JPS6317568A - Photovoltaic semiconductor element - Google Patents

Photovoltaic semiconductor element

Info

Publication number
JPS6317568A
JPS6317568A JP61162840A JP16284086A JPS6317568A JP S6317568 A JPS6317568 A JP S6317568A JP 61162840 A JP61162840 A JP 61162840A JP 16284086 A JP16284086 A JP 16284086A JP S6317568 A JPS6317568 A JP S6317568A
Authority
JP
Japan
Prior art keywords
mixed crystal
maintained
semiconductor
photovoltaic
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61162840A
Other languages
Japanese (ja)
Inventor
Shoji Kitamura
祥司 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61162840A priority Critical patent/JPS6317568A/en
Publication of JPS6317568A publication Critical patent/JPS6317568A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To operate semipermanently a photovoltaic element to generate photovoltaic force using light incident on a mixed crystal element maintained below a prescribed temperature by a method wherein a continuous change in compositional ratio is made in a mixed crystal from the region having a PPC phenomenon to the region having no PPC phenomenon. CONSTITUTION:The title semiconductor photovoltaic element is composed of N-type III-V compound semiconductor mixed crystal, and its compositional ratio of mixed crystal is continuously changed from one surface substantially having no DX center to the other surface having the DX center, and the semiconductor element provided with and electrode on both surfaces in maintained at the prescribed temperature or below. A mixed crystal film 1 is placed in a container 5, and in the case where the mixed crystal is AlxGa1-xAs, the container 5 is maintained at the temperature of 200K or below in darkness using liquid nitrogen and the like, photovoltaic force is generated between electrodes 21 and 22 when the element is irradiated with light 6. This photovoltaic force is held semipermanently as far as the mixed crystal film 1 is maintained at the low temperature, and the mixed crystal film 1 can be removed from terminals 41 and 42 whenever it is necessary to do so.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、周期律表m−v族化合物半導体混晶における
永続的光伝導性を利用した半導体光起電力素子に関する
The present invention relates to a semiconductor photovoltaic device that utilizes the permanent photoconductivity of compound semiconductor mixed crystals of group m-v of the periodic table.

【従来技術とその問題点】[Prior art and its problems]

例えば小川により雑誌「応用物理」第54巻(昭60年
) 1176〜1182ページに解説されているように
、AIにaJ3中にn型不純物を添加するとDXセンタ
ーと呼ばれる深い準位が形成される。低温でこのDXセ
ンターを光励起して得られる光伝導は、光を切うても減
衰しない、この現象は永続的光伝導性(P P C)と
呼ばれ、ラング(D、 V、 Lang)らにより雑誌
[フィジカルレビューJ (PhysicalRevi
eie)  B 19 (1979年)1015ページ
に提示されている第2図に示すような配位座標モデルが
考えられる0図の横軸はDXセンター周辺の原子配置が
ひずんだ場合の格子緩和量に対応しており、曲線21は
電子が伝導帯底にいる場合の全系のエネルギー、曲m2
2は電子がDXセンターにとらえられている場合の全系
のエネルギーで、格子をひずませた位置でエネルギーは
最小になる。DXセンターにある位WtAの電子が光2
3により励起されると8に移り、伝導帯の最小エネルギ
ー位置Cに移動する6位WICにある電子がDXにもど
る、すなわち再結合するにはODAというポテンシアル
の山を越えねばならず、このボテンシフルに相当する熱
エネルギー以下の温度では再結合せず、電子は伝導度に
残る。A7GaAsでは、CD間のエネルギーは0.1
8eV程度であり、 kT=0.18からこの温度は2
00に程度になる。 このようなPPC現象は、格子歪を伴い、しかも伝導帯
のキャリア濃度を支配する程度の高濃度な準位が存在す
る材料であれば起こる。このPPC効果により、HEM
T等の低温で動作する高速トランジスタのしきい値が光
照射により変化し、デバイス動作上問題となっている。 さらに、DXセンターが混晶のバンド構造に起因した本
質的なものであることが明らかになっており、混晶のデ
バイス応用に大きな制約が加わりつつある。
For example, as explained by Ogawa in the magazine "Applied Physics" Vol. 54 (1986), pages 1176-1182, when n-type impurities are added to aJ3 in AI, a deep level called a DX center is formed. . The photoconduction obtained by photoexciting this DX center at low temperatures does not attenuate even when the light is turned off. This phenomenon is called persistent photoconductivity (PPC), and Lang (D, V, Lang) et al. Magazine [Physical Review J (PhysicalRevi
eie) B 19 (1979) A coordination coordinate model as shown in Figure 2 presented on page 1015 can be considered. The horizontal axis of Figure 0 represents the amount of lattice relaxation when the atomic arrangement around the DX center is distorted. The curve 21 corresponds to the energy of the entire system when the electron is at the bottom of the conduction band, and the curve m2
2 is the energy of the entire system when electrons are captured in the DX center, and the energy is minimum at the position where the lattice is distorted. The electrons of WtA in the DX center are light 2
When excited by 3, it moves to 8 and moves to the minimum energy position C of the conduction band. In order for the electron in the 6th position WIC to return to DX, that is, to recombine, it must cross the potential mountain called ODA, and this potentiometric At temperatures below the thermal energy corresponding to , they do not recombine and the electrons remain conductive. In A7GaAs, the energy between CDs is 0.1
It is about 8eV, and since kT=0.18, this temperature is 2
It will be around 00. Such a PPC phenomenon occurs if the material is accompanied by lattice distortion and has a highly concentrated level that controls the carrier concentration in the conduction band. Due to this PPC effect, HEM
The threshold value of high-speed transistors such as T, which operate at low temperatures, changes due to light irradiation, which poses a problem in device operation. Furthermore, it has become clear that the DX center is an essential element caused by the band structure of the mixed crystal, and this is placing significant restrictions on the device application of the mixed crystal.

