孔壁構造としては、■空孔
率の高い貫通孔であること、■その孔壁構造は膜壁中で
実質的に均質であって、その為に膜表面で透液性は均一
であることである。
(Means for solving the problem) According to the research of the inventors of the tree, the pore wall structure of hollow fibers for cell culture necessary to obtain a high proliferation rate is: ■Through holes with high porosity. (2) The pore wall structure is substantially homogeneous in the membrane wall, so that the liquid permeability is uniform on the membrane surface.

これによって部分的な培養液の供給不足状態には陥らず
、細胞は均一に増殖するのである。更に、(3)その膜
表面は網状の微細な凹凸を持つこと、なぜならたとえそ
の膜表面上で均一に細胞が増殖しても、その膜表面の細
孔を完全にはふさいでしまわず、前記の様な培養液の供
給不足状態には陥ることは無いからであるとともに、■
膜表面の網状の微細な凹凸は細胞添加時の細胞の物理的
ひっかかりを助け、細胞の初期接着性を高めるからであ
る。
This prevents a partial shortage of culture medium supply and allows cells to proliferate uniformly. Furthermore, (3) the membrane surface has a network-like fine unevenness; this is because even if cells proliferate uniformly on the membrane surface, the pores on the membrane surface are not completely blocked; This is because you will not fall into a situation where there is a lack of supply of culture fluid, and
This is because the network-like fine irregularities on the membrane surface help the cells to be physically caught when cells are added, increasing the initial adhesion of the cells.

本発明者等は、この様な孔壁構造をもつ細胞培養用中空
糸を得るべく鋭意研究した結果、本発明をなしたもので
ある。即ち、本発明は、長手方向に延びるミクロフィブ
リルとスタックドラメラからなる結節部とに囲まれて形
成される櫛状長方形の櫛状均質な網目構造よりなる多孔
質膜を用いた細胞培養器及び該多孔質膜を用いた細胞培
養方法である。その結果、該多孔質膜上で被培養細胞は
、従来知られている細胞培養用中空糸に比べてはるかに
高い増殖性を示すのである。
The present inventors have made the present invention as a result of intensive research to obtain a hollow fiber for cell culture having such a pore wall structure. That is, the present invention provides a cell culture device using a porous membrane having a homogeneous comb-like rectangular network structure surrounded by microfibrils extending in the longitudinal direction and nodules consisting of stacked lamellae. This is a cell culture method using the porous membrane. As a result, cells to be cultured on the porous membrane exhibit much higher proliferative properties than on conventionally known hollow fibers for cell culture.

(発明の構1&) 長手方向に延びるミクロフィブリルとスタックドラメラ
からなる結節部とに囲まれ・て形成される櫛状長方形の
櫛状均質な網目構造よりなる多孔質膜とは、例えばポリ
オレフィン等の結晶性高分子によって得られる配向性の
ものであって、ポリスルフォンやポリアクリロニトリル
などで知られている沈澱の凝集体としての方向性の無い
ランダムなスポンジ様の構造とは異なる。該網目構造を
形成する結晶性高分子としてはポリオレフィン以外にテ
フロン、ポリアセタール、ポリフェニルサルファイド等
が知られている。
(Structure 1 &) A porous membrane having a comb-like homogeneous network structure of a comb-like rectangle surrounded by microfibrils extending in the longitudinal direction and nodules consisting of stacked lamellae is, for example, a polyolefin or the like. It has an oriented structure obtained from crystalline polymers such as polysulfone, polyacrylonitrile, etc., and is different from the random sponge-like structure without directionality as a precipitated aggregate known from polysulfone and polyacrylonitrile. In addition to polyolefin, Teflon, polyacetal, polyphenyl sulfide, and the like are known as crystalline polymers forming the network structure.

本多孔質膜は、膜厚l〜110001L、内径0.01
〜10mmの中空糸であり、ポリオレフィンでは、結晶
性ポリエチレン、ポリプロピレンの重合体を溶融押出に
より中空線条を形成し、これを延伸することにより中空
壁にフィブリルの開裂を生成せしめる、いわゆる延伸開
孔法によって調製することができる。これらの製法は特
開昭57−42919あるいは特開昭57−66114
などで既に知られている。
This porous membrane has a film thickness of 1 to 110001L and an inner diameter of 0.01L.
It is a hollow fiber of ~10 mm, and for polyolefins, a hollow filament is formed by melt extrusion of a polymer of crystalline polyethylene or polypropylene, and by stretching it, fibril cleavage is generated in the hollow wall. It can be prepared by a method. These manufacturing methods are disclosed in JP-A-57-42919 or JP-A-57-66114.
It is already known as.

