JPS6317579A - Excimer laser device - Google Patents

Excimer laser device

Info

Publication number
JPS6317579A
JPS6317579A JP61162696A JP16269686A JPS6317579A JP S6317579 A JPS6317579 A JP S6317579A JP 61162696 A JP61162696 A JP 61162696A JP 16269686 A JP16269686 A JP 16269686A JP S6317579 A JPS6317579 A JP S6317579A
Authority
JP
Japan
Prior art keywords
main discharge
discharge electrodes
lattice
electric field
type electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61162696A
Other languages
Japanese (ja)
Inventor
Shinichiro Kawamura
信一郎 河村
Hideo Hara
秀雄 原
Kensho Tokuda
憲昭 徳田
Hitoshi Takeuchi
仁 竹内
Hiroyuki Kondo
洋行 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP61162696A priority Critical patent/JPS6317579A/en
Publication of JPS6317579A publication Critical patent/JPS6317579A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To make the line of electric force and an equipotential surface roughly intersect orthogonally and to contrive to obtain a uniform electric field by a method wherein the equipotential surface is formed within the surface of a lattice-type electrode at the time of discharge by providing the lattice-type electrode within the plane roughly intersecting orthogonally to the electric field direction between a pair of main discharge electrodes. CONSTITUTION:The capacitances of peaking capacitors 5 and 6 and made equal, the capacitance of peaking capacitors 11 and 12 are made equal, and a lattice-type electrode 13 is provided within the plane at an equal distance from both main discharge electrodes 1 and 2. Therefore, the lattice-type electrode 13 always holds a potential of 1/2 of the potential difference between the main discharge electrodes 1 and 2, and an equipotential surface is formed within the plane where the lattice-type electrode 13 is positioned, that is, in the plane intersecting orthogonally the electric field direction. Thereby, the strain of the potential surface and the strain of the line of electric force are corrected, the potential surface and the line of electric force roughly intersect orthogonally and a laser, which has a broad beam section intensity distribution in the direction parallel to the main discharge electrodes as well and has a good spacious uniformity, can be obtained.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は少なくとも一対の主放電電極間で放電させるこ
とによりレーザ発振を得るエキシマレーザ装置に関し、
特に両電極間の電気力線を等分布化させるように改良し
たものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an excimer laser device that obtains laser oscillation by discharging between at least a pair of main discharge electrodes.
In particular, it has been improved to evenly distribute the lines of electric force between both electrodes.

B、従来の技術 従来のエキシマレーザ装置の電極は第3図のように構成
されている。紙面と垂直方向(以下長手方向)には一対
の対向する主放電電極1,2が延在し1両主放電電極1
,2には、端子3,4を介して図示しない高電圧制御回
路から所定周期で高電圧が印加される。一方の主放電電
極2の基部両側には、長手方向に複数個のピーキングキ
ャパシタ5および6の列が設けられ、このピーキングキ
ャパシタ5,6の一方の電極が接地され、他方の電極が
数−の間隙をおいて配置された予備電離電極7,8およ
び9,10のスパークギャップGを介して端子3と接続
されている。
B. Prior Art The electrodes of a conventional excimer laser device are constructed as shown in FIG. A pair of opposing main discharge electrodes 1 and 2 extend in the direction perpendicular to the plane of the paper (hereinafter referred to as the longitudinal direction).
, 2 are applied with a high voltage at predetermined intervals via terminals 3 and 4 from a high voltage control circuit (not shown). On both sides of the base of one main discharge electrode 2, a plurality of rows of peaking capacitors 5 and 6 are provided in the longitudinal direction, one electrode of the peaking capacitors 5 and 6 is grounded, and the other electrode is connected to the The preionization electrodes 7, 8 and 9, 10 are connected to the terminal 3 via the spark gap G of the preionization electrodes 7, 8 and 9, 10 arranged with a gap therebetween.

端子3,4に高電圧が印加されると、スパークギャップ
Gで火花放電が生じ、これによりピーキングキャパシタ
5.6が充電される。火花放電により紫外線が発生し主
放電電極1,2間のレーザガスを予備的に電離して電子
密度を高める。この結果、主放電電極間のレーザガスイ
ンピーダンスが低下するので、ピーキングキャパシタ5
,6の充電電圧がレーザガスのブレークダウン電圧まで
達すると、ピーキングキャパシタ5,6の電荷は、主放
電電極1,2間で放電し、レーザガスが励起されてレー
ザ発振に至る。
When a high voltage is applied to the terminals 3, 4, a spark discharge occurs in the spark gap G, thereby charging the peaking capacitor 5.6. Ultraviolet rays are generated by the spark discharge, and the laser gas between the main discharge electrodes 1 and 2 is preliminarily ionized to increase the electron density. As a result, the laser gas impedance between the main discharge electrodes decreases, so the peaking capacitor 5
, 6 reaches the breakdown voltage of the laser gas, the charges in the peaking capacitors 5 and 6 are discharged between the main discharge electrodes 1 and 2, and the laser gas is excited to cause laser oscillation.