【発明の目的】[Purpose of the invention]

本発明・は、以上のように従来m−v族化合物半導体混
晶デバイスにおいて問題となっていた、PPC効果を逆
に利用したデバイスを提供することを目的とする。
An object of the present invention is to provide a device that reversely utilizes the PPC effect, which has been a problem in conventional m-v group compound semiconductor mixed crystal devices as described above.

【発明の要点】[Key points of the invention]

本発明は、n型のm−v族化合物半導体混晶からなり、
混晶組成比が一面から他面にかけてDXセンターの実質
的に無い組成比からDXセンターの存在する組成比へ連
続的に変化し、両面に電極を備えた半導体素体を所定の
温度以下に保持するもので、DXセンターに基づ< p
pc効果の有無による1を荷分布を素体内に発生させ、
接合形成なしに光によって励起することにより起電力を
生ずる光起電力素子を得ることができる。その際の照射
光はバンドギャップ以下のエネルギーをもつ赤外光で十
分である。
The present invention consists of an n-type m-v group compound semiconductor mixed crystal,
The mixed crystal composition ratio changes continuously from one side to the other side from a composition ratio with virtually no DX centers to a composition ratio with DX centers, and the semiconductor element with electrodes on both sides is maintained at a predetermined temperature or below. Based on the DX Center < p
A load distribution of 1 depending on the presence or absence of the PC effect is generated within the element body,
It is possible to obtain a photovoltaic element that generates an electromotive force by being excited by light without forming a junction. In this case, infrared light with energy below the band gap is sufficient.

【発明の実施例】[Embodiments of the invention]