本発明で用いる多孔質膜としては、その孔径は培養液の
十分な流れが得られる大きさであって細胞(凡そ数十μ
m)が漏れなければ良く、具体的には0.02〜4.0
終m、更に好ましくは0゜1〜2.04mである。多孔
質膜の空孔率は、結晶性のミクロフィブリルとスタック
ドラメラからなる結節部により囲まれて形成される櫛状
長方形の櫛状均質な網目構造が保たれておりかつ実用上
の1=分な強度があれば良く、具体的には30〜90%
、更に好ましくは50〜80%であれば良い、多孔質膜
の膜厚や内径については培養液の十分な流れが得られ、
細胞がその表面に存在しうる大きさであれば特に制限は
不要であるが、しいて揚げれば膜厚、内径はそれぞれl
l−1O00JL、0.01〜10mmであれば使用可
能である。本発明者等の経験によれば膜厚、内径はそれ
ぞれ10−1004m、0.1〜1.0mmぐらいの中
空糸が実用上特に適していた。
The porous membrane used in the present invention should have a pore size large enough to allow a sufficient flow of the culture medium, and should be suitable for cells (approximately several tens of μm).
m) should not leak, specifically 0.02 to 4.0
The final length is preferably 0°1 to 2.04 m. The porosity of the porous membrane is such that a homogeneous comb-like rectangular network structure surrounded by nodules consisting of crystalline microfibrils and stacked lamellae is maintained, and the porosity of the porous membrane is 1=1 in practical use. It is sufficient to have sufficient strength, specifically 30 to 90%
, More preferably, the thickness and inner diameter of the porous membrane should be 50 to 80%, so that a sufficient flow of the culture solution can be obtained.
There is no particular restriction as long as the size allows the cells to exist on the surface, but if the cells are fried, the film thickness and inner diameter will each be l
l-1O00JL, 0.01 to 10 mm can be used. According to the experience of the present inventors, hollow fibers having a membrane thickness and an inner diameter of 10 to 1004 mm and 0.1 to 1.0 mm, respectively, are particularly suitable for practical use.

本多孔質膜の網目構造は、走査型電子顕微鏡によって観
察する時、該像中における結節部のしめる面積の割合は
、5〜50%、更に好ましくは10〜30%であること
が望ましい、これは、細胞が本多孔質膜に付着する際、
主に該結節部と強く結合すると考えられ、よって該結節
部のしめる面積の割合が5%よりも低すぎると細胞の本
多孔質膜への結合が弱り、細胞の増殖に影響する。又。
When the network structure of the present porous membrane is observed using a scanning electron microscope, it is desirable that the area covered by the nodules in the image is 5 to 50%, more preferably 10 to 30%. When cells attach to this porous membrane,
It is thought that it mainly binds strongly to the nodules, and therefore, if the ratio of the area covered by the nodules is lower than 5%, the binding of cells to the present porous membrane will be weakened, affecting cell proliferation. or.

該割合が50%よりも高すぎると、該多孔質膜の物質交
換能に影響する。同様に、透過型電子顕微鏡にて観察す
る時、孔径の大きさあるいは物質交換能の点より、ミク
ロフィブリルの長さ及び太さの平均はそれぞれ0.1〜
6.0μm、0.02〜0.3μmであることが望まし
い。
If the ratio is too high than 50%, it will affect the mass exchange capacity of the porous membrane. Similarly, when observed with a transmission electron microscope, the average length and thickness of microfibrils are 0.1 to 0.1, respectively, in terms of pore size or mass exchange ability.
The thickness is preferably 6.0 μm, preferably 0.02 to 0.3 μm.

