JPS63176079A - Beam spot correction circuit - Google Patents
Beam spot correction circuitInfo
- Publication number
- JPS63176079A JPS63176079A JP765487A JP765487A JPS63176079A JP S63176079 A JPS63176079 A JP S63176079A JP 765487 A JP765487 A JP 765487A JP 765487 A JP765487 A JP 765487A JP S63176079 A JPS63176079 A JP S63176079A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- coils
- spot
- controlled
- inclination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004907 flux Effects 0.000 description 22
- 229920006395 saturated elastomer Polymers 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Video Image Reproduction Devices For Color Tv Systems (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、例えばテレビジョン受像機等に用いて好適
なビームスポット補正回路に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a beam spot correction circuit suitable for use in, for example, a television receiver.
この発明は、水平偏向コイルと直列に可飽和リアクタの
複数の被制御コイルを夫々接続し、被制御コイルと直列
にスポットの傾き補正コイルを接続し、可飽和リアクタ
の制御コイルに垂直偏向電流を供給して被制御コイルの
インピーダンスを垂直周期で差動的に変調するようにす
ることにより、ブラウン管の管面コーナにおけるビーム
スポットの傾きを補正するようにしたものである。This invention connects a plurality of controlled coils of a saturable reactor in series with a horizontal deflection coil, connects a spot tilt correction coil in series with the controlled coil, and applies a vertical deflection current to the control coil of the saturable reactor. The inclination of the beam spot at the corner of the tube surface of the cathode ray tube is corrected by differentially modulating the impedance of the controlled coil with a vertical period.
例えばビームインデックス方式のブラウン管(インデッ
クス管)のセンタスポットは、第7図に示すように縦長
ビームなので、斎−な偏向ヨークを用いて偏向すると、
同図に示すようにコーナ(C+ e+ L 1)で傾い
てしまう。従って、現在ではコーナでのスポットの傾き
をなくするために水平、垂直画磁界をビンクッション型
に歪ませている。For example, the center spot of a beam index type cathode ray tube (index tube) is a vertically long beam as shown in Figure 7, so if it is deflected using a narrow deflection yoke,
As shown in the figure, it tilts at the corner (C+e+L1). Therefore, at present, in order to eliminate the spot inclination at the corners, the horizontal and vertical image fields are distorted into a bottle cushion shape.
そこで、従来はブラウン管のネック部にいわゆるローテ
ンションコイル又は4重極コイルを装着してダイナミッ
クに管面の各コーナにおけるスボフトの傾きを補正する
ようにしているが、しかし、この場合ローテンションコ
イル又は4電極コイルを駆動するための専用の駆動回路
が必要となるので、回路構成が複雑となり、またコスト
的にも高価になる等の欠点があった。Therefore, conventionally, a so-called low tension coil or quadrupole coil is attached to the neck of the cathode ray tube to dynamically correct the inclination of the suboft at each corner of the tube surface. Since a dedicated drive circuit is required to drive the four-electrode coil, there are drawbacks such as a complicated circuit configuration and high cost.
また、磁界を歪ませると第7図のd、 hのスポットが
縦に伸びてy端(画面上の上端、下端)での解像度が悪
くなると共に第7図のす、 fのスポットが縦に縮んで
幅が太くなりX端(画面上の左端、右端)での色純度が
悪くなる欠点があった。Additionally, when the magnetic field is distorted, the spots d and h in Figure 7 extend vertically, resulting in poor resolution at the y ends (top and bottom edges of the screen), and the spots d and f in Figure 7 extend vertically. It had the disadvantage that it shrunk and became thicker, resulting in poor color purity at the X end (the left and right ends of the screen).
この発明は斯る点に鑑みてなされたもので、簡単な構成
でしかもX端、y端のスポットを歪ませることなく管面
の各コーナにおけるスポットの傾きを補正できるビーム
スポット補正回路を提供するものである。This invention has been made in view of the above, and provides a beam spot correction circuit that has a simple configuration and can correct the inclination of the spot at each corner of the tube surface without distorting the spot at the X end or the Y end. It is something.
