JPS63175151A - Binder for nonwoven fabric excellent in solvent resistance - Google Patents

Binder for nonwoven fabric excellent in solvent resistance

Info

Publication number
JPS63175151A
JPS63175151A JP62001511A JP151187A JPS63175151A JP S63175151 A JPS63175151 A JP S63175151A JP 62001511 A JP62001511 A JP 62001511A JP 151187 A JP151187 A JP 151187A JP S63175151 A JPS63175151 A JP S63175151A
Authority
JP
Japan
Prior art keywords
latex
weight
nonwoven fabric
solvent resistance
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62001511A
Other languages
Japanese (ja)
Other versions
JPH0791767B2 (en
Inventor
義正 田中
俊介 渡辺
翠川 昭雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP62001511A priority Critical patent/JPH0791767B2/en
Publication of JPS63175151A publication Critical patent/JPS63175151A/en
Publication of JPH0791767B2 publication Critical patent/JPH0791767B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は改良された不織布用結合剤に関し、特忙耐溶剤
性に優れた不織布を得ることのできる不織布用結合剤に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improved binder for nonwoven fabrics, and more particularly, to a binder for nonwoven fabrics that can provide nonwoven fabrics with excellent solvent resistance.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

乾式不織布の繊維の結合方式にはバインダ(結合剤)に
よるもの、鞭維を熱FI4i着させるものおよび機械的
に場維を絡み合わせるものがあり、このうちバインダに
よる結合方式が、多様な機能を不織布に与えることがで
きるため、最も広く採用されている。使用されるバイン
ダは殆どがラテックスあるいはエマルジョンと呼ばれて
いるポリマー粒子の水中分散体を主成分としており、ポ
リマーの種類としてはアクリル系、酢と系共重合体、S
BR系、NBR系などが使用されている。
There are several methods for binding the fibers of dry-processed non-woven fabrics: using a binder (binding agent), attaching the flag fibers with thermal FI4i, and mechanically intertwining the field fibers. It is most widely used because it can be applied to nonwoven fabrics. Most of the binders used are mainly composed of an aqueous dispersion of polymer particles called latex or emulsion, and the types of polymers include acrylic, vinegar-based copolymers, and S.
BR type, NBR type, etc. are used.

不織布に要求される岐も重要な性能の1つに耐溶剤性が
あり、これにはラテックスの性能が碌めて大きな影!#
を与える。
One of the most important properties required of nonwoven fabrics is solvent resistance, and the improved performance of latex has a big impact on this! #
give.

例えば衣料芯坤用不織布において、ラテックスの酎溶剤
性が十分でなければドライクリーニングに耐えることが
できない。また、一般の工業資材用や雑貨用として使用
される不織布に於ても、夫々の用途に於て要求される耐
溶剤性は、ラテックスの性能によって大きく左右される
For example, in nonwoven fabrics for clothing cores, latex cannot withstand dry cleaning unless its solvent properties are sufficient. Furthermore, even in nonwoven fabrics used for general industrial materials and miscellaneous goods, the solvent resistance required for each use is largely influenced by the performance of the latex.

この耐溶剤性を向上させるための一つの方法としてバイ
ンダとして使用されるラテックスには架橋反応性を有す
るN−メチロール(メタ)アクリルアミド等の官能性単
量体を共重合したり、水溶性トリメチロールメラミ/倒
脂等の多官能性熱硬化型樹脂を加工時に併用して、不織
布の熱処理工程において、ラテックスのポリマー中に架
橋構造を形成させる等の方法がある。
One method to improve this solvent resistance is to copolymerize the latex used as a binder with a functional monomer such as N-methylol (meth)acrylamide, which has crosslinking reactivity, or to copolymerize water-soluble trimethylol. There is a method of forming a cross-linked structure in the latex polymer in the heat treatment process of the nonwoven fabric by using a polyfunctional thermosetting resin such as melami/oblast at the time of processing.