本発明の実施法について詳しく説明すると、細胞添加口
と、培養液の流出入口の少なくとも1つを細胞添加口と
該多孔質膜を隔して具えた容器内の、一方の空間に細胞
添加口より細胞を注入し。
To explain in detail the method of carrying out the present invention, the cell addition port is located in one space of a container which is provided with at least one of a cell addition port and a culture medium inlet and outflow port separated by the cell addition port and the porous membrane. Inject more cells.

被培養細胞の生育に必要な栄養素及び酸素の供給或いは
被培養細胞の産生じた生成物や老廃物の除去を膜壁を通
して拡散により、或いは強制的に行なうことによって細
胞を培養する細胞培養器及び方法である。より具体的に
例を上げると、該多孔質膜で隔された中空糸外側に細胞
を置き、中空糸内側を中空糸の一方の口より他方の口へ
培養液を循環することによって栄養素及び酸素の供給或
いは被培養細胞の産生じた生成物や老廃物を除去する細
胞培養器及び方法である。或いは上記において中空糸膜
厚方向に強制的に培養液の流れをつくり栄養素及び酸素
の供給或いは被培養細胞の産生じた生成物や老廃物を除
去する細胞培養器及び方法である。更に該多孔質膜が平
膜であっても該容器内を2つの空間に区切る様に該平膜
を固定することによって、中空糸と同様の機能をはたし
、よって上記と同様にして用いることが可能である。
A cell culture device for culturing cells by supplying nutrients and oxygen necessary for the growth of cultured cells or removing products and waste products produced by cultured cells by diffusion or forcibly through a membrane wall. It's a method. To give a more specific example, cells are placed on the outside of the hollow fiber separated by the porous membrane, and nutrients and oxygen are circulated inside the hollow fiber from one opening of the hollow fiber to the other. A cell culture device and method for supplying cells or removing products and waste products produced by cultured cells. Alternatively, there is a cell culture device and method for supplying nutrients and oxygen or removing products and wastes produced by cultured cells by forcibly creating a flow of the culture solution in the thickness direction of the hollow fiber membrane. Furthermore, even if the porous membrane is a flat membrane, by fixing the flat membrane so as to divide the inside of the container into two spaces, it can function in the same way as a hollow fiber, and therefore can be used in the same manner as above. Is possible.

次に実施例をあげてより具体的に説明する。Next, a more specific explanation will be given with reference to examples.

尚、諸物性の性質は以下の様にして求めた。The various physical properties were determined as follows.

「空孔率(%)」 水銀ポロシメーターにより求めた。"Porosity (%)" It was determined using a mercury porosimeter.

「平均孔径(ルm) J 水銀ポロシメーターにより求めた孔径−空孔容積積分曲
線上で、全空孔容積の1/2の空孔容積を示す孔径。
"Average pore diameter (lm) J" A pore diameter that indicates a pore volume that is 1/2 of the total pore volume on a pore diameter-pore volume integral curve determined by a mercury porosimeter.

「引張破断強度(K g f / cm’) 、引張破
断伸度(%)」 インストロン型引張試験機にて、歪速度200り57分
で測定。
"Tensile strength at break (K g f / cm'), tensile elongation at break (%)" Measured with an Instron type tensile tester at a strain rate of 200 for 57 minutes.

「結節部面積の割合(%)」 外表面(縦16μm、横24pm)の走査型電子wJ微
鏡写真より結節部を切り抜き、元写真との重量比により
計算。
"Percentage of nodule area (%)" Calculated by cutting out the nodule from a scanning electron wJ microphotograph of the outer surface (16 μm in height and 24 pm in width) and calculating the weight ratio with the original photograph.

「ミクロフィブリルの平均長、平均太さ」走査型電子W
4微鏡像により、中空糸膜外表面部、内表面部、及び膜
厚のほぼ中央部の3箇所の切断面を10000倍で写真
撮影し、その上で各部位の長さを50ケ所ずつ測定し、
平均値を計算した。
"Average length and thickness of microfibrils" Scanning electron W
4 Using a microscopic image, photograph the cut surfaces at 3 points on the outer surface, inner surface, and approximately the center of the membrane thickness at a magnification of 10,000 times, and then measure the length of each section at 50 points. death,
The average value was calculated.