この発明によるビームスポット補正回路は、水平偏向コ
イル(9)と直列に可飽和リアクタ(4)の複数の被制
御コイル(Ll、L2 、Ll 、L4 )を接続し、
被制御コイルと直列にスポットの傾き補正コイル(3)
を接続し、可飽和リアクタ(4)の制御コイル(L5)
に垂直偏向電流(i3)を供給して被制御コイル(LL
、 L2 、 Ll 、 L4 )のインピーダ
ンスを垂直周期で差動的に変調するように構成している
。The beam spot correction circuit according to the present invention connects a plurality of controlled coils (Ll, L2, Ll, L4) of a saturable reactor (4) in series with a horizontal deflection coil (9),
Spot tilt correction coil (3) in series with the controlled coil
and the control coil (L5) of the saturable reactor (4)
A vertical deflection current (i3) is supplied to the controlled coil (LL
, L2, Ll, L4) are differentially modulated in a vertical period.
水平偏向コイル(9)と直列に可飽和リアクタ(4)の
複数の被制御コイル(Ll、L2.L:1. L4
)を並列関係に接続する。つまり、コイルL1+L2と
Ll、L4を並列に接続する。そして、コイルL1.L
2とLl、L4と夫々直列にスポットの傾き補正コイル
すなわちローティジョンコイル(3)を接続する。そし
て、可飽和リアクタ(4)の被制御コイル(Ll、L2
)及びローティジョンコイル(RCL)に水平偏向電流
(11)、被制御コイル(Ll、L4)及びローティジ
ョンコイル(RC2)に水平偏向電流(i2) 、制御
コイル(L5)に垂直偏向電流(i3)を夫々供給して
被制御コイル(Ll 、 L2 、 La 、 L4
)のインピーダンスを垂直周期で差動的に変調する。A plurality of controlled coils (Ll, L2.L:1.L4) of the saturable reactor (4) in series with the horizontal deflection coil (9).
) to connect them in a parallel relationship. That is, the coils L1+L2, Ll, and L4 are connected in parallel. And coil L1. L
A spot tilt correction coil, that is, a rotation coil (3), is connected in series with L1, L4, and L4. The controlled coils (Ll, L2) of the saturable reactor (4)
) and rotijohn coil (RCL), horizontal deflection current (i2) to the controlled coil (Ll, L4) and rotijohn coil (RC2), and vertical deflection current (i3) to the control coil (L5). ) to control the controlled coils (Ll, L2, La, L4), respectively.
) is differentially modulated with a vertical period.
つまり、水平偏向電流(ilr i2)と垂直偏向電
流(i3)の極性の組合わせを色々変えて被制御コイル
(Lx 、 L2 、 Ll 、 L4 )を各
管面の象限に対応させて飽和させ、インピーダンスを下
げる。In other words, by changing the polarity combinations of the horizontal deflection current (ilr i2) and the vertical deflection current (i3), the controlled coils (Lx, L2, Ll, L4) are saturated in correspondence with the quadrants of each tube surface. Lower impedance.
これによってビームが管面上部を走査しているときはl
i2 l>lit lとしてローティジョンコイル
(RC2)による磁界が支配的となり、ビームが管面下
部を走査しているときはlil 1〉1121としてロ
ーティジョンコイル(RCL)による磁界が支配的とな
り、スポットの傾きを補正する。As a result, when the beam is scanning the upper part of the tube surface, l
As i2 l>lit l, the magnetic field by the rotary john coil (RC2) becomes dominant, and when the beam is scanning the lower part of the tube surface, the magnetic field by the rotary john coil (RCL) becomes dominant as lil 1>1121, and the spot Correct the tilt of.
以下、この発明の一実施例を第1図〜第6図に基づいて
詳しく説明する。Hereinafter, one embodiment of the present invention will be described in detail based on FIGS. 1 to 6.