第1図は本発明の一実施例を示し、n型の■−■族化合
物半導体混晶の膜lは両面にオーミック電極21.22
が被着され、両電極は増幅器3を介して端子41.42
に接続されている。混晶膜1をAZAsとGaAsの混
晶のn型のA7.lGa、−1lAsにより形成すると
きは、その組成は第3図のようにされ、電極21が被着
される側ではx−0,5,すなわちklGBA5zに、
電8に22が被着される側ではx=0.すなわち純Ga
Asになっている。 A7 W Ga1−ヨ^3と組成
比Xとドナーの活性化エネルギーE、の関係は第4図に
示す通りで、x>0.2でドナー準位が急激に深くなり
、x=0.4付近で最大の15(1weVになる。従っ
て、M組成比Xが0.2の点P付近がPPC現象の有無
の境界となる。すなわち、電極21側の面から全体の3
15まではPPC効果が起こり、残りのPPC効果が起
こらないことになる。前者を領域11、後者を領域12
とすると、領域11では、励起キャリア (11子)は
伝導帯に残り、領域12では再結合して平衡杖態となる
。従ってキャリア濃度分布が生じ、しかも全うF域で組
成変化が連続的なことよりエネルギーバンドも連続的に
変化しており、領域11より12へキャリアが拡散し、
領域11は12に対し正の電荷をもち、起電力が発生す
ることになる0例えば、領域11.12でのキャリア濃
度比が10” / 10目= 10’程度と仮定すると
、50+V程度の起電力が発生する。第1図に示すよう
に、混晶膜lを容器5の中に入れ、混晶がAI、QB、
−ウAsの場合環窒素などを用いて暗中で200に以下
の低温に保ち、光6を照射すれば、電極21.22間に
起電力が生じ、混晶膜1が低温に維持される限りこの起
電力は半永久的なものであって、必要な時に何時でも端
子41.42から取り出すことができる。この起電力は
、例えば電極21の側にのみn型不純物をドープするこ
とによっても高めることができる。 第3図に示すように連続して変化する組成比を有する半
導体混晶は、分子線ビームエピタキシー(MBE)にお
いて元素毎の蒸発量を制御することにより、あるいはト
リメチルアルミニウムやトリメチルガリウムのような有
機金属化合物を用いたMOCVD法においてマスフロー
コントローラの設定を連続的に変化させてガス流量を制
御することにより容易に形成できる。 本発明に基づく半導体光起電力素子は、例えば次のよう
に用いることができる。 111低温温度センサ 例えばAJGaAs混晶を用いた素子では200に以下
で光を照射した素子が200に以上に温度が上がったと
き起電力がなくなることを利用して温度を検知する。 (2)赤外線センサ 光励起するのには第2図においてAB間のエネルギーが
必要である。このエネルギーはAIGaASでは、ΔE
□−0,85eVで1.46−の波長の赤外線に対応し
、1.46−以下の波長の光の検出器として利用できる
。 (3)光センサ 光励起した素子に、第1図の電極22側の対向面から光
を入射させるとキャリア分布が変化し、起電力が変化す
る。この起電力の変化は入射光の波長に依存するので光
の波長を検知できる。 (4)メモリー素子 低温に保持された素子に光を照射して励起することによ
り書込みを行い、半永久的に保持される起電力を取出す
ことにより読出しを行う。 (5)宇宙空間用電源 低温の宇宙空間において、1回の光照射後光の当たらな
い所に置いても何時でも電源として利用できる。 なお、本発明による素子は光照射を励起後連続的に行っ
ても動作は変わらない。
FIG. 1 shows an embodiment of the present invention, in which a film l of an n-type ■-■ group compound semiconductor mixed crystal has ohmic electrodes 21 and 22 on both sides.
are deposited, and both electrodes are connected to terminals 41 and 42 via amplifier 3.
It is connected to the. The mixed crystal film 1 is made of n-type A7. When it is formed of lGa, -1lAs, its composition is as shown in FIG. 3, and on the side where the electrode 21 is deposited,
On the side where 22 is attached to electrode 8, x=0. That is, pure Ga
It has become As. The relationship between A7 W Ga1-yo^3, composition ratio The maximum value is 15 (1 weV) in the vicinity. Therefore, the vicinity of point P where the M composition ratio
The PPC effect occurs up to 15, and the remaining PPC effects do not occur. The former is area 11, the latter is area 12
Then, in region 11, the excited carriers (11 atoms) remain in the conduction band, and in region 12, they recombine to form a balanced rod state. Therefore, a carrier concentration distribution occurs, and since the composition changes continuously in the entire F region, the energy band also changes continuously, and carriers diffuse from region 11 to region 12.
Region 11 has a positive charge compared to region 12, and an electromotive force is generated. For example, assuming that the carrier concentration ratio in region 11.12 is about 10"/10th = 10', an electromotive force of about 50+V is generated. Electric power is generated.As shown in FIG.
- In the case of As, if the temperature is maintained at a low temperature below 200 °C in the dark using ring nitrogen, etc., and irradiated with light 6, an electromotive force will be generated between the electrodes 21 and 22, as long as the mixed crystal film 1 is maintained at a low temperature. This electromotive force is semi-permanent and can be taken out from the terminals 41 and 42 whenever necessary. This electromotive force can also be increased, for example, by doping only the electrode 21 side with an n-type impurity. As shown in Figure 3, semiconductor mixed crystals with continuously changing composition ratios can be produced by controlling the amount of evaporation of each element in molecular beam epitaxy (MBE), or by controlling the amount of evaporation of each element in molecular beam epitaxy (MBE), or by It can be easily formed by continuously changing the settings of a mass flow controller to control the gas flow rate in the MOCVD method using a metal compound. The semiconductor photovoltaic device based on the present invention can be used, for example, as follows. 111 Low Temperature Sensor For example, in an element using AJGaAs mixed crystal, temperature is detected by utilizing the fact that an element irradiated with light below 200°C loses electromotive force when the temperature rises above 200°C. (2) Energy between AB in FIG. 2 is required to excite the infrared sensor light. In AIGaAS, this energy is ΔE
It corresponds to infrared rays of 1.46- wavelength at -0.85 eV, and can be used as a detector for light with wavelengths of 1.46- or less. (3) Photosensor When light is incident on the optically excited element from the opposing surface on the electrode 22 side in FIG. 1, the carrier distribution changes and the electromotive force changes. Since this change in electromotive force depends on the wavelength of the incident light, the wavelength of the light can be detected. (4) Memory element Writing is performed by irradiating the element held at a low temperature to excite it, and reading is performed by extracting the electromotive force that is retained semi-permanently. (5) Power supply for outer space In the low temperature of outer space, it can be used as a power supply at any time even if it is placed in a place that is not exposed to light after one light irradiation. Note that the operation of the device according to the present invention does not change even if light irradiation is performed continuously after excitation.