(実施例1) 高密度ポリエチレン(密度0.968.MI値5.5、
商品名ハイゼックス2208J)を円形二重紡口を用い
て、紡口温度150℃で紡糸し、得られた中空糸を12
0℃で2時間アニール処理した後、室温で30%、つい
で105℃で350%熱延伸を施し中空糸状ポリエチレ
ン膜(ポリエチレン製多孔質膜)を得た。該ポリエチレ
ン製多孔質膜の内径は320ルm、膜厚は45pm、乾
燥時の引張破断強度485 K g f / cゴ、引
張破断伸度32%、結節部面積の割合21.3%、ミク
ロフィブリルの平均長1.7pm、平均太さ0.051
Lmであった0本ポリエチレン製多孔質欣の走査型電子
顕微鏡像を第1図に示す。第1図には、多孔質膜を形成
する結節部、ミクロフィブリル、細孔が明示されている
(Example 1) High density polyethylene (density 0.968. MI value 5.5,
(trade name HIZEX 2208J) was spun using a circular double spinneret at a spinneret temperature of 150°C, and the resulting hollow fiber was
After annealing at 0° C. for 2 hours, hot stretching was performed at room temperature for 30% and then at 105° C. for 350% to obtain a hollow fiber polyethylene membrane (porous polyethylene membrane). The polyethylene porous membrane has an inner diameter of 320 lm, a film thickness of 45 pm, a tensile strength at break of 485 K g f/c when dry, a tensile elongation at break of 32%, a knot area ratio of 21.3%, a micro Average length of fibrils: 1.7 pm, average thickness: 0.051
FIG. 1 shows a scanning electron microscope image of the 0-wire porous polyethylene rod that was Lm. FIG. 1 clearly shows the nodules, microfibrils, and pores that form the porous membrane.

該ポリエチレン製多孔質膜をガラス製カバーグラス(2
4×32mm)上に長辺方向に並べ、シリコン接着剤(
サイラスティック、ダウコーニング社製、米国)にて固
定した。固定したポリエチレン製多孔質膜はあらかじめ
70%エタノール水に1時間浸して湿潤化と滅菌を行な
った後、滅菌2回蒸留水にて十分に洗浄した。該ポリエ
チレン製多孔質膜を細胞培養用ディツシュ(ファルコン
2003、ベクトン・ディッキンソン社製、米国)内に
置き、付着性細胞であるHeLa細胞2×10 個を添
加し、ペニシリン100 I U / ml、ストレプ
トマイシン50体g/m1.カナマイシン50 p、 
g / m l、10%ウシ胎児血清を含むイーグルM
EM培養液にて37℃、5%Co2下で24時間培養し
た。培養後、メタノール固定、ギムザ染色して、WJ微
鏡下にて観察した。本結果を細胞の初期接着性のテスト
とした。
The polyethylene porous membrane was covered with a glass cover glass (2
4 x 32 mm) in the long side direction, and apply silicone adhesive (
It was fixed with Silastic (manufactured by Dow Corning, USA). The fixed porous polyethylene membrane was soaked in 70% ethanol water for 1 hour to moisten and sterilize it, and then thoroughly washed with sterile double-distilled water. The polyethylene porous membrane was placed in a cell culture dish (Falcon 2003, Becton Dickinson, USA), 2 x 10 adherent HeLa cells were added, and penicillin 100 IU/ml and streptomycin were added. 50 bodies g/m1. kanamycin 50p,
g/ml Eagle M with 10% fetal bovine serum
The cells were cultured in EM culture solution at 37°C under 5% CO2 for 24 hours. After culturing, the cells were fixed with methanol, stained with Giemsa, and observed under a WJ microscope. This result was used as a test of initial cell adhesion.

この詩得られた顕微鏡像を第2図に示す、第2図で明ら
かなように、該ポリエチレン製多孔質膜上にHeLaは
均一に広がって付着しており、細胞の初期接着性は高か
った。
The microscopic image obtained from this poem is shown in Figure 2. As is clear from Figure 2, HeLa was evenly spread and attached to the polyethylene porous membrane, and the initial adhesion of the cells was high. .