先ず、この発明の基本原理を第4図〜第6図を参照して
説明する。First, the basic principle of this invention will be explained with reference to FIGS. 4 to 6.
第4図において、ブラウン管+11のネック部に設けら
れた偏向ヨーク(正確には水平偏向コイル及び垂直偏向
コイル)(2)とスポットの傾き補正コイル例えばロー
ティジョンコイル(3)との間に可飽和リアクタ(4)
を設ける。ローティジョンコイル(3)は例えばパイフ
ァイラー巻された2本のコイルRC1及びRC2から成
り、実際には図に示すように別々でな(一体化されてい
る。そしてコイルRC>とRC2は第4図の如き巻線方
向でブラウン管(1)のネック部に装着されており、各
コイルRC1゜RC2を流れる電流11と12によりで
きる磁界は矢印a、bで示すように互いに逆なので11
11−If2 +のときは磁界は発生しない。In Figure 4, there is a saturable connection between the deflection yoke (horizontal deflection coil and vertical deflection coil) (2) provided at the neck of the cathode ray tube +11 (to be precise, the horizontal deflection coil and the vertical deflection coil) (2) and the spot tilt correction coil, such as the rotation coil (3). Reactor (4)
will be established. The rotation coil (3) consists of two coils RC1 and RC2, which are wound with a pie filer, for example, and are actually not separate (but integrated) as shown in the figure.The coils RC> and RC2 are the fourth It is attached to the neck of a cathode ray tube (1) in the winding direction as shown in the figure, and the magnetic fields created by currents 11 and 12 flowing through each coil RC1 and RC2 are opposite to each other as shown by arrows a and b, so 11
When 11-If2 +, no magnetic field is generated.
第4図に示すブラウン管(1)の管面の第1象限Iに生
じるスポットの傾き(第7図のCにおけるスポットの傾
き相当)を補正するにはコイルRC2による磁界が支配
的になり、コイルRC2を貫ぬく磁束の方向が管面から
ネック部に向かうような磁界分布とすればよい。それに
はコイルRCz及びRC2に流す電流11及び12の関
係を1121>lil 1とする。In order to correct the inclination of the spot that occurs in the first quadrant I of the tube surface of the cathode ray tube (1) shown in Fig. 4 (corresponding to the inclination of the spot in C in Fig. 7), the magnetic field from coil RC2 becomes dominant, The magnetic field distribution may be such that the direction of magnetic flux passing through RC2 is from the tube surface toward the neck portion. To do this, the relationship between the currents 11 and 12 flowing through the coils RCz and RC2 is set to 1121>lil 1.
第4図に示すブラウン管(1)の管面の第2象限に生じ
るスポットの傾き(第7図のeにおけるスポットの傾き
相当)を補正するにはコイルRC2による磁界が支配的
になり、コイルRC2を言ぬく磁束の方向が第1象限と
は逆にネック部から管面に向かうような磁界分布とすれ
ばよい。それにはコイルRC1及びRC2に流す電流1
1及び12の関係をlil 1>lit lとする。In order to correct the inclination of the spot that occurs in the second quadrant of the tube surface of the cathode ray tube (1) shown in Fig. 4 (corresponding to the inclination of the spot at e in Fig. 7), the magnetic field by the coil RC2 becomes dominant, and the magnetic field generated by the coil RC2 becomes dominant. The magnetic field distribution may be such that the direction of the magnetic flux is from the neck toward the tube surface, opposite to the first quadrant. To do this, current 1 is passed through coils RC1 and RC2.
Let the relationship between 1 and 12 be lil 1>lit l.