【発明の効果】【Effect of the invention】

本発明によれば、混晶の中にPPC現象の有る領域から
無い領域への連続的な組成比の変化を形成することによ
り、所定の温度以下の低温に保持された混晶素体へ光を
入射することによって起電力が発生し、その温度で半永
久的に動作させることができ、従来混晶の欠点とされて
いたDXセンターの性質を利用したデバイスとして応用
の拡大が予想でき、その持つ意義は極めて大きい。
According to the present invention, by forming a continuous change in the composition ratio from a region where PPC phenomenon occurs to a region where there is no PPC phenomenon in the mixed crystal, light is transmitted to the mixed crystal element body maintained at a low temperature below a predetermined temperature. An electromotive force is generated by injecting the crystal, and it can be operated semi-permanently at that temperature.It is expected that its application will expand as a device that takes advantage of the properties of the DX center, which was traditionally considered a drawback of mixed crystals. The significance is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の素子の使用状態を示す断面図
、第2図はデバイス配位座標モデル図、第3図は本発明
の一実施例の混晶膜の組成分布図、第4図はklGB1
43混晶のドナー活性化エネルギーと組成比の関係線図
である。 1:混晶膜、21,22:電極、5:低温容器、第1図 すh己イ丁r1拍4標 第2図 第3図
FIG. 1 is a sectional view showing the state of use of an element according to an embodiment of the present invention, FIG. 2 is a device coordination coordinate model diagram, and FIG. 3 is a composition distribution diagram of a mixed crystal film according to an embodiment of the present invention. Figure 4 shows klGB1
FIG. 4 is a relationship diagram between donor activation energy and composition ratio of a No. 43 mixed crystal. 1: Mixed crystal film, 21, 22: Electrode, 5: Low-temperature container, Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1)n型のIII−V族化合物半導体混晶からなり、混晶
組成比が一面から他面にかけてDXセンターの実質的に
無い組成比からDXセンターの存在する組成比へ連続的
に変化し、両面にオーム接触をする電極を備えた半導体
素体が所定の温度以下に保持されたことを特徴とする半
導体光起電力素子。 2)特許請求の範囲第1項記載の素子において、混晶が
Al_xGa_1_−_xAsの組成を有し、xが0.
4以上から0.2未満へ連続的に変化し、xが大きい側
の電極面が光入力面であり、保持温度が200K以下で
あることを特徴とする半導体光起電力素子。
[Claims] 1) Consisting of an n-type III-V group compound semiconductor mixed crystal, the mixed crystal composition ratio changes from a composition ratio with substantially no DX center to a composition ratio with a DX center present from one side to the other side. 1. A semiconductor photovoltaic device, characterized in that a semiconductor body is provided with electrodes that change continuously and make ohmic contact on both sides, and is maintained at a predetermined temperature or lower. 2) In the device according to claim 1, the mixed crystal has a composition of Al_xGa_1_-_xAs, and x is 0.
1. A semiconductor photovoltaic device characterized in that x changes continuously from 4 or more to less than 0.2, the electrode surface on the side where x is larger is a light input surface, and the holding temperature is 200K or less.
JP61162840A 1986-07-10 1986-07-10 Photovoltaic semiconductor element Pending JPS6317568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61162840A JPS6317568A (en) 1986-07-10 1986-07-10 Photovoltaic semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61162840A JPS6317568A (en) 1986-07-10 1986-07-10 Photovoltaic semiconductor element