(実施例2) 実施例1で得たポリエチレン製多孔質膜を用いて中空糸
法にて、細胞の培養を行った。培養に用いた回路を第3
図に示す、該ポリエチレン製多孔賀膜150本(図中2
)を1両端が開き、表面に2ケ所の細胞注入/取出口(
図中3)を設けたガラス管(φ8.4X 94mm)に
、ボッティング材としてシリコンを用いて固定化し、中
空系法用細胞培養用ガラス管モジュール(以下細胞培養
器と称す、図中1)を作成した。
(Example 2) Cells were cultured using the polyethylene porous membrane obtained in Example 1 by the hollow fiber method. The circuit used for culture is
The 150 polyethylene porous membranes shown in the figure (2 in the figure)
) is open at both ends, and there are two cell injection/extraction ports (
A glass tube module (hereinafter referred to as cell culture vessel, 1 in the figure) for cell culture for hollow system method is fixed to a glass tube (φ8.4 x 94 mm) equipped with 3) in the figure using silicone as a botting material. It was created.

細胞培養器はエチレンオキサイドガス滅菌後、70%エ
タノールにて湿潤化、滅菌2回蒸留水にて十分に洗炸後
実験に供した。別に培養清溜(リザーバー、図中4)、
及びシゴキボンプ(図中5)に装着するシゴキチューブ
(図中6)をシリコン争チューブ(図中7)にて接続し
て回路を形成し、l 21 ’C!、20分間オートク
レーブ滅菌しておき、該細胞培養器と接続した。この細
胞培養器の、ポリエチレン製多孔質膜外側にHeLaを
添加して培養を行なった。最初の添加細胞数5×10 
細胞、培養液は、ペニシリン100 I U/ml、ス
トレプトマイシン5014−g/ml、カナマイシン5
04 g / m l、10%ウシ胎児血清を含むイー
グルMEM培養液を用いた。培養は、HeLa添加後2
時間静置した後、流速的1ml/分で行なった。
The cell culture vessel was sterilized with ethylene oxide gas, moistened with 70% ethanol, thoroughly washed with sterile double-distilled water, and then used for experiments. Separately, culture clear water (reservoir, 4 in the figure),
Connect the squeeze tube (6 in the figure) attached to the squeeze pump (5 in the figure) with the silicone tube (7 in the figure) to form a circuit. , sterilized in an autoclave for 20 minutes, and connected to the cell culture vessel. HeLa was added to the outside of the polyethylene porous membrane of this cell culture vessel, and culture was performed. Initial number of added cells: 5 x 10
Cells and culture medium contained 100 IU/ml of penicillin, 5014-g/ml of streptomycin, and 5-g/ml of kanamycin.
Eagle MEM medium containing 0.04 g/ml, 10% fetal bovine serum was used. Culture was carried out after addition of HeLa.
After standing still for a period of time, the flow rate was 1 ml/min.

3日間培養後、細胞培養器を壊してポリエチレン製多孔
質膜を取り出して、実施例1と同様にしてギムザ染色し
て顕微鏡下で観察した。結果を第4図に示す。第4図で
明らかなように、ポリエチレン製多孔質膜上でHeLa
は均一に広がって増殖しており、しかも個々のHeLa
の伸展性も良かった。即ち、本ポリエチレン製多孔質膜
は優れた細胞付着性、及び細胞増殖性を示した。
After culturing for 3 days, the cell culture vessel was broken and the polyethylene porous membrane was taken out, stained with Giemsa in the same manner as in Example 1, and observed under a microscope. The results are shown in Figure 4. As is clear from Figure 4, HeLa was deposited on the polyethylene porous membrane.
are spreading uniformly and proliferating, and individual HeLa
The extensibility was also good. That is, the polyethylene porous membrane exhibited excellent cell adhesion and cell proliferation.

(実施例3) 実施例2と同様にして細胞培養器にてHeLaの培養を
行なった。HeLa添加後添加量3時間静置の後流速約
0.15m1/分、培養4日目より流速約1ml/分と
した。培養液の交換は適宜行なった。細胞の回収は、ダ
ルベツコのPBS(−)(Dulbecco’5PBS
(−))で洗浄後、トリプシン液(ダルベツコのPBS
(−)にトリプシン0.25%、エチレンジアミン四酢
酸(EDTA)0.02%を溶解した液)にて処理して
行なった。
(Example 3) HeLa was cultured in a cell culture vessel in the same manner as in Example 2. After addition of HeLa, the flow rate was approximately 0.15 ml/min after standing for 3 hours, and the flow rate was increased to approximately 1 ml/min from the 4th day of culture. The culture solution was replaced as appropriate. Cells were collected using Dulbecco's PBS(-) (Dulbecco'5PBS).
After washing with trypsin solution (Dulbetzco's PBS)
(-) was treated with a solution containing 0.25% trypsin and 0.02% ethylenediaminetetraacetic acid (EDTA).

