JPS6317680B2 - - Google Patents

Info

Publication number
JPS6317680B2
JPS6317680B2 JP859983A JP859983A JPS6317680B2 JP S6317680 B2 JPS6317680 B2 JP S6317680B2 JP 859983 A JP859983 A JP 859983A JP 859983 A JP859983 A JP 859983A JP S6317680 B2 JPS6317680 B2 JP S6317680B2
Authority
JP
Japan
Prior art keywords
airfoil
drag
dkr
airfoils
matsuha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP859983A
Other languages
Japanese (ja)
Other versions
JPS59134096A (en
Inventor
Yukio Yoshitake
Koki Shibata
Tadashi Takenawa
Jun Okumura
Makoto Kamimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP859983A priority Critical patent/JPS59134096A/en
Publication of JPS59134096A publication Critical patent/JPS59134096A/en
Publication of JPS6317680B2 publication Critical patent/JPS6317680B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はヘリコプタ等の回転翼航空機に用いら
れる回転翼用の翼型に関する。 回転翼航空機の回転翼羽根は、ホバリング飛
行、マヌーバ飛行、及び高速飛行という異つた飛
行環境で効率良く機能する必要がある。たとえ
ば、ホバリング飛行では必要馬力をできるだけ少
くするため空気力学的効率の向上をはかる必要が
あり、このためにはマツハ数約0.4ないし0.6の中
マツハ数領域及び揚力係数約0.6程度の中揚力係
数領域で高い揚抗比を得ることが必要となり、前
進飛行中には遷音速領域で作動する前進側回転翼
羽根の抗力を抑えるため、高マツハ数、低揚力係
数領域で低い抗力となり、反対に低速、大迎角で
作動する後退側回転翼羽根の失速を防止するた
め、低マツハ数で高揚力となる翼型が必要にな
る。さらに、回転翼用の翼型として重要なこと
は、回転翼制御装置に高い負荷をかけないように
するため、ピツチングモーメント係数をできるだ
け零に近い値にすることである。 従来、ヘリコプタ等の回転翼航空機には、
NACA 00シリーズの対称翼型が最も普遍的に用
いられ、特殊な用途に対してはNACA 230シリ
ーズの翼型も用いられており、これらの翼型につ
いての技術情報は、ニユーヨークのドーバー出版
社発行によるアボツト及びデーンホツフ共著の
「翼型理論(Theory of Wing Sectin)」に詳細
に開示されている。しかし、これらの公知の翼型
の特性は、近年特に高まつている回転翼航空機の
性能向上の要求に十分に適合するものではなく、
最近では、従来の翼型よりさらにすぐれた翼型を
開発する動きがあらわれている。たとえば、特公
昭56−42520号公報には、従来の翼型に比し最大
揚力係数及びドラグ発散マツハ数ともに増加した
翼型が開示されている。ドラグ発散マツハ数と
は、マツハ数の変化に対する抗力係数の変化が
0.1になるマツハ数として定義され、高速飛行特
性を判断する上で重要な量であり、この値が高い
ことは抗力の著しく増加を伴なわずに回転翼羽根
の対気速度を高め得ることを意味する。また特開
昭56−95799号公報には、上記特公昭56−42520号
公報に係る翼型よりもドラグ発散マツハ数がさら
に増加したヘリコプタ観点翼用の翼型が示されて
いる。 本発明は、上述したような従来公知の翼型に比
し低速時の最大揚力係数を低下させることなしに
ドラグ発散マツハ数を大巾に増加させることので
きる回転翼用の翼型を提供することを目的とす
る。 本発明の他の目的は最大翼厚と翼弦長との比で
定義される翼厚比が0.08から0.15の広い範囲にわ
たりすぐれた特性を示す翼型を提供することであ
る。 すなわち、本発明による回転翼用の翼型は、±
3%の範囲内で近似的に式 y/c0=a√0+b(x/c0)+c(x/c0
2+d(x/c03 で定義されるもので、此処にyは翼型外形座標、
xは翼弦方向位置、C0は翼弦長をそれぞれ示し、
a、b、c、dは表1に示す値である。
The present invention relates to an airfoil for a rotary wing used in a rotary wing aircraft such as a helicopter. The rotor blades of rotorcraft must function efficiently in different flight environments: hovering, maneuvering, and high-speed flight. For example, in hovering flight, it is necessary to improve aerodynamic efficiency in order to reduce the required horsepower as much as possible, and for this purpose, the medium Matsuha number region of about 0.4 to 0.6 and the medium lift coefficient region of about 0.6 are required. It is necessary to obtain a high lift-to-drag ratio at low speeds, and in order to suppress the drag of the forward rotor blades that operate in the transonic region during forward flight, the drag is low in the high Matsuha number and low lift coefficient regions, and conversely, at low speeds In order to prevent stalling of the retreating rotor blades that operate at large angles of attack, an airfoil with a low Matsuha number and high lift is required. Furthermore, it is important for an airfoil for a rotary blade to have a pitching moment coefficient as close to zero as possible in order to avoid placing a high load on the rotary blade control device. Traditionally, rotorcraft such as helicopters have
The NACA 00 series symmetrical airfoils are the most commonly used, with the NACA 230 series airfoils also being used for special applications; technical information on these airfoils can be found in Dover Publishing, New York. It is disclosed in detail in ``Theory of Wing Sectin'', co-authored by Abbott and Dehnhoff. However, the characteristics of these known airfoils do not fully meet the demands for improved performance of rotary-wing aircraft, which have been increasing in recent years.
Recently, there has been a movement to develop airfoils that are even better than conventional airfoils. For example, Japanese Patent Publication No. 56-42520 discloses an airfoil that has an increased maximum lift coefficient and drag divergence Matsuha number compared to conventional airfoils. Drag divergence Matsuha number is the change in drag coefficient due to change in Matsuha number.
Defined as the Matsuha number of 0.1, it is an important quantity in determining high-speed flight characteristics; a high value indicates that the airspeed of the rotor blades can be increased without a significant increase in drag. means. Furthermore, Japanese Patent Application Laid-open No. 56-95799 discloses an airfoil for a helicopter perspective wing in which the drag divergence Matsuha number is further increased than that of the airfoil according to the above-mentioned Japanese Patent Publication No. 56-42520. The present invention provides an airfoil for a rotary blade that can greatly increase the drag divergence Matsuha number without reducing the maximum lift coefficient at low speeds compared to the conventionally known airfoils as described above. The purpose is to Another object of the present invention is to provide an airfoil that exhibits excellent characteristics over a wide range of blade thickness ratio defined as the ratio of maximum blade thickness to blade chord length from 0.08 to 0.15. That is, the airfoil for a rotor according to the present invention has ±
Approximately within the range of 3%, the formula y/c 0 = a√ 0 + b (x/c 0 ) + c (x/c 0
) 2 + d(x/c 0 ) 3 , where y is the airfoil outline coordinate,
x is the position in the chord direction, C 0 is the chord length,
a, b, c, and d are the values shown in Table 1.

