JPS63175541A - Sea bottom optical repeater - Google Patents

Sea bottom optical repeater

Info

Publication number
JPS63175541A
JPS63175541A JP62007107A JP710787A JPS63175541A JP S63175541 A JPS63175541 A JP S63175541A JP 62007107 A JP62007107 A JP 62007107A JP 710787 A JP710787 A JP 710787A JP S63175541 A JPS63175541 A JP S63175541A
Authority
JP
Japan
Prior art keywords
optical
repeater
control signal
optical switch
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62007107A
Other languages
Japanese (ja)
Inventor
Mitsuru Horio
堀尾 満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62007107A priority Critical patent/JPS63175541A/en
Publication of JPS63175541A publication Critical patent/JPS63175541A/en
Pending legal-status Critical Current

Links

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To facilitate retrieval at the fault point of an optical sea bottom cable by providing an optical switch applying tentative loopback of an input terminal of each recovery repeater section to the output terminal of an opposite side repeater section. CONSTITUTION:Just after a control signal 8 passes through an optical switch 2a via a forward pass recovery repeating section 11, the optical switch 2a is switched. A control signal 9 passing through the optical switch 2a is a reflected light 10 at the fault point of the optical fiber, passes through the optical switch 2a, recovered by a return path recovery repeating section 12 and sent to a terminal station sending a control signal. The difference of the reception time of the recovered reflected light from the sent time of the control signal, that is, the division of the delay time by the propagation time per unit length of the optical fiber gives the measurement of the distance of the fault point of the optical fiber line including the sea bottom repeater. Thus, the location of the fault point of the optical fiber line including the sea bottom optical repeater is detected easily.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、海底に敷設される光通信システムに使用する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is used in an optical communication system installed on the ocean floor.

本発明は特に光海底ケーブルの障害点探索を容易に行う
ことのできる海底光中継器に関する。
The present invention particularly relates to a submarine optical repeater that can easily search for failure points in optical submarine cables.

〔概要〕〔overview〕

本発明は、往路および復路の各光信号をそれぞれ再生中
継する二つの再生中継部を備えた海底光中継器において
、 各再生中継部の入力端を相手側の中継部の出力端に一時
的に折り返し接続する光スイッチを設けることにより、 光海底ケーブルの障害点の探索が容易に行うことのでき
るものである。
The present invention provides a submarine optical repeater equipped with two regenerative repeaters that regenerate each optical signal on the outbound and return routes, and temporarily connects the input end of each regenerative repeater to the output end of the opposite repeater. By installing an optical switch that connects back and forth, it is possible to easily search for failure points in optical submarine cables.

〔従来の技術〕[Conventional technology]

従来、この種の海底光中継器は、中継器特性の監視回路
を有しているが、光信号の通路である光ファイバの障害
点探索のための光折り返し回路を有していない。
Conventionally, this type of submarine optical repeater has a repeater characteristic monitoring circuit, but does not have an optical return circuit for searching for a fault point in an optical fiber, which is a path for optical signals.

従来の技術では海底ケーブルの切断時にこの障害点を検
索する方法としては、給電線を媒介して「パルス反射法
」、「電流・電圧法」、「静電容量法」 (国際通信の
研究、1k109)および「光パルス反射法」 (光通
信の実用技術/産報出版)などがある。
Conventional technology uses the "pulse reflection method", "current/voltage method", and "capacitance method" (international communications research) to search for this fault point when cutting a submarine cable. 1k109) and "Optical Pulse Reflection Method" (Practical Technology of Optical Communication/Sanpo Publishing).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし上述した各方法において、光パルス反射法は、端
局の最寄りの海底光中継器より遠方の光ファイバにおけ
る障害点は探索できない。
However, in each of the above-mentioned methods, the optical pulse reflection method cannot search for failure points in optical fibers that are farther away than the submarine optical repeater closest to the end station.

また給電線を媒介にした各障害点探索方法は、光海底ケ
ーブルが完全に切断された時、すなわち給電線が切断し
た場合のみ有効な手段であり、多中継のシステムで各海
底光中継器間の光ファイバに発生した障害は探索できな
いという欠点がある。
In addition, each fault point search method using the power feed line as an intermediary is only effective when the optical submarine cable is completely disconnected, that is, when the power feed line is disconnected. The disadvantage is that it is not possible to search for faults that occur in optical fibers.