比較例としてポリスルフォン中空糸を用いて培養を行な
った。ポリスルフォン中空系は、芳香族ポリスルフォン
(ユニオンカーバイト社yp−t700、米国)10重
量%、ジメチルアセトアミド70 玉Q%、トリエチレ
ングリコール20重ν%の混液を脱泡して原液とした。
As a comparative example, culture was performed using polysulfone hollow fibers. The polysulfone hollow system was prepared by defoaming a mixture of 10% by weight of aromatic polysulfone (Union Carbide Co., Ltd. YP-T700, USA), 70% dimethylacetamide (Q%), and 20% by weight of triethylene glycol to obtain a stock solution.

該原液は円形二重紡口を用いて3.3ml/分にて30
°Cのフロロカーボン液中(鉛直上方に1.5m)に紡
出した。この時中空形成剤として水を3.4ml/分で
導入した。水槽を通過後、巻取速度20m/分で巻取り
、水洗して125℃、1時間オートクレーブ処理した。
The stock solution was mixed at 3.3 ml/min using a circular double spinneret at 30 ml/min.
It was spun into a fluorocarbon liquid at °C (1.5 m vertically upward). At this time, water was introduced as a hollow forming agent at a rate of 3.4 ml/min. After passing through a water tank, it was wound up at a winding speed of 20 m/min, washed with water, and autoclaved at 125° C. for 1 hour.

こうして得た該ポリスルフォン中空糸は、内径360 
pm、膜厚80JLmであった。該ポリスルフォン中空
糸は、該ポリエチレン製多孔質膜と同様にしてガラス管
モジュールに組こんだ(ボ゛リスルフォンモジュール)
、このポリスルフォンモジュールを比較例として、上記
と同様の手法にて培養を行なった。但し流速は予備実験
によりもとめた至適流速5m 17分にて行なった0本
細胞培養器及びポリスルフォンモジュールによるHeL
aの増殖曲線を曲線A及び白線Bとして第5図に示す。
The polysulfone hollow fiber thus obtained had an inner diameter of 360 mm.
pm, and the film thickness was 80 JLm. The polysulfone hollow fibers were incorporated into a glass tube module in the same manner as the polyethylene porous membrane (voresulfone module).
This polysulfone module was used as a comparative example and cultured using the same method as above. However, the flow rate was determined from preliminary experiments at an optimal flow rate of 5 m.
The growth curve of A is shown in FIG. 5 as curve A and white line B.

生死の判定はトリパンブルーにて行なった0本細胞培養
器ではHeLaは培養開始後対数的に増殖し、培養12
2日目は生細胞数でおよそ4.4X10  に達したの
に対して、比較例では8 、3 X 10’  にすぎ
ず、本細胞培養器で明らかに高い増殖速度を示した。
Judgment of life and death was carried out using trypan blue. In the cell culture vessel, HeLa proliferated logarithmically after the start of culture, and after 12 days of culture.
On the second day, the number of viable cells reached approximately 4.4 x 10, whereas in the comparative example it was only 8.3 x 10', indicating a clearly high proliferation rate in this cell culture device.