1〜かし、これらの方法は、ラテックスの化学的安定性
を低下させる要因となるため、多量の架橋成分の導入は
不可能である上、十分な効果を得るためには高温で長時
間の熱処理を帰することから生産性を考慮しなければな
らない実際の不織布製造工程では、瀾足し得る効果が得
られていない。
However, these methods cannot introduce a large amount of crosslinking components, as this reduces the chemical stability of the latex, and in order to obtain a sufficient effect, they require long periods of time at high temperatures. In the actual nonwoven fabric manufacturing process, which requires consideration of productivity since heat treatment is involved, satisfactory effects have not been obtained.

このため、実用上、高度の耐溶剤性を必要とする場合に
はNBR(アクリロニトリル−ブタジェンラバー)ラテ
ックスが使用される。この理由は、NBRには他のラテ
ックスに比べて七ツマ−としてアクリロニトリルが比較
的釜f1′。
For this reason, NBR (acrylonitrile-butadiene rubber) latex is used practically when a high degree of solvent resistance is required. The reason for this is that NBR has a relatively high acrylonitrile content compared to other latexes.

使用されているため共重合体中の二) I)ル基(−C
ミN)含有率が多く、この高いニトリル基含有率が、皮
膜に油、有機溶剤に対して高い抵抗性、即ち耐溶剤性を
与えるからである。
Because di) I) group (-C
This is because the high nitrile group content gives the film high resistance to oils and organic solvents, that is, solvent resistance.

ところが、よシ高い耐溶剤性を求めてNBRラテックス
中のアクリロニトリルの比率を高めた場合、製造時の乳
化重合反応が進行せず不安定となり、得られたNBRラ
テックスも機械的な安定性に劣るため不織布の含浸工程
に耐えることが出来なくなる欠点があった。
However, when the ratio of acrylonitrile in NBR latex is increased in order to obtain higher solvent resistance, the emulsion polymerization reaction during production does not proceed and becomes unstable, and the resulting NBR latex also has poor mechanical stability. Therefore, it has the disadvantage that it cannot withstand the impregnation process of nonwoven fabric.

このため、近年、不織布の用途、多様化及び要求性能の
高度化により従来のNBRよりさらに耐溶剤性に優れた
バインダが求められているにもかかわらず、上記の理由
により市場の要求は満足されていなかった。
For this reason, in recent years, due to the diversification of nonwoven fabric uses and the sophistication of required performance, there has been a demand for a binder with even better solvent resistance than conventional NBR. It wasn't.

本発明は以上のような従来の事情を考慮してなされたも
ので、従来の不織布用結合剤としてのNBRラテックス
の耐溶剤性及び機械的安定性が不充分であることを改良
しようとするものである。
The present invention was made in consideration of the above-mentioned conventional circumstances, and aims to improve the insufficient solvent resistance and mechanical stability of NBR latex as a conventional binder for nonwoven fabrics. It is.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、従来のNBRラテックスより耐溶剤性及
び機械的安定性に優れた不織布用結合剤としてのラテッ
クスを開発するため、いかに多くのニトリル基をポリマ
ー分子中に導入するかを検討していたところ、高度な耐
溶剤性′ff:?iるためにはトルエンに対するラテッ
クス皮膜の重量膨潤率が200%以下でなければならな
いこと及びこの条件を満たす念めには、ポリマー分子中
に17重量%以上のニトリル基を含有する単量体組成の
ラテックスでなければならないことを見い出した。そし
て、更に鋭意研究した結果、驚くべきことにニトリル基
を導入するため単量体としてその一部或いは全部をメタ
クリロニトリルとすることによって重合安定性が著しく
向上し、又、得られたラテックスも機械的安定性に極め
て優れておシ、加工した不織布は従来のNBRラテック
スでは到底得られなかった極めて高度な耐溶剤性を有す
ることを見い出し、本発明を完成するに到ったものであ
る。
The present inventors investigated how to introduce as many nitrile groups into polymer molecules in order to develop a latex as a binder for nonwoven fabrics that has better solvent resistance and mechanical stability than conventional NBR latex. I found out that it has a high level of solvent resistance. In order to achieve this, the weight swelling ratio of the latex film with respect to toluene must be 200% or less, and in order to satisfy this condition, a monomer composition containing 17% by weight or more of nitrile groups in the polymer molecule must be used. I found out that it has to be latex. As a result of further intensive research, surprisingly, polymerization stability was significantly improved by using methacrylonitrile as part or all of the monomer to introduce a nitrile group, and the resulting latex also improved. It was discovered that the processed nonwoven fabric has extremely high mechanical stability and an extremely high degree of solvent resistance that could never be obtained with conventional NBR latex, leading to the completion of the present invention.

即ち、本発明はブタシュン35〜60重量%、メタクリ
ロートリル5〜60重量%、エチレン性不a和力/I/
 ホン酸1〜8重量%及びこれらの単量体と共重合可能
なその他のエチレン性単量体0〜59シュ%なる単量体
混合物を乳化重合し、且つポリマー中に占めるニトリル
基(−(’=N)の割合を17″M景%以上としたラテ
ックスを用いる耐溶剤性に優れる不織布用結合剤を提供
するものである。
That is, the present invention contains 35 to 60% by weight of butashun, 5 to 60% by weight of methacrylotrile, and ethylenic incompatibility/I/
A monomer mixture consisting of 1 to 8% by weight of fonic acid and 0 to 59% of other ethylenic monomers copolymerizable with these monomers is emulsion polymerized, and the nitrile group (-( The present invention provides a binder for nonwoven fabrics that uses latex with a ratio of 17''M ratio (=N) or more of 17''M or more and has excellent solvent resistance.

本発明で使用するブタジェンは、ラテックスの皮膜に可
撓性を与えると共に不織布加工の乾燥工程において、通
常の乾燥温度での結合剤の成膜を容易にするために必要
な単量体で、全単量体に対して35〜60重量%便用さ
れる。
Butadiene used in the present invention is a monomer that is necessary to give flexibility to the latex film and to facilitate the formation of a binder film at normal drying temperatures in the drying process of nonwoven fabric processing. It is used in an amount of 35 to 60% by weight based on the monomer.

ブタジェンの使用量が35重量%未満では、得られたラ
テックスの皮膜はもろくなり、また常温では皮膜の形成
が不十分となるため、不織布の含浸工程において、粉末
状の乾燥物が生成し、含浸作業に支障をきたす。また、
ブタジェンの使用量が60重量%を越えると、得られた
ラテックスの皮膜は耐溶剤性に劣り、本発明の目的を達
成することが出来ない。本発明で使用するメタクリロニ
トリルはラテックスの皮膜に耐溶剤性を与えると共に、
皮膜の凝集力を高めるために必要な単量体で、本発明の
目的とする高度の耐溶剤性を得るための必須の単量体で
あり、その使用tは全単量体に対して5〜60重久%で
ある。
If the amount of butadiene used is less than 35% by weight, the obtained latex film will be brittle and the film will not be formed sufficiently at room temperature, so a dry powder will be produced in the nonwoven fabric impregnation process, and the impregnation will It interferes with work. Also,
If the amount of butadiene used exceeds 60% by weight, the resulting latex film will have poor solvent resistance, making it impossible to achieve the object of the present invention. The methacrylonitrile used in the present invention not only imparts solvent resistance to the latex film, but also
It is a monomer necessary to increase the cohesive force of the film, and is an essential monomer to obtain the high degree of solvent resistance that is the objective of the present invention. ~60% heavy duty.

メタクリロニトリルの使用量が5重量%未満では、たと
えアクリロニトリルを併用してポリマー中のニトリル含
有tt−1711tt%以上としても乳化重合時の反応
が進行し難く、重合安定性に劣り、又不織布の含浸作業
時においての機械的安定性に劣り、耐溶剤性も悪い。又
、その使用量が60重量%を越えると、常温におけるラ
テックスの皮膜形成性が低下する結果、前述の如く、不
織布の含浸工程での作業性が低下する。
If the amount of methacrylonitrile used is less than 5% by weight, even if acrylonitrile is used in combination and the nitrile content in the polymer is tt-1711tt% or more, the reaction during emulsion polymerization will be difficult to proceed, the polymerization stability will be poor, and the nonwoven fabric will deteriorate. Poor mechanical stability during impregnation work and poor solvent resistance. Furthermore, if the amount used exceeds 60% by weight, the film forming properties of the latex at room temperature will decrease, resulting in a decrease in workability in the nonwoven fabric impregnation process, as described above.

本発明で使用するエチレン性不飽和カルボン酸としては
、アクリル酸、メタクリル酸、クロトン酸、マレイン酸
およびその無水物、フマル酸、イタコン酸、並びに不飽
和ジカルボン酸モノアルキルエステル、例えばマレイン
酸モノメチル、フマル酸モノエチル、イタコン酸モノn
−ブチル等のエチレン性不飽和カルボン酸等が挙げられ
、全単量体に対して1〜8重量%使用することが出来る
Ethylenically unsaturated carboxylic acids used in the present invention include acrylic acid, methacrylic acid, crotonic acid, maleic acid and its anhydride, fumaric acid, itaconic acid, and unsaturated dicarboxylic acid monoalkyl esters, such as monomethyl maleate. Monoethyl fumarate, mono-n itaconate
Ethylenically unsaturated carboxylic acids such as -butyl can be used in an amount of 1 to 8% by weight based on the total monomers.

エチレン性不飽和カルボン酸は、ラテックス皮膜の繊維
に対する接着性の向上、及びラテックスの機械的安定性
を向上させる為に必要な単量体成分であり、その使用量
が全単量体に対して1重量%未満では、これらの効果が
得られない。また、その使用量が8重量%を越えると、
ラテックスが高粘度となり、不織布への均一な含浸が不
可能となる。
Ethylenically unsaturated carboxylic acid is a monomer component necessary to improve the adhesion of the latex film to the fibers and the mechanical stability of the latex, and its usage amount is based on the total monomer. If the amount is less than 1% by weight, these effects cannot be obtained. In addition, if the amount used exceeds 8% by weight,
The latex becomes highly viscous, making it impossible to uniformly impregnate the nonwoven fabric.

本発明で使用するブタジェン、メタクリロニトリル、エ
チレン性不飽和カルボン酸と共重合可能なその他のエチ
レン性不飽和単量体としては、アクリロニトリルのほか
アクリル酸メチル、メタクリル酸メチル、アクリル酸エ
チル、メタクリル酸エチル、アクリル酸プロピル、メタ
クリル酸グロビル、アクリル酸ブチル、メタクリル酸ブ
チル、アクリル酸ペンチル、メタクリル酸ペンチル、ア
クリル酸ヘキシル、メタクリル酸ヘキシル、アクリル酸
ヘプチル、メタクリル酸ヘプチル、アクリル酸オクチル
、メタクリル酸オクチル、アクリル酸オクタデシル、メ
タクリル酸オクタデシル等で例示されるアクリル酸アル
キルエステルおよびメタクリル酸アルキルエステル;ス
チレン、α−メチルスチレン、ビニルトルエン、クロル
スチレン、2.4−ジブロムスチレン等で例示されるエ
チレン性不飽和芳香族単量体;酢酸ビニル、プロピオン
酸ビニル等の如きビニルエステル;塩化ビニリデン、臭
化ビニリデン等の如きビニリデンハシイド:アクリル酸
−2−ヒドロキシエチル、アクリル酸−2−ヒドロ午ジ
プロピル、メタクリル酸−2−ヒドロキシエチル等の如
きエチレン性不飽和カルボン酸のヒドロキシアルキルエ
ステル:アクリル酸グリシジル、メタクリル酸グリシジ
ル等の如きエチレン性不飽和カルボン酸のグリシジルエ
ステルおよびアクリルアミド、メタクリルアミド、N−
メチロールアクリルアミド、N−メチロールメタクリル
アミド、N−ブトキシメチルアクリルアミド、ジアセト
ンアクリルアミド等のラジカル重合可能な単量体が挙げ
られる。
Other ethylenically unsaturated monomers that can be copolymerized with butadiene, methacrylonitrile, and ethylenically unsaturated carboxylic acids used in the present invention include, in addition to acrylonitrile, methyl acrylate, methyl methacrylate, ethyl acrylate, and methacryl. Ethyl acid, propyl acrylate, globyl methacrylate, butyl acrylate, butyl methacrylate, pentyl acrylate, pentyl methacrylate, hexyl acrylate, hexyl methacrylate, heptyl acrylate, heptyl methacrylate, octyl acrylate, octyl methacrylate , acrylic acid alkyl esters and methacrylic acid alkyl esters, such as octadecyl acrylate, octadecyl methacrylate, etc.; Unsaturated aromatic monomers; vinyl esters such as vinyl acetate, vinyl propionate, etc.; vinylidene hasides such as vinylidene chloride, vinylidene bromide, etc.: 2-hydroxyethyl acrylate, 2-hydro-dipropyl acrylate, Hydroxyalkyl esters of ethylenically unsaturated carboxylic acids, such as 2-hydroxyethyl methacrylate, etc.: Glycidyl esters of ethylenically unsaturated carboxylic acids, such as glycidyl acrylate, glycidyl methacrylate, etc., and acrylamide, methacrylamide, N-
Examples include radically polymerizable monomers such as methylol acrylamide, N-methylol methacrylamide, N-butoxymethyl acrylamide, and diacetone acrylamide.

本発明のラテックスは、前記したブタシュン55〜60
重惜%、メタクリロニトリル5〜60Jj[%、エチレ
ン性不9相カルボン酸1〜8i量%及びこれら単量体と
共重合可能なその他のエチレン性不飽和単量体0〜59
M!%よりなる単量体組成から得られるが、メタクリロ
ニトリルの使用比率が少ない場合はその他のエチレン性
不飽和単量体としてアクリロニトリルの如きニトリル基
含有単量体を使用してラテックスのポリマー中に占める
ニトリル基C含有率を17重量%以上とする必要がある
The latex of the present invention has the above-mentioned Butashun 55-60.
weight %, methacrylonitrile 5-60 Jj[%, ethylenically un9-phase carboxylic acid 1-8i weight %, and other ethylenically unsaturated monomers copolymerizable with these monomers 0-59
M! %, but if the proportion of methacrylonitrile used is small, a nitrile group-containing monomer such as acrylonitrile may be used as other ethylenically unsaturated monomer to form a latex polymer. It is necessary that the nitrile group C content is 17% by weight or more.

本発明のラテックスは水性媒体中にて、上記単量体混合
物を通常の乳化重合法により重合して請判される。例え
ばアニオン性又はノニオン性乳化剤の存在下で単量体混
合物を水中に乳化分散させ、フリーラジカル発生触媒、
例えばKPS (K、S、O,)、AP S ((NH
4)tstoa)、過酸化水素水等の水性触媒、t−ブ
チルハイドロパーオキサイド、クメンハイドロパーオキ
サイド等の油性触媒により好ましくは40℃〜90℃で
乳化重合を行えばよい。
The latex of the present invention is prepared by polymerizing the above monomer mixture in an aqueous medium by a conventional emulsion polymerization method. For example, a monomer mixture is emulsified and dispersed in water in the presence of an anionic or nonionic emulsifier, and a free radical generating catalyst,
For example, KPS (K, S, O,), AP S ((NH
4) Emulsion polymerization may be carried out preferably at 40°C to 90°C using an aqueous catalyst such as tstoa), hydrogen peroxide