【表】【table】

【表】 このようにして定義される翼型は翼厚比0.12で
あり便宜上DKR−120と呼ぶ。 また、本発明の他の態様による回転翼用の翼型
は、前述の翼型と同様に近似的に上式で定義され
るものであるが、a、b、c、dは表2の値をと
る。
[Table] The airfoil defined in this way has a blade thickness ratio of 0.12 and is called DKR-120 for convenience. Further, an airfoil for a rotary blade according to another aspect of the present invention is approximately defined by the above formula like the above-mentioned airfoil, but a, b, c, and d are the values in Table 2. Take.

【表】 このようにして定義された翼型は翼厚比0.105
であり便宜上DKR−105と呼ぶ。 さらに、本発明の他の態様による回転翼の翼型
は、上述の式において係数a、b、c、dが次式
により定義されるものである。 a=la(t/c0)+ma b=lb(t/c0)+mb c=lc(t/c0)+mc d=ld(t/c0)+md 但し、la、lb、lc、ld、ma、mb、mc、mdは表3
の値をとり、tは最大翼厚で0.08≦/c0≦0.150と
する。
[Table] The airfoil defined in this way has a blade thickness ratio of 0.105.
For convenience, it is called DKR-105. Further, in the airfoil of the rotor according to another aspect of the present invention, the coefficients a, b, c, and d in the above equation are defined by the following equation. a=l a (t/c 0 )+m a b=l b (t/c 0 )+m b c=l c (t/c 0 )+m c d=l d (t/c 0 )+m dHowever , l a , l b , l c , l d , m a , m b , m c , m d are shown in Table 3.
t is the maximum blade thickness and 0.08≦/c 0 ≦0.150.

【表】【table】

【表】 本発明による翼厚比0.08の翼型は、一例として
表4の値をとる。
[Table] The airfoil according to the present invention with a blade thickness ratio of 0.08 has the values shown in Table 4 as an example.