(発明の効果) 本多孔質膜の網目構造は細胞の初期接着性、細胞の伸展
性及び増殖性において優れた性能を示す。更に、本多孔
質膜は高い強度を持ち、ポリスルフォン膜に比べてはる
かに実用性が高い。よって網目構造をもつ本多孔質膜か
ら成る細胞培養器、及び該細胞培養器を用いた細胞培養
方法は従来法よりはるかに優れた細胞の培養性能を示す
(Effects of the Invention) The network structure of the present porous membrane exhibits excellent performance in initial cell adhesion, cell spreadability, and cell proliferation. Furthermore, this porous membrane has high strength and is much more practical than polysulfone membranes. Therefore, a cell culture device made of the present porous membrane having a network structure and a cell culture method using the cell culture device exhibit far superior cell culture performance than conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はポリエチレン製多孔質膜の、ia mの形状を
示す走査型電子顕微鏡像である。第2図は実施例1でH
eLa細胞を培養した時の、生物の形態を示す顕微鏡写
真である。第3図はポリエチレン製多孔質膜を用いた中
空糸法による培養システムの実施例である。第4図は実
施例2でHeLaを培養した時の、生物の形態を示す顕
微鏡写真である。第5図は実施例3でHeLaを培養し
た時の増殖曲線(図中A)、及び比較例の増殖曲線(図
中B)である。 1、細胞培養器      5.シゴキボンブ2、ポリ
エチレン製多孔質膜6.シゴギチューブ3、細胞注入/
取出口  7.シリコンチューブ4、培養液溜
FIG. 1 is a scanning electron microscope image showing the shape of ia m of a porous polyethylene membrane. Figure 2 shows H in Example 1.
It is a micrograph showing the morphology of an organism when eLa cells are cultured. FIG. 3 shows an example of a culture system using a hollow fiber method using a porous polyethylene membrane. FIG. 4 is a micrograph showing the morphology of the organism when HeLa was cultured in Example 2. FIG. 5 shows a growth curve (A in the figure) when HeLa was cultured in Example 3, and a growth curve (B in the figure) of a comparative example. 1. Cell culture vessel 5. Shigoki bomb 2, polyethylene porous membrane 6. Shigogi tube 3, cell injection/
Outlet 7. Silicone tube 4, culture solution reservoir

Claims (7)

【特許請求の範囲】[Claims] (1)長手方向に延びるミクロフィブリルと、スタック
ドラメラからなる結節部とに囲まれて形成される櫛状長
方形の櫛状均質な網目構造よりなる多孔質膜を有する細
胞培養器。
(1) A cell culture vessel having a porous membrane having a homogeneous comb-like rectangular network structure surrounded by microfibrils extending in the longitudinal direction and nodules consisting of stacked lamellae.
(2)多孔質膜の、水銀ポロシメーターで測定される孔
径及び空孔率がそれぞれ0.02〜4.0μm及び30
〜90%である特許請求の範囲第1項記載の細胞培養器
(2) The pore diameter and porosity of the porous membrane measured with a mercury porosimeter are 0.02 to 4.0 μm and 30 μm, respectively.
90%. The cell culture device according to claim 1.
(3)多孔質膜がポリオレフィンから成る特許請求の範
囲第1項又は第2項記載の細胞培養器。
(3) The cell culture device according to claim 1 or 2, wherein the porous membrane is made of polyolefin.
(4)長手方向に延びるミクロフィブリルと、スタック
ドラメラからなる結節部とに囲まれて形成される櫛状長
方形の櫛状均質な網目構造よりなる膜壁を有する多孔質
膜を用いる細胞培養方法。
(4) A cell culture method using a porous membrane having a membrane wall consisting of a comb-like homogeneous network structure of a comb-like rectangular shape surrounded by microfibrils extending in the longitudinal direction and nodules consisting of stacked lamellae. .
(5)多孔質膜で区切られた一方の空間より被培養細胞
の栄養素及び酸素を該多孔質膜で区切られた被培養細胞
の存在する他方の空間へ膜壁を通して供給する、あるい
は被培養細胞の生成物ないしは老廃物を被培養細胞側空
間より他方の空間へ膜壁を通して除去することを特徴と
する特許請求の範囲第4項記載の細胞培養方法。
(5) Supplying nutrients and oxygen for cultured cells from one space separated by a porous membrane to the other space separated by the porous membrane where cultured cells exist, or cultured cells 5. The cell culture method according to claim 4, wherein the products or waste products are removed from the cultured cell side space to the other space through a membrane wall.
(6)多孔質膜の、水銀ポロシメーターで測定される孔
径及び空孔率がそれぞれ0.02〜4.0μm及び30
〜90%である特許請求の範囲第4項又は第5項記載の
細胞培養方法。
(6) The pore diameter and porosity of the porous membrane measured with a mercury porosimeter are 0.02 to 4.0 μm and 30 μm, respectively.
90% of the cell culture method according to claim 4 or 5.
(7)多孔質膜がポリオレフィンから成る特許請求の範
囲第4項乃至第6項のいずれか1つに記載の細胞培養方
法。
(7) The cell culture method according to any one of claims 4 to 6, wherein the porous membrane is made of polyolefin.
JP61159864A 1986-07-09 1986-07-09 Device and method for cell culture Pending JPS6317685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61159864A JPS6317685A (en) 1986-07-09 1986-07-09 Device and method for cell culture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61159864A JPS6317685A (en) 1986-07-09 1986-07-09 Device and method for cell culture