つまりビームが管面の上部を走査しているときは電流1
1及び12の関係はl it1>l it 1とすれ
ばよく、このときの電流波形を示すと第5図の如(なる
。第5図において、右上は第1象限に対応し、左下は第
2象限に対応している。In other words, when the beam is scanning the upper part of the tube surface, the current is 1
The relationship between 1 and 12 should be l it1 > l it 1, and the current waveform in this case is as shown in Figure 5. In Figure 5, the upper right corresponds to the first quadrant, and the lower left corresponds to the first quadrant. It corresponds to 2 quadrants.
第4図に示すブラウン管(1)の管面の第3象限■に生
じるスポットの傾き(第7図のgにおけるスポットの傾
き相当)を補正するにはコイルRC1による磁界が支配
的になり、コイルRC1を貫ぬ(磁束の方向が管面から
ネック部に向かうような磁界分布とすればよい。それに
はコイルRCL及びRC2に流す電流11及び12の関
係をlil〉it2 lとする。In order to correct the inclination of the spot (corresponding to the inclination of the spot at g in Fig. 7) that occurs in the third quadrant (3) of the tube surface of the cathode ray tube (1) shown in Fig. 4, the magnetic field by the coil RC1 becomes dominant, and the coil The magnetic field distribution may be such that it does not penetrate RC1 (the direction of the magnetic flux is from the tube surface to the neck part).For this purpose, the relationship between the currents 11 and 12 flowing through the coils RCL and RC2 is set as lil>it2l.
第4図に示すブラウン管(1)の管面の第4象限■に生
じるスポットの傾き(第7図のiにおけるスポットの傾
き相当)を補正するにはコイルRC>による磁界が支配
的になり、コイルRC1を貫ぬく磁束の方向が第3象限
とは逆にネック部から管面に向かうような磁界分布とす
ればよい。それにはコイルRCI及びRC2に流す電流
11及び!2の関係をItl 1>it2 1とする。In order to correct the inclination of the spot (corresponding to the inclination of the spot in i in Fig. 7) that occurs in the fourth quadrant (2) of the tube surface of the cathode ray tube (1) shown in Fig. 4, the magnetic field by the coil RC> becomes dominant. The magnetic field distribution may be such that the direction of the magnetic flux passing through the coil RC1 is from the neck toward the tube surface, opposite to the third quadrant. For that purpose, current 11 and ! 2 is set as Itl 1>it2 1.
つまりビームが管面の下部を走査しているときは電流1
1及び12の関係はl ts l>l it1とすれ
ばよく、このときの電流波形を示すと第6図の如くなる
。第6図において、右上は第4象限に対応し、左下は第
3象限に対応している。In other words, when the beam is scanning the lower part of the tube surface, the current is 1
The relationship between 1 and 12 may be l ts l>l it1, and the current waveform at this time is shown in FIG. In FIG. 6, the upper right corresponds to the fourth quadrant, and the lower left corresponds to the third quadrant.
またビームが管面の中央部を走査しているときは、何も
磁界が発生しないようにすればよい。それにはコイルR
C1及びRC2に流す電流11及び12の関係は1iエ
I=li−iとする。Further, when the beam is scanning the center of the tube surface, no magnetic field may be generated. For that, coil R
The relationship between the currents 11 and 12 flowing through C1 and RC2 is 1i, I=li-i.
そこで、この発明では偏向ヨーク(2)とローティジョ
ンコイル(3)の間に可飽和リアクタ(4)を設け、こ
のリアクタ(4)によりビームが管面上部を走査してい
るときは+12 1>lit I、ビームが管面下部
を走査しているときはlil 1>lil lとなるよ
うに電流関係を制御し、管面のコーナにおいてスポット
の傾きをなくするようにする。Therefore, in this invention, a saturable reactor (4) is provided between the deflection yoke (2) and the rotation coil (3), and when the beam is scanning the upper part of the tube surface by this reactor (4), +12 1> lit I, and when the beam is scanning the lower part of the tube surface, the current relationship is controlled so that lil 1>lil l, and the inclination of the spot at the corner of the tube surface is eliminated.