【表】【table】

【表】 また表5、表6、表7は、それぞれ翼厚比
0.105、0.120、0.150の翼型の例を示すものであ
る。
[Table] Tables 5, 6, and 7 show the blade thickness ratio, respectively.
Examples of airfoils of 0.105, 0.120, and 0.150 are shown.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 本発明による回転翼用翼型の代表的形状を第1
図に示す。図によつて明らかなように、この翼型
は、下面前縁部1の曲率が、前縁から約2%の弦
長の点まで比較的大きな値を保ち、その点より後
方では曲率が急激に減少し、また後縁部2では再
び増加する。最大翼厚位置3は30%弦長点より後
方にあり、この位置は翼厚比が小さくなるほど後
方になる。前縁半径rは比較的大きく、上面は約
85%から100%弦長点にわたる後縁部4が僅かに
凹んでいる。さらに後縁部5は有限な厚みを有す
る。 表4、5、6、7の翼型を第2図a,b,c,
dにそれぞれ示し、これらを便宜上DKR−080、
DKR−105、DKR−120、DKR−150と呼ぶ。第
3図はマツハ数0.4における最大揚力係数とドラ
グ発散マツハ数を示すもので、VR−12、VR−
13、VR−14は特開昭56−95799号発明に係る翼
型を、SC−1095は特公昭56−42520号に係る翼型
をそれぞれ示す。本発明による翼型はDKR−
150、DKR−120、DKR−105、DKR−080とし
てプロツトされており、ほぼDKR−xxとして示
された曲線上にある。他の点はそれぞれ他の公知
の翼型のもので、カツコ内の数字は翼厚比を%で
示している。図から知り得るように、本発明の回
転翼用翼型は従来の翼型に比し、著しく大きいド
ラグ発散マツハ数を示す。 第4図は本発明によるDKR−105翼型の最大揚
抗比を公知の翼型と対比して示すもので、この図
から明らかなように、本発明の翼型は公知の翼型
に比し高い最大揚抗比を示す。
[Table] Typical shapes of rotary blade airfoils according to the present invention are shown in the first table.
As shown in the figure. As is clear from the figure, the curvature of the lower leading edge 1 of this airfoil maintains a relatively large value up to a point approximately 2% chord length from the leading edge, and the curvature sharply increases behind that point. and increases again at the trailing edge 2. The maximum blade thickness position 3 is located behind the 30% chord length point, and this position becomes further rearward as the blade thickness ratio becomes smaller. The leading edge radius r is relatively large, and the top surface is approximately
The trailing edge 4 extending from the 85% to 100% chord length point is slightly concave. Furthermore, the trailing edge 5 has a finite thickness. The airfoils in Tables 4, 5, 6, and 7 are shown in Figure 2 a, b, c,
For convenience, these are shown in DKR-080,
They are called DKR-105, DKR-120, and DKR-150. Figure 3 shows the maximum lift coefficient and drag divergence Matsuha number at Matsuha number 0.4, VR-12, VR-
13, VR-14 shows the airfoil according to the invention of Japanese Patent Application Laid-Open No. 56-95799, and SC-1095 shows the airfoil according to the invention of Japanese Patent Publication No. 56-42520. The airfoil according to the invention is DKR−
150, DKR-120, DKR-105, DKR-080, approximately on the curve designated as DKR-xx. The other points are those of other known airfoil types, and the numbers in brackets indicate the blade thickness ratio in %. As can be seen from the figure, the rotor airfoil of the present invention exhibits a significantly larger drag divergence Matscha number than the conventional airfoil. Figure 4 shows the maximum lift-drag ratio of the DKR-105 airfoil according to the present invention in comparison with the known airfoil.As is clear from this figure, the airfoil of the present invention is compared to the known airfoil. and exhibits a high maximum lift-drag ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による回転翼用翼型の代表的形
状を示し、第2図は翼厚比0.080、0.105、0.120、
0.150の翼型の例を示す図、第3図は本発明の翼
型の最大揚力係数とドラグ発散係数を他の翼型と
対比して示す図表、第4図は最大揚抗比を示す図
表である。
FIG. 1 shows a typical shape of a rotary blade airfoil according to the present invention, and FIG. 2 shows a blade thickness ratio of 0.080, 0.105, 0.120,
A diagram showing an example of a 0.150 airfoil, Figure 3 is a chart showing the maximum lift coefficient and drag divergence coefficient of the airfoil of the present invention in comparison with other airfoils, and Figure 4 is a chart showing the maximum lift-drag ratio. It is.