本発明は、この欠点を解決して、光ファイバに発生した
障害点を容易に探索できる海底光中継器を提供すること
を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve this drawback and provide a submarine optical repeater that can easily search for failure points occurring in optical fibers.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は、往路の光信号を再生中miする往路再生中継
部と、復路の光信号を再生中継する復路再生中継部とを
備えた海底光中継器において、」二記二つの再生中継部
の光入力および光出力の通路に、各中継部の入力を相手
側の中継部の出力に一時的に折り返し接続する光スイッ
チを設け、各中継部の内部から検出される制御信号に従
い上記光スイッチを切換制御する制御器を備えたことを
特徴とする。
The present invention provides a submarine optical repeater equipped with an outgoing regenerative repeater that regenerates the outgoing optical signal and a return regenerative repeater that regenerates the incoming optical signal. An optical switch is provided in the optical input and optical output paths to temporarily connect the input of each relay unit to the output of the other relay unit, and the optical switch is activated according to a control signal detected from inside each relay unit. It is characterized by being equipped with a controller for switching control.

折り返し接続する時間は、光信号の1中継区間の1往復
伝搬時間に相当する時間である。
The time for loopback connection is the time equivalent to one round trip propagation time of one relay section of the optical signal.

〔作用〕[Effect]

本発明の海底光中継器は、各再生中継部の入力端および
出力端に、それぞれ光スイッチを配置し、各再生中継部
にこれらの光スイッチを駆動するための制御器を配置し
た構成とする。送信側の端局から送出される制御信号に
より、これら光スイッチが駆動され、光信号の通路であ
る光ファイバに一時的に光折り返し回路を構成する。
The submarine optical repeater of the present invention has a configuration in which optical switches are arranged at the input end and output end of each regenerative repeater, and a controller for driving these optical switches is arranged in each regenerative repeater. . These optical switches are driven by control signals sent from the transmitting end station, and temporarily form an optical folding circuit in the optical fiber that is the path for the optical signal.

この光折り返し回路を構成する時間を、1中継区間の1
往復伝1般時間に相当するものとすれば、光ファイバに
障害が発生した場合は、その障害部分の反射波が光折り
返し回路を経由して端局に戻るので、障害点の検出がで
きる。
The time for configuring this optical return circuit is calculated as follows:
Assuming that this corresponds to the general round-trip transmission time, if a fault occurs in the optical fiber, the reflected wave from the faulty part will return to the terminal station via the optical return circuit, making it possible to detect the point of fault.

〔実施例〕〔Example〕

次に、本発明の実施例を図面を用いて説明する。 Next, embodiments of the present invention will be described using the drawings.

第1図は本発明の一実施例のブロック構成図である。FIG. 1 is a block diagram of an embodiment of the present invention.

第1図において、海底光中継器1では、図外の一方の端
局側に接続された第一の光海底ケーブル4の往路側の光
ファイバ4aは往路再生中継部11の入力端11aに接
続され、図外の他方の端局側に接続された第二の光海底
ケーブル14の往路側の光ファイバ14aは出力端11
bに接続される。同様に復路再生中継部12の入力端1
2aは第二の光海底ケーブル14の復路側の光ファイバ
14bに接続され、出力端12bは第一の光海底ケーブ
ル4の復路側の光ファイバ4bに接続される。
In FIG. 1, in the submarine optical repeater 1, the optical fiber 4a on the outgoing side of the first optical submarine cable 4 connected to one end station (not shown) is connected to the input end 11a of the outgoing regenerative repeater 11. The optical fiber 14a on the outgoing side of the second optical submarine cable 14 connected to the other end station (not shown) is connected to the output end 11.
connected to b. Similarly, the input terminal 1 of the return regeneration relay section 12
2a is connected to the optical fiber 14b on the return side of the second optical submarine cable 14, and the output end 12b is connected to the optical fiber 4b on the return side of the first optical submarine cable 4.

これらの入力端11a 、12aと出力端11b 、1
2bとのそれぞれの間には受光器5a 、 5b 、再
生増幅器6a 、6bおよび発光器7a、7bがそれぞ
れ接続される。
These input ends 11a, 12a and output ends 11b, 1
2b, light receivers 5a, 5b, regenerative amplifiers 6a, 6b, and light emitters 7a, 7b are connected, respectively.