第1図はこの発明の一実施例の構成を示すもので、リア
クタ(4)はコア(5)及び(6)と、これ等のコア(
5)及び(6)の両側に夫々装着されたマグネ7N?)
及び(8)と、被制御コイルとしてのコイルし1〜L4
及び制御コイルとしてのコイルL5とを有する。FIG. 1 shows the configuration of an embodiment of the present invention, in which a reactor (4) has cores (5) and (6), and these cores (
Magnet 7N installed on both sides of 5) and (6) respectively? )
and (8), and coils 1 to L4 as controlled coils.
and a coil L5 as a control coil.
コイルL1及びL2は夫々コア(5)及び(6)の−例
に巻回され、コイルL□の一端は水平偏向コイル+11
の一端に接続され、コイルLLの他端はコイルL2の一
端に接続され、コイルL2の他端はコイルRCsの一端
に接続される。またコ・イルL3及びL4は夫々コア(
5)及び(6)の他側に巻回され、コイルL3の一端は
水平偏向コイル(9)の一端に接続され、コイルL3の
他端はコイルし4の一端に接続され、コイルし4の他端
はコイルRC2の一端に接続される。また、コイルL5
はコア(5)及び(6)にまたがってその中央部分に巻
回され、コイルし5の一端は垂直偏向コイル(10)の
一端に接続され、コイルL5の他端は負の電源端子に接
続される。なおコイルL5には垂直偏向電流i3が流れ
る。The coils L1 and L2 are wound around the cores (5) and (6), respectively, and one end of the coil L□ is connected to the horizontal deflection coil +11.
The other end of the coil LL is connected to one end of the coil L2, and the other end of the coil L2 is connected to one end of the coil RCs. In addition, the cores L3 and L4 are each core (
5) and (6), one end of the coil L3 is connected to one end of the horizontal deflection coil (9), the other end of the coil L3 is connected to one end of the coil 4; The other end is connected to one end of the coil RC2. Also, coil L5
is wound across the cores (5) and (6) in its central part, one end of the coil L5 is connected to one end of the vertical deflection coil (10), and the other end of the coil L5 is connected to the negative power terminal. be done. Note that a vertical deflection current i3 flows through the coil L5.
第2図は第1図の等価回路を示すもので、コイ/L/L
Sは制御コイルを構成し、これに対しコイルL1〜L4
は被制御コイルを構成する。Figure 2 shows the equivalent circuit of Figure 1.
S constitutes a control coil, whereas coils L1 to L4
constitutes a controlled coil.
次に第1図及び第2図の動作を各象限毎に説明する。こ
こでビームはix >Q、it>Q、i3〉Oのときに
管面の第1象限の位置に動くようにコイル(9)及び(
10)が配置されているものとする。Next, the operations shown in FIGS. 1 and 2 will be explained for each quadrant. Here, the beam moves to the position of the first quadrant of the tube surface when ix>Q, it>Q, i3>O, and the coil (9) and (
10) is placed.
ビームが第1象限を走査しているとき、電流の関係をi
l>Q、it>0.ix >0とする。するとコイルし
1〜L4には第3図に示すように電流i1〜i3による
磁界とマグネット(7)、 f8)による磁束で計3種
類の磁束が貫ぬくことになる。第3図において、実線は
電流i3による磁束、破線はマグネッh(71,(81
による磁束、鎖線は電流i工又は12による磁束である
。When the beam is scanning the first quadrant, the relationship between the currents is i
l>Q, it>0. Let ix > 0. Then, as shown in FIG. 3, a total of three types of magnetic flux penetrate through the coils 1 to L4: the magnetic field due to the currents i1 to i3 and the magnetic flux due to the magnets (7) and f8). In Fig. 3, the solid line is the magnetic flux due to the current i3, and the broken line is the magnetic flux due to the magnet h (71, (81
The dashed line is the magnetic flux due to the current i or 12.