C0発明が解決しようとする問題点 上述したエキシマレーザ装置で得られるレーザビームの
断面パターンを大きくし、かつ空間的に均一にするため
には、 ■ 紫外線予備電離によって、主放電電極1゜2間にあ
るレーザガスを均一に電離すること。
Problems to be Solved by the C0 Invention In order to increase the cross-sectional pattern of the laser beam obtained with the above-mentioned excimer laser device and make it spatially uniform, Uniformly ionize the laser gas in the area.

■ 主放電電極1,2間の電界を均一にすること。■ Make the electric field between the main discharge electrodes 1 and 2 uniform.

が要求される。is required.

しかし、予備電離電極7〜10のスパークギャップGで
生じる火花放電は、本来、不安定な放電であり1発生す
る紫外線量が一′定せずレーザガスの均一な電離が困難
である。また、均一電界を得るためには、主放電電極の
幅と厚みを大きくする必要があり、理想的には第4図に
破線で示すように、主放電電極1,2の放電面を大きな
曲率としなくてはならない、しかし、実際上は、装置を
小形化するために実線の如く両端部を比較的小さな曲率
で丸めている。このため、所望の均一性を有する電界が
得られない。更に、主放電領域の近傍に配置した予備電
離電極7〜10は、主放電電極1,2の形状で決まる電
界分布を乱す原因となっている。
However, the spark discharge generated in the spark gap G of the pre-ionization electrodes 7 to 10 is inherently an unstable discharge, and the amount of ultraviolet light generated is not constant, making it difficult to uniformly ionize the laser gas. In addition, in order to obtain a uniform electric field, it is necessary to increase the width and thickness of the main discharge electrode, and ideally the discharge surfaces of the main discharge electrodes 1 and 2 should have a large curvature, as shown by the broken line in Figure 4. However, in practice, both ends are rounded with a relatively small curvature, as shown by the solid line, in order to make the device more compact. Therefore, an electric field having desired uniformity cannot be obtained. Further, the pre-ionization electrodes 7 to 10 arranged near the main discharge region cause disturbance of the electric field distribution determined by the shape of the main discharge electrodes 1 and 2.

このように、従来のエキシマレーザ装置では、広い領域
にわたって均一な放電を起こさせることが難しかったの
で、得られるレーザビーム断面形状は小さくかつ空間的
均一性が劣るという欠点を持っていた。
As described above, in the conventional excimer laser device, it was difficult to generate a uniform discharge over a wide area, so the resulting laser beam cross-sectional shape was small and had poor spatial uniformity.

本発明の目的は、主放電電極間での電気力線の分布を等
間隔に、かつ、ポテンシャル面も等間隔にして上記問題
を解決したエキシマレーザ装置を提供することにある。
An object of the present invention is to provide an excimer laser device that solves the above-mentioned problems by distributing lines of electric force between main discharge electrodes at equal intervals and by making the potential surfaces also at equal intervals.

D1問題点を解決するための手段 上記問題は、一対の主放電電極間1,2の電界方向に略
直交する面内に格子状電極13を配設することにより解
決される。
Means for Solving Problem D1 The above problem is solved by arranging the grid electrode 13 in a plane substantially perpendicular to the electric field direction between the pair of main discharge electrodes 1 and 2.

81作用 放電時に格子状電極13の面内に等ポテンシャル面が形
成され、電気力線とポテンシャル面とが略直交し、均一
な電界が得られる。
During the 81 action discharge, an equipotential surface is formed within the plane of the grid electrode 13, and the lines of electric force and the potential surface are substantially perpendicular to each other, resulting in a uniform electric field.

F、実施例 第1図は本発明の一実施例を示し、第3図と同様な箇所
には同一の符号を付して以下説明する。
F. Embodiment FIG. 1 shows an embodiment of the present invention, and parts similar to those in FIG. 3 are given the same reference numerals and will be described below.

この実施例では、一対の主放電電極1,2の双方にピー
キングキャパシタが取付けられている。
In this embodiment, peaking capacitors are attached to both of the pair of main discharge electrodes 1 and 2.