ここに本発明の特徴とするところは、上記出力端11b
と入力端12aと第二の光海底ケーブル14の往路側お
よび復路側の各光ファイバ14aおよび14bとの間に
第一の光スイッチ2aが接続され、上記出力端12bと
入力端11aと第一の光海底ケーブル4の往路側および
復路側の各光ファイバ4aおよび4bとの間に第二の光
スイッチ2bが接続されたことにある。さらに第一の光
スイッチ2aは、光ファイバ4aから入力する制御信号
か再生増幅器6aを介して入力される制御器3aにより
、一時的に光折り返し回路となるように構成される。
Here, the feature of the present invention is that the output end 11b
A first optical switch 2a is connected between the input end 12a and each of the optical fibers 14a and 14b on the outward and return sides of the second optical submarine cable 14, and the first optical switch 2a is connected between the output end 12b, the input end 11a and the first The second optical switch 2b is connected between each of the optical fibers 4a and 4b on the outgoing and inbound sides of the optical submarine cable 4. Further, the first optical switch 2a is configured to temporarily function as an optical folding circuit by a control signal inputted from the optical fiber 4a or a controller 3a inputted via the regenerative amplifier 6a.

また第二の光スイッチ2bは、光ファイバ14aから人
力する制御信号が再生増幅器6bを介して入力される制
御器3bにより、一時的に光折り返し回路となるように
構成される。
The second optical switch 2b is configured to temporarily function as an optical return circuit by a controller 3b into which a control signal manually inputted from the optical fiber 14a is inputted via a regenerative amplifier 6b.

光折り返し回路に切り替わった光スイッチ2aまたは2
bは光信号の1中継区間長の1往復伝1般時間だけ保持
した後、初期の状態に戻る。
Optical switch 2a or 2 switched to optical return circuit
After holding the optical signal for one round-trip transmission time of one relay section length, b returns to the initial state.

第2図は光スイッチ2aが切り替わった場合の説明図で
、制御信号8が往路再生中継部11を介し光スイッチ2
aを通過した直後に、光スイッチ2aが切り替わった状
態を示す。光スイッチ2aを通過した制御信号9は、光
ファイバの障害点で反射光10となり光スイッチ2aを
通り復路再生中継部12で再生され、制御信号を送出し
た端局へ伝送される。
FIG. 2 is an explanatory diagram when the optical switch 2a is switched.
This shows the state in which the optical switch 2a is switched immediately after passing through point a. The control signal 9 that has passed through the optical switch 2a becomes reflected light 10 at the failure point of the optical fiber, passes through the optical switch 2a, is regenerated by the return regenerative repeater 12, and is transmitted to the terminal station that sent the control signal.

このように端局より送出した制御信号を光ファイバの障
害点まで順次再生中継し、障害点で発生ずる反射光を光
スイッチにより折り返し、再度再生中継を行い、制御信
号送出端局で受信することにより、制御信号の送出時間
から再生反射光の受信時間の差、すなわち遅延時間を光
ファイバの単位長当たりの伝搬時間で除すれば海底光中
継器を含む光フアイバ線路の障害点の距離を測定できる
In this way, the control signal sent from the terminal station is sequentially regenerated and relayed to the point of failure in the optical fiber, and the reflected light generated at the failure point is returned by an optical switch, regenerated and relayed again, and received at the control signal sending terminal station. By dividing the difference between the sending time of the control signal and the receiving time of the reproduced reflected light, that is, the delay time, by the propagation time per unit length of the optical fiber, the distance to the fault point of the optical fiber line including the submarine optical repeater can be measured. can.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、海底光中継器を含む光
フアイバ線路の障害点の位置を容易に検出できる効果が
ある。
As described above, the present invention has the effect of easily detecting the position of a fault point in an optical fiber line including a submarine optical repeater.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック構成図。 第2図は上記実施例の説明図。 1・・・海底光中継器、2a、2b・・・第一および第
二の光スイッチ、3a 、3b−制御器、4・・・第一
の光海底ケーブル、4a、4b・・・往路および復路の
光ファイバ、5a、5b・・・受光器、6a 、6b・
・・再生増幅器、7a、7b・・・発光器、8.9・・
・制御信号、1゜・・・反射光、11・・・往路再生中
継部、11a、12a・・・入力端、llb 、12b
・・・出力端、12・・・復路再生中継部、14・・・
第二の光海底ケーブル、14a 、14b・・・往路お
よび復路の光ファイバ。
FIG. 1 is a block diagram of an embodiment of the present invention. FIG. 2 is an explanatory diagram of the above embodiment. DESCRIPTION OF SYMBOLS 1... Submarine optical repeater, 2a, 2b... First and second optical switch, 3a, 3b-controller, 4... First optical submarine cable, 4a, 4b... Outbound and Return path optical fibers, 5a, 5b...Receiver, 6a, 6b...
...Regenerative amplifier, 7a, 7b...Light emitter, 8.9...
・Control signal, 1°... Reflected light, 11... Outgoing path regenerative repeater, 11a, 12a... Input end, llb, 12b
...Output end, 12... Return path regeneration relay section, 14...
Second optical submarine cable, 14a, 14b...optical fibers for outbound and return routes.