第3図からもわかるようにコイルL3だけ貫めいている
磁束が全て同一方向となるのでコイルL3が飽和する。As can be seen from FIG. 3, all the magnetic fluxes passing through the coil L3 are in the same direction, so the coil L3 is saturated.
(正確には磁束が3種類とも同一方向になったときだけ
コイルが飽和するようにマグネソ[7)、 (81の磁
気バイアス等を調整しておく。)コイルL3が飽和する
とそのインピーダンスが下がるのでL3 <Lx =L
2−L4となり、この結果1 i21>I ti Iと
なり、コイルRC2による磁界が支配的となり、コイル
RC2を貫ぬく磁束の方向は管面からネック部に向かう
ので、管面の第1象限におけるスポットの傾きが補正さ
れる。。(To be exact, adjust the magnetic bias of Magneso [7) and (81) so that the coil is saturated only when all three types of magnetic flux are in the same direction.) When coil L3 is saturated, its impedance decreases. L3 <Lx =L
2-L4, and as a result, 1 i21>I ti I, the magnetic field by coil RC2 becomes dominant, and the direction of magnetic flux passing through coil RC2 goes from the tube surface to the neck, so the spot in the first quadrant of the tube surface The slope of is corrected. .
ビームが第2象限を走査しているとき、電流の関係をi
l<0.i2<(L il>0とする。この場合電流
i工r 12の向きが第1象限の場合と逆になるので
、第3図において電流11+ t2により生じる磁束
の方向が第3図の場合と逆になる。When the beam is scanning the second quadrant, the relationship between the currents is i
l<0. Let i2<(L il>0. In this case, the direction of the current i<r>12 is opposite to that in the first quadrant, so the direction of the magnetic flux generated by the current 11+t2 in Fig. 3 is the same as in Fig. 3. It will be the opposite.
よってコ・イルし4を貫ぬいている磁束が全て同一方向
となるのでコイルし4が飽和し、そのインピーダンスが
下がってL4 <LL =L2 =Laとなる。その結
果第1象限の場合と同じ<1i21>1111となり、
コイルRC2による磁界が支配的となるが電流11+t
2の向きが逆なるでコイルRC2を貫ぬく磁束の方向は
第1象限とは逆にネック部から管面に向かう方向となり
、管面の第2象限におけるスポットの傾きが補正される
。Therefore, all the magnetic flux passing through the coil 4 is in the same direction, so the coil 4 becomes saturated and its impedance decreases to become L4 < LL = L 2 = La. The result is <1i21>1111, which is the same as in the first quadrant,
The magnetic field due to coil RC2 is dominant, but the current is 11+t
2 is reversed, the direction of the magnetic flux passing through the coil RC2 is from the neck toward the tube surface, opposite to the first quadrant, and the inclination of the spot in the second quadrant of the tube surface is corrected.
ビームが第3象限を走査しているとき、電流の関係をi
l<Q、i2 <0.il <Oとする。この場合電流
11,12+ t3の向きが全て第1象限の場合と逆
になるので、第3図において電流11+ j2により
生じる磁束と電流i3により生じる磁束の方向が第3図
の場合と逆になる。よって、コイルL2を貫ぬいている
磁束が全て同一方向となるのでコイルL2が飽和し、そ
のインピーダンスが下がってL2 <LL =L3 =
L4となる。When the beam is scanning the third quadrant, the relationship between the currents is i
l<Q, i2<0. Let il <O. In this case, the directions of the currents 11, 12 + t3 are all opposite to those in the first quadrant, so the directions of the magnetic flux generated by the current 11 + j2 and the magnetic flux generated by the current i3 in Figure 3 are opposite to those in Figure 3. . Therefore, all the magnetic flux passing through the coil L2 is in the same direction, so the coil L2 becomes saturated and its impedance decreases, so that L2 < LL = L3 =
It becomes L4.