すなわち、主放電電極2の基部両側に第3図と同様にピ
ーキングキャパシタ5,6の列が設けられ。
That is, rows of peaking capacitors 5 and 6 are provided on both sides of the base of the main discharge electrode 2 as in FIG. 3.

主放電電極1の基部両側にも同様にピーキングキャパシ
タ11.12の列が設けられている。図示した4つのピ
ーキングキャパシタの容量は同一である。そして、端子
3,4間にピーキングキャパシタ11と5が予備電離電
極7,8を介して直列に、またピーキングキャパシタ6
と12がそれぞれ予備電離電極9.IOを介して直列に
接続されている。ここで、予備電離電極7,8間のスパ
ークギャップG1と、予備電離電極9,10間のスパー
クギャップG2とは図示の如く主放電電極1,2間の中
心Xに対して点対象位置に配置される。更に、中心Xを
通り電界方向と平行な面内に格子状電極13が配置され
、その両端部が抵抗14.15を介して予備電離電極7
と予備電離電極10とに接続されている。
Similarly, rows of peaking capacitors 11 and 12 are provided on both sides of the base of the main discharge electrode 1. The capacitances of the four peaking capacitors shown are the same. Peaking capacitors 11 and 5 are connected in series between terminals 3 and 4 via pre-ionization electrodes 7 and 8, and peaking capacitor 6 is connected between terminals 3 and 4.
and 12 are preionization electrodes 9. and 12, respectively. They are connected in series via IO. Here, the spark gap G1 between the pre-ionization electrodes 7 and 8 and the spark gap G2 between the pre-ionization electrodes 9 and 10 are arranged point-symmetrically with respect to the center X between the main discharge electrodes 1 and 2, as shown in the figure. be done. Further, a grid electrode 13 is arranged in a plane passing through the center
and the pre-ionization electrode 10.

このエキシマレーザ装置の動作を説明する。The operation of this excimer laser device will be explained.

端子3,4に高電圧を印加すると数Iの隙間をもつスパ
ークギャップGl、G2で火花放電が発生し、端子3,
4間に電流が流れピーキングキャパシタ5.6.11.
12が充電される。この時、火花放電によって生じた紫
外線は主放電電極1,2間にあるレーザガスを予備的に
電離し、ガスインピーダンスを低下させる。ピーキング
キャパシタ5.6および11,12の充電電圧の各相が
レーザガスのブレークダウン電圧に達すると、各ピーキ
ングキャパシタの電荷は、主放電電極1,2間で放電す
る。この主放電によってレーザガスが励起され、レーザ
発振に至る。なお、紙面垂直方向に対向させた1組のレ
ーザミラ一対は省略している。
When a high voltage is applied to terminals 3 and 4, spark discharge occurs in spark gaps Gl and G2, which have a gap of several I, and terminals 3 and 4
Current flows between peaking capacitors 5.6.11.
12 is charged. At this time, the ultraviolet rays generated by the spark discharge preliminarily ionize the laser gas between the main discharge electrodes 1 and 2, thereby lowering the gas impedance. When each phase of the charging voltage of the peaking capacitors 5, 6 and 11, 12 reaches the breakdown voltage of the laser gas, the charge of each peaking capacitor is discharged between the main discharge electrodes 1, 2. This main discharge excites the laser gas, leading to laser oscillation. Note that a pair of laser mirrors facing each other in the direction perpendicular to the plane of the drawing is omitted.

今、ピーキングキャパシタ5と6および11と12の電
気容量を等しく設定し、かつ、格子状電極13を両生放
電電極1,2と等距離の面内に設けているから、格子状
電極13は常に主放電電極1,2の間の電位差の172
の電位を保ち、等ポテンシャル面が格子状電極13の位
置する平面内、すなわち、電界方向と直交する面内に形
成される。従って、ポテンシャル面の歪み、電気力線の
歪みが修正され、ポテンシャル面と電気力線とが概ね直
交し、 ■ スパークギャップGl、G2での不均一な火花放電
に起因して紫外線予備電離の密度が空間的にばらつき、
電界が不均一となる問題、および、 ■ 主放電電極1,2の両端部の丸味の影響により主放
電電極1,2間での均一電界が狭い範囲でしか得られな
いという問題が解決される。
Now, since the capacitances of the peaking capacitors 5 and 6 and 11 and 12 are set equal, and the grid electrode 13 is provided in a plane equidistant from the amphibious discharge electrodes 1 and 2, the grid electrode 13 is always 172 of the potential difference between main discharge electrodes 1 and 2
, and an equipotential surface is formed in the plane where the grid electrode 13 is located, that is, in the plane perpendicular to the direction of the electric field. Therefore, the distortion of the potential surface and the electric field lines are corrected, and the potential surface and the electric field lines are almost perpendicular to each other. varies spatially,
The problem of the electric field becoming non-uniform, and the problem that a uniform electric field between the main discharge electrodes 1 and 2 can only be obtained in a narrow range due to the roundness of both ends of the main discharge electrodes 1 and 2 are solved. .