Publications (1)

Publication Number Publication Date
JPS6317568A true JPS6317568A (en) 1988-01-25

Family

ID=15762243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61162840A Pending JPS6317568A (en) 1986-07-10 1986-07-10 Photovoltaic semiconductor element

Country Status (1)

Country Link
JP (1) JPS6317568A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235188A (en) * 1993-12-28 1995-09-05 Nec Corp Optical memory using impurity level in semiconductor fine particles
JP2013046000A (en) * 2011-08-26 2013-03-04 Toyota Motor Corp Quantum dot array material and photoelectric conversion element and wavelength conversion element using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235188A (en) * 1993-12-28 1995-09-05 Nec Corp Optical memory using impurity level in semiconductor fine particles
JP2013046000A (en) * 2011-08-26 2013-03-04 Toyota Motor Corp Quantum dot array material and photoelectric conversion element and wavelength conversion element using the same

Similar Documents

Publication Publication Date Title
Martinelli Infrared photoemission from silicon
US4614961A (en) Tunable cut-off UV detector based on the aluminum gallium nitride material system
Gershenzon et al. Electroluminescence at p‐n Junctions in Gallium Phosphide
Newman et al. Photoconductivity in germanium
US4137544A (en) Mercury cadmium telluride photodiode
Van den Meerakker et al. The minority carrier recombination resistance: a useful concept in semiconductor electrochemistry
Van Ruyven et al. Electronic transport in graded-band-gap semiconductors
Guidotti et al. Degradation of band‐gap photoluminescence in GaAs
US2898743A (en) Electronic cooling device and method for the fabrication thereof
US3732471A (en) Method of obtaining type conversion in zinc telluride and resultant p-n junction devices
JPS6317568A (en) Photovoltaic semiconductor element
Sah et al. Recombination properties of the gold acceptor level in silicon using the impurity photovoltaic effect
US5241196A (en) Photoresponsive device including composition grading and recessed contacts for trapping minority carriers
Mayburg et al. Dependence of recombination radiation on current in GaAs diodes
US3769558A (en) Surface inversion solar cell and method of forming same
JPH01243480A (en) Infrared sensor and infrared camera including the same
Schoolar Epitaxial lead sulfide photovoltaic cells and photoconductive films
US4081794A (en) Alloy junction archival memory plane and methods for writing data thereon
US3417248A (en) Tunneling semiconductor device exhibiting storage characteristics
US3915754A (en) Growth of gallium phosphide
US3978360A (en) III-V photocathode with nitrogen doping for increased quantum efficiency
Laser Modes of Charge Transfer at an Illuminated Semiconductor Electrode, a Digital Simulation
Viswanath Surface and interfacial recombination in semiconductors
Schulze et al. Photoconductivity in solution‐grown copper‐doped GaP
Yablonovitch et al. Meaning of the photovoltaic band gap for amorphous semiconductors