その結果第1象限と逆にl is l>I i21と
なり、コイルRC1による磁界が支配的となり、コイル
RC1を貫ぬく磁束の方向は管面からネック部に向かう
ので、管面の第3象限におけるスポットの傾きが補正さ
れる。As a result, l is l>I i21, which is opposite to the first quadrant, and the magnetic field by coil RC1 becomes dominant, and the direction of magnetic flux passing through coil RC1 goes from the tube surface to the neck, so in the third quadrant of the tube surface The tilt of the spot is corrected.
ビームが第4象限を走査しているとき、電流の関係をi
l >O,i2>O,il<0とする。この場合電流i
3の向きが第1象限の場合と逆になるので、第3図にお
いて電流i3により生じる磁束の方向が第3図の場合と
逆になる。よって、コイルL1を言ぬいている磁束が全
て同一方向となるのでコイルL1が飽和し、そのインピ
ーダンスが下がってLL <L2 =L3 =L4とな
る。その結果第1象限と逆にl is l>l i2
1となり、コイルRC1による磁界が支配的となり、
コイルRC1を貫ぬく磁束の方向は第3象限の場合と逆
に管面からネック部に向かうので、管面の第4象限にお
けるスポットの傾きが補正される。When the beam is scanning the fourth quadrant, the relationship between the currents is i
Let l>O, i2>O, il<0. In this case the current i
3 is opposite to that in the first quadrant, the direction of the magnetic flux generated by the current i3 in FIG. 3 is opposite to that in FIG. 3. Therefore, all the magnetic flux flowing through the coil L1 is in the same direction, so the coil L1 becomes saturated and its impedance decreases, so that LL < L2 = L3 = L4. As a result, contrary to the first quadrant, l is l>l i2
1, and the magnetic field by coil RC1 becomes dominant,
Since the direction of the magnetic flux passing through the coil RC1 is from the tube surface toward the neck portion, contrary to the case of the third quadrant, the inclination of the spot in the fourth quadrant of the tube surface is corrected.
なお、上述の実施例でスポットの傾き補正コイルとして
ローティジョンコイルの場合を例に取り説明したが、同
様の機能を達成できるその他のコイル例えば4重極コイ
ルを用いてもよい。In the above-described embodiment, a rotation coil is used as the spot tilt correction coil, but other coils capable of achieving the same function, such as a quadrupole coil, may be used.
上述の如くこの発明によれば、水平偏向コイルと直列に
可飽和リアクタの複数の被制御コイルを夫々接続し、被
制御コイルと直列にスポットの傾き補正コイルを接続し
、可飽和リアクタの制御コイルに垂直偏向電流を供給し
て被制御コイルのインピーダンスを垂直周期で差動的に
変調するようにしたので、従来の如く駆動回路を用いる
ことなく、簡単で廉価となりしかもX端、y端のスポッ
トを歪ませることなく管面の各コーナにおけるスポット
の傾きを補正できる。As described above, according to the present invention, a plurality of controlled coils of the saturable reactor are connected in series with the horizontal deflection coil, a spot tilt correction coil is connected in series with the controlled coils, and the control coil of the saturable reactor is connected in series with the horizontal deflection coil. Since the impedance of the controlled coil is differentially modulated in a vertical period by supplying a vertical deflection current to the The inclination of the spot at each corner of the tube surface can be corrected without distorting the image.
第1図はこの発明の一実施例を示す構成図、第2図は第
1図の等価回路図、第3図はこの発明の動作説明に供す
るための図、第4図〜第6図はこの発明の基本原理を説
明するための図、第7図は従来例の説明に供するための
図である。
(3)はローティシランコイル、(4)は可飽和リアク
タ、(5) 、 (6)はコア、(7)、(8)はマグ
ネット、(9)は水平偏向コイル、(10)は垂直偏向
コイル、Ll。
L2.L3.L4は被制御コイル、L5は制御コイルで
ある。FIG. 1 is a configuration diagram showing an embodiment of the present invention, FIG. 2 is an equivalent circuit diagram of FIG. 1, FIG. 3 is a diagram for explaining the operation of this invention, and FIGS. 4 to 6 are A diagram for explaining the basic principle of this invention, and FIG. 7 is a diagram for explaining a conventional example. (3) is a rotary silane coil, (4) is a saturable reactor, (5) and (6) are cores, (7) and (8) are magnets, (9) is a horizontal deflection coil, and (10) is a vertical deflection Coyle, Ll. L2. L3. L4 is a controlled coil, and L5 is a control coil.