また、この実施例では、第1図に示した各要素が主放電
電極1,2間の中心Xに対して対象に配置されているの
で、第3図のように主放電電極1゜2の周囲要素が非対
象に配置された場合に比べて、より一層、均一な電界が
得られる。
In addition, in this embodiment, since each element shown in FIG. 1 is arranged symmetrically with respect to the center X between the main discharge electrodes 1 and 2, the main discharge electrode 1°2 is A more uniform electric field is obtained than if the surrounding elements were arranged asymmetrically.

従来のエキシマレーザ装置により得られるレーザビーム
断面の強度分布を第2図(a) 、 (b)に示し、第
1図に示した実施例のエキシマレーザ装置により得られ
るレーザビーム断面の強度分布を第2図(C) 、 (
d)に示す。各図においてX軸は主放電電極1,2と平
行な方向、Y軸は主放電電極1,2と垂直な方向を示し
、縦軸Iはレーザの光強度を示す。(c)に示すように
、本実施例では、X軸方向の強度分布が従来の(a)に
示す強度分布に比べて台形状を呈し、Y軸方向の強度分
布に近くなり、従って、より広い断面積のレーザビーム
が得られることがわかる。
The intensity distribution of the laser beam cross section obtained by the conventional excimer laser device is shown in Fig. 2 (a) and (b), and the intensity distribution of the laser beam cross section obtained by the excimer laser device of the embodiment shown in Fig. 1 is shown. Figure 2 (C), (
Shown in d). In each figure, the X axis indicates a direction parallel to the main discharge electrodes 1 and 2, the Y axis indicates a direction perpendicular to the main discharge electrodes 1 and 2, and the vertical axis I indicates the light intensity of the laser. As shown in (c), in this example, the intensity distribution in the X-axis direction has a trapezoidal shape compared to the conventional intensity distribution shown in (a), and is closer to the intensity distribution in the Y-axis direction. It can be seen that a laser beam with a wide cross section can be obtained.

なお、第1図に示した実施例において、抵抗14゜15
を挿入することにより、レーザ放電の際、格子状電極1
3を経由して電流が予備電離電極7〜10を流れること
はないので、投入した電気エネルギーが効果的にレーザ
発振に必要な放電として費やされる。
In addition, in the embodiment shown in FIG. 1, the resistance is 14°15
By inserting the lattice electrode 1 during laser discharge,
Since no current flows through the pre-ionization electrodes 7 to 10 via the pre-ionization electrodes 3, the input electrical energy is effectively used as discharge necessary for laser oscillation.

また、格子状電極13の厚みを充分に小さくすれば、レ
ーザ出力の断面強度分布中に現れる格子状電極13の影
の部分を無視し得るものである。更に。
Furthermore, if the thickness of the grid electrode 13 is made sufficiently small, the shadow portion of the grid electrode 13 that appears in the cross-sectional intensity distribution of the laser output can be ignored. Furthermore.

格子の線の太さを隙間に対して小さくすれば、主放電電
極1,2間に生ずるグロー放電を妨害することもない。
If the thickness of the grid lines is made smaller than the gap, the glow discharge generated between the main discharge electrodes 1 and 2 will not be disturbed.

なお、格子状電極13を、電界方向と略直交する方向で
あればいずれかの主放電電極1,2に近づけて配設して
も上述したと同様の効果が得られる。
Note that the same effect as described above can be obtained even if the grid electrode 13 is disposed close to either of the main discharge electrodes 1 and 2 in a direction substantially perpendicular to the direction of the electric field.

また、格子状電極13を予備電離電極7〜10と接続せ
ず単に主放電電極1,2間に設置するだけでもよい。
Alternatively, the grid electrode 13 may be simply installed between the main discharge electrodes 1 and 2 without being connected to the preliminary ionization electrodes 7 to 10.

G1発明の効果 本発明によれば、格子状電極を設けることにより、均一
電界を主放電領域に形成できるので、主放電電極と平行
方向にも幅広いビーム断面強度分布を持ち空間的均一性
のよいレーザが得られる。
G1 Effect of the Invention According to the present invention, a uniform electric field can be formed in the main discharge region by providing a grid-like electrode, so that the beam cross-sectional intensity distribution is wide even in the direction parallel to the main discharge electrode, and the beam has good spatial uniformity. Laser is obtained.

この結果、得られたレーザ光を所望の形に処理する光学
系の設計が容易になるばかりでなく、放電ガス体積が増
えることから、レーザ発振効率が高くなりレーザガスお
よび装置の寿命が向上する。
As a result, not only is it easier to design an optical system that processes the obtained laser light into a desired shape, but also the volume of the discharge gas is increased, which increases the laser oscillation efficiency and improves the life of the laser gas and the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例を示す構成図、第2図(a)
〜(d)はレーザビームの従来装置および実施例装置に
おけるそれぞれ断面強度分布図、第3図は従来のエキシ
マレーザ装置の一例を示す構成図、第4図は主放電電極
の断面形状を説明する図である。 1.2:主放電電極 5、6.11.12:ピーキングキャパシタ7〜10:
予備電離電極 13:格子状電極 14.15:抵抗 Gl、G2ニスパークギャップ 特許出願人  日本光学工業株式会社 代理人弁理士   永 井 冬 紀 第1図 (a)                (10)第2
Figure 1 is a configuration diagram showing one embodiment of the present invention, Figure 2 (a)
- (d) are cross-sectional intensity distribution diagrams of the conventional laser beam device and the example device, respectively. Fig. 3 is a configuration diagram showing an example of a conventional excimer laser device. Fig. 4 explains the cross-sectional shape of the main discharge electrode. It is a diagram. 1.2: Main discharge electrode 5, 6.11.12: Peaking capacitors 7 to 10:
Pre-ionization electrode 13: Grid electrode 14.15: Resistance Gl, G2 Varnish spark gap Patent applicant Nippon Kogaku Kogyo Co., Ltd. Representative patent attorney Fuyuki Nagai Figure 1 (a) (10) 2nd
figure

Claims (1)

【特許請求の範囲】 少なくとも一対の主放電電極間のレーザガスを放電励起
してレーザ発振を得るエキシマレーザ装置において、 一対の主放電電極間の電界方向に略直交する面内に格子
状電極を配設したことを特徴とするエキシマレーザ装置
[Scope of Claim] In an excimer laser device that obtains laser oscillation by discharge excitation of laser gas between at least a pair of main discharge electrodes, a lattice-shaped electrode is arranged in a plane substantially perpendicular to the direction of an electric field between the pair of main discharge electrodes. An excimer laser device characterized by:
JP61162696A 1986-07-10 1986-07-10 Excimer laser device Pending JPS6317579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61162696A JPS6317579A (en) 1986-07-10 1986-07-10 Excimer laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61162696A JPS6317579A (en) 1986-07-10 1986-07-10 Excimer laser device

Publications (1)

Publication Number Publication Date
JPS6317579A true JPS6317579A (en) 1988-01-25

Family

ID=15759558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61162696A Pending JPS6317579A (en) 1986-07-10 1986-07-10 Excimer laser device

Country Status (1)

Country Link
JP (1) JPS6317579A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01194374A (en) * 1988-01-29 1989-08-04 Toshiba Corp Gas laser oscillation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01194374A (en) * 1988-01-29 1989-08-04 Toshiba Corp Gas laser oscillation device

Similar Documents

Publication Publication Date Title
US4556981A (en) Laser of the TE type, especially a high-energy laser
JPH06120592A (en) Laser device
JPS6317579A (en) Excimer laser device
EP0869529B1 (en) Discharge tube
US4024465A (en) Generation of corona for laser excitation
JP3154584B2 (en) Discharge excitation gas laser device
JP2614231B2 (en) Gas laser device
JPH0730177A (en) Pulse laser oscillation device
JP3281032B2 (en) Discharge excitation type gas laser device
JPS6321882A (en) Excimer laser
JPS5847878B2 (en) Lateral continuous wave gas laser tube
JPH0484474A (en) Laser apparatus
JPH07115239A (en) Pulsed laser oscillator
JPH05335672A (en) Excimer laser device
JPH0337318B2 (en)
JPS61201489A (en) Gas laser oscillator
JPH01298779A (en) Pulsed laser electrode
JPS6191982A (en) Discharge excitation excimer laser
JP2001168435A (en) Pulse discharge pumped gas laser
JP2001168433A (en) Pulse discharge pumped gas laser
JPH0746737B2 (en) Laser oscillator
JPH0774412A (en) Capacitor and pulse laser device
JPH0276281A (en) Pulse laser oscillator
JPS61188982A (en) Discharge excitation type short pulse laser device
JPS63228778A (en) Gas laser device