Claims (1)

【特許請求の範囲】 1 ±3%の範囲内で近似的に次式により定義さ
れる回転翼用の翼型。 y/c0=a√0+b(x/c0)+c(x/c0
2+d(x/c03 此処に、 yは翼型外形座標、xは翼弦方向位置、c0は翼
弦長をそれぞれ示し、 a=la(t/c0)+ma b=lb(t/c0)+mb c=lc(t/c0)+mc d=ld(t/c0)+md 但し、la、lb、lc、ld、ma、mb、mc、mdは次表
による。 【表】 【表】 また、tは最大翼厚で0.08≦t/c0≦0.150とす
る。 2 次表で示される外形を有する特許請求の範囲
第1項記載の回転翼用の翼型。 【表】 【表】 3 次表で示される外形を有する特許請求の範囲
第1項記載の回転翼用の翼型。 【表】 【表】
[Claims] An airfoil for a rotor blade approximately defined by the following formula within a range of 1 ±3%. y/c 0 =a√ 0 +b(x/c 0 )+c(x/c 0
) 2 + d (x/c 0 ) 3 where y is the airfoil outline coordinate, x is the position in the chord direction, c 0 is the chord length, and a=l a (t/c 0 ) + m a b =l b (t/c 0 )+m b c=l c (t/c 0 )+m c d=l d (t/c 0 )+ m dHowever, l a , l b , l c , l d , m a , m b , m c , and m d are according to the table below. [Table] [Table] Also, t is the maximum blade thickness and is 0.08≦t/c 0 ≦0.150. 2. An airfoil for a rotor blade according to claim 1, which has an outer shape shown in the following table. [Table] [Table] 3. An airfoil for a rotor blade according to claim 1, which has an outer shape as shown in the following table. [Table] [Table]
JP859983A 1983-01-21 1983-01-21 Blade type for rotor blade Granted JPS59134096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP859983A JPS59134096A (en) 1983-01-21 1983-01-21 Blade type for rotor blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP859983A JPS59134096A (en) 1983-01-21 1983-01-21 Blade type for rotor blade

Publications (2)

Publication Number Publication Date
JPS59134096A JPS59134096A (en) 1984-08-01
JPS6317680B2 true JPS6317680B2 (en) 1988-04-14

Family

ID=11697428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP859983A Granted JPS59134096A (en) 1983-01-21 1983-01-21 Blade type for rotor blade

Country Status (1)

Country Link
JP (1) JPS59134096A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122777U (en) * 1990-03-28 1991-12-13

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4744728A (en) * 1986-09-03 1988-05-17 United Technologies Corporation Helicopter blade airfoil
JP2728651B2 (en) 1996-03-08 1998-03-18 株式会社コミュータヘリコプタ先進技術研究所 Helicopter blade airfoil
JP2955532B2 (en) 1997-02-14 1999-10-04 株式会社コミュータヘリコプタ先進技術研究所 Helicopter blade airfoil
JP3051366B2 (en) 1997-10-23 2000-06-12 株式会社コミュータヘリコプタ先進技術研究所 Helicopter blade airfoil
JP3051398B1 (en) 1999-02-23 2000-06-12 株式会社コミュータヘリコプタ先進技術研究所 Helicopter blade airfoil and helicopter blade

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122777U (en) * 1990-03-28 1991-12-13

Also Published As

Publication number Publication date
JPS59134096A (en) 1984-08-01

Similar Documents

Publication Publication Date Title
EP0517467B1 (en) Rotary-wing blade of rotary-wing aircraft
EP1984244B1 (en) An airfoil for a helicoptor rotor blade
US4569633A (en) Airfoil section for a rotor blade of a rotorcraft
JP3802209B2 (en) Wing with swept tip for aircraft rotor
JP2620087B2 (en) Rotary wing aircraft blade
GB2102505A (en) Airfoil blade
JPH0627499U (en) Air propeller
JPS6133760B2 (en)
JPH0341399B2 (en)
EP0037633B1 (en) Helicopter rotor blade
CN111674546B (en) Rotor wing pneumatic appearance suitable for small and medium-sized unmanned tilt rotor wing aircraft
JP3544711B2 (en) Rotor blades of rotary wing aircraft
JP3051398B1 (en) Helicopter blade airfoil and helicopter blade
JP3472799B2 (en) Airfoil for blade
JPS6317680B2 (en)
JP3051366B2 (en) Helicopter blade airfoil
JP4486249B2 (en) High performance airfoil for blades
US20210237862A1 (en) Rotary-wing aircraft blade airfoil, blade having the blade airfoil, and rotary-wing aircraft including the blade
USRE33589E (en) Helicopter blade airfoil
JP3722961B2 (en) Rotor blade of rotorcraft
JP3084270B2 (en) Helicopter blade airfoil
CN116443244B (en) High lift-drag ratio supercritical airfoil for advancing blade concept high-speed helicopter blade tip
WO1992012049A1 (en) Airfoil with fixed and variable upper and lower camber portions
BINGHAM Helicopter rotor airfoil[Patent Application]