Publications (1)

Publication Number Publication Date
JPS6317685A true JPS6317685A (en) 1988-01-25

Family

ID=15702884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61159864A Pending JPS6317685A (en) 1986-07-09 1986-07-09 Device and method for cell culture

Country Status (1)

Country Link
JP (1) JPS6317685A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287773U (en) * 1988-12-21 1990-07-11
JP2003340221A (en) * 2002-05-28 2003-12-02 Sumitomo Chem Co Ltd Filter medium for microfilter
JP2016214149A (en) * 2015-05-20 2016-12-22 住友電気工業株式会社 Cell culture carrier, and cell sheet including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766114A (en) * 1980-10-14 1982-04-22 Mitsubishi Rayon Co Ltd Porous polyethylene hollow fiber and its production
JPS6125476A (en) * 1984-07-16 1986-02-04 Teijin Ltd Cell culture device packed with dispersed hollow fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766114A (en) * 1980-10-14 1982-04-22 Mitsubishi Rayon Co Ltd Porous polyethylene hollow fiber and its production
JPS6125476A (en) * 1984-07-16 1986-02-04 Teijin Ltd Cell culture device packed with dispersed hollow fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287773U (en) * 1988-12-21 1990-07-11
JPH0635961Y2 (en) * 1988-12-21 1994-09-21 スーパーバツグ株式会社 Paper bag packaging
JP2003340221A (en) * 2002-05-28 2003-12-02 Sumitomo Chem Co Ltd Filter medium for microfilter
JP2016214149A (en) * 2015-05-20 2016-12-22 住友電気工業株式会社 Cell culture carrier, and cell sheet including the same

Similar Documents

Publication Publication Date Title
US4269713A (en) Ethylene-vinyl alcohol copolymer membrane and a method for producing the same
US8435751B2 (en) Membrane for cell expansion
CA2432046C (en) Separation membrane, separation membrane element, separation membrane module, sewage treatment apparatus, and method for making the separation membrane
CA2724043C (en) Blood platelet induction method
EP2329010B1 (en) Device for renal cell expansion
CN102160967A (en) Lining-reinforced hollow fiber membrane tube as well as preparation device and preparation method thereof
WO2012057701A1 (en) Tubular fiber membrane with nanoporous skin
CN113117538A (en) Sulfone polymer filter membrane and preparation method thereof
JPS6317685A (en) Device and method for cell culture
WO2004020614A1 (en) Cell-filled device of modified cross-section hollow fiber membrane type
JPS60142860A (en) Virus removing method
JPH04341176A (en) Device for culturing cell
JPWO2018207564A1 (en) Separation substrate, cell separation filter, and method for producing platelets
JPH03258330A (en) Porous hollow fiber membrane
JP7454596B2 (en) Separation substrate, cell separation filter, and method for producing platelets
JPH0317532B2 (en)
JPH0630561B2 (en) Hollow fiber membrane for cell culture
JPH11262640A (en) Hollow fiber membrane module
JPH119977A (en) Polyethylene composite microporous hollow fiber membrane
JPH11179174A (en) Hollow fiber membrane for separation and manufacture thereof
JPS6317686A (en) Hollow fiber membrane for cultivating cell and cell cultivation apparatus
JP2021107053A (en) Semipermeable membrane support for membrane separation active sludge treatment
JP2002361055A (en) Filtration membrane and water purifier and membrane module using the same
JP3250808B2 (en) Polysulfone porous membrane and method for producing the same
KR101483622B1 (en) Flat micro-fiber and scaffold for cell culture containing the same