Claims (2)

【特許請求の範囲】[Claims] (1)往路の光信号を再生中継する往路再生中継部と、 復路の光信号を再生中継する復路再生中継部とを備えた
海底光中継器において、 上記二つの再生中継部の光入力および光出力の通路に、
各中継部の入力を相手側の中継部の出力に一時的に折り
返し接続する光スイッチを設け、各中継部の内部から検
出される制御信号に従い上記光スイッチを切換制御する
制御器を備えたことを特徴とする海底光中継器。
(1) In a submarine optical repeater equipped with an outgoing regenerative repeater that regenerates the outgoing optical signal and an inbound regenerative repeater that regenerates the inbound optical signal, the optical input and the optical In the output passage,
An optical switch is provided to temporarily connect the input of each relay unit to the output of the other relay unit, and a controller is provided to switch and control the optical switch according to a control signal detected from inside each relay unit. A submarine optical repeater featuring:
(2)折り返し接続する時間は、光信号の1中継区間の
1往復伝搬時間に相当する時間である特許請求の範囲第
(1)項に記載の海底光中継器。
(2) The submarine optical repeater according to claim (1), wherein the time for loopback connection is a time corresponding to one round trip propagation time of one repeat section of an optical signal.
JP62007107A 1987-01-14 1987-01-14 Sea bottom optical repeater Pending JPS63175541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62007107A JPS63175541A (en) 1987-01-14 1987-01-14 Sea bottom optical repeater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62007107A JPS63175541A (en) 1987-01-14 1987-01-14 Sea bottom optical repeater

Publications (1)

Publication Number Publication Date
JPS63175541A true JPS63175541A (en) 1988-07-19

Family

ID=11656865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62007107A Pending JPS63175541A (en) 1987-01-14 1987-01-14 Sea bottom optical repeater

Country Status (1)

Country Link
JP (1) JPS63175541A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039625A (en) * 1989-06-07 1991-01-17 Kokusai Denshin Denwa Co Ltd <Kdd> Fault supervising system for optical communication system
CN102801464A (en) * 2011-05-27 2012-11-28 华为海洋网络有限公司 Method, conveying device and system for detecting submarine optical cable circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039625A (en) * 1989-06-07 1991-01-17 Kokusai Denshin Denwa Co Ltd <Kdd> Fault supervising system for optical communication system
CN102801464A (en) * 2011-05-27 2012-11-28 华为海洋网络有限公司 Method, conveying device and system for detecting submarine optical cable circuit
WO2012163110A1 (en) * 2011-05-27 2012-12-06 华为海洋网络有限公司 Method, transmission device and system for detecting benthonic optical cable line
CN102801464B (en) * 2011-05-27 2015-03-25 华为海洋网络有限公司 Method, conveying device and system for detecting submarine optical cable line
US9276672B2 (en) 2011-05-27 2016-03-01 Huawei Marine Networks Co., Ltd. Method, transport apparatus, and system for detecting submarine optical cable line

Similar Documents

Publication Publication Date Title
WO2010074881A1 (en) Fault locator for long haul transmission system
JPH0527289B2 (en)
JP2719654B2 (en) Monitoring method of optical amplification repeater transmission line
US7551816B1 (en) Arrangement for low cost path protection for optical communications networks
JPS63175541A (en) Sea bottom optical repeater
US7389018B1 (en) Arrangement for low cost path protection for optical communications networks
JPS5811563B2 (en) Hikari Eye Bar Tsuushin Houshiki
JPS593902B2 (en) Optical repeater monitoring method
JP2003046413A (en) Optical transmission line changeover system and optical transmission line changeover method
JPH055208B2 (en)
JPS6223157Y2 (en)
JPH01132232A (en) Optical submarine repeater
JP2845441B2 (en) Optical repeater
JPH0236624A (en) Optical repeater
JPS6041828A (en) Bidirectional optical repeater and faulty position locating system
JPH0624389B2 (en) Double loop type local area network concentrator
JPS626378B2 (en)
JPH021631A (en) Optical cable communication system
JPS6336590B2 (en)
JPS63281541A (en) Fault locating system
JPS6253975B2 (en)
JPS6154293B2 (en)
JPH0661943A (en) Underwater branching device
JPS63269634A (en) Optical sea bottom repeater
JPH0129450B2 (en)