Claims (1)
コイルを夫々接続し、 該被制御コイルと直列にスポットの傾き補正コイルを接
続し、 上記可飽和リアクタの制御コイルに垂直偏向電流を供給
して上記被制御コイルのインピーダンスを垂直周期で差
動的に変調するようにしたことを特徴とするビームスポ
ット補正回路。[Claims] A plurality of controlled coils of a saturable reactor are connected in series with the horizontal deflection coil, a spot tilt correction coil is connected in series with the controlled coils, and the control coil of the saturable reactor is connected with a spot tilt correction coil in series with the controlled coil. A beam spot correction circuit characterized in that the impedance of the controlled coil is differentially modulated in a vertical period by supplying a vertical deflection current.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62007654A JP2696821B2 (en) | 1987-01-16 | 1987-01-16 | Beam spot correction circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62007654A JP2696821B2 (en) | 1987-01-16 | 1987-01-16 | Beam spot correction circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63176079A true JPS63176079A (en) | 1988-07-20 |
JP2696821B2 JP2696821B2 (en) | 1998-01-14 |
Family
ID=11671806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62007654A Expired - Fee Related JP2696821B2 (en) | 1987-01-16 | 1987-01-16 | Beam spot correction circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2696821B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5966267A (en) * | 1982-10-06 | 1984-04-14 | Sharp Corp | Deflecting coil device |
JPS59119653A (en) * | 1982-12-27 | 1984-07-10 | Sony Corp | Beam spot correcting device |
-
1987
- 1987-01-16 JP JP62007654A patent/JP2696821B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5966267A (en) * | 1982-10-06 | 1984-04-14 | Sharp Corp | Deflecting coil device |
JPS59119653A (en) * | 1982-12-27 | 1984-07-10 | Sony Corp | Beam spot correcting device |
Also Published As
Publication number | Publication date |
---|---|
JP2696821B2 (en) | 1998-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4318032A (en) | Convergence circuit including a quadrant separator | |
US4227122A (en) | Convergence device for projection type color television system | |
JP2650945B2 (en) | Deflection yoke device | |
JPS63176079A (en) | Beam spot correction circuit | |
JPS63175581A (en) | Beam spot correcting circuit | |
JP2561958Y2 (en) | Dynamic convergence correction device | |
US3441788A (en) | Circuit arrangements for dynamic lateral convergence | |
JPH07114116B2 (en) | In-line type color picture tube deflection yoke | |
JPH01175151A (en) | Deflecting yoke | |
JP2714058B2 (en) | Deflection device for color picture tube | |
KR890002587B1 (en) | Deflection apparatus of electron beam | |
JPS63195935A (en) | Deflection device | |
JPH0520048Y2 (en) | ||
JP3198622B2 (en) | Convergence correction device and color cathode ray tube using the same | |
JPS6224542A (en) | Beam spot correcting device for cathode-ray tube | |
JP2574372B2 (en) | Deflection yoke | |
JPH0898193A (en) | Color picture tube device | |
JPH0731989B2 (en) | Misconvergence correction device | |
JPH0588036B2 (en) | ||
JPH0719547B2 (en) | Convergence correction device | |
JPH0423690A (en) | Deflector for color picture tube | |
JPH06139960A (en) | Color cathode-ray tube | |
JPH04298943A (en) | Convergence correcting device | |
JP2002152765A (en) | Convergence correction device, deflection yoke and display device | |
JPH06276534A (en) | Deflection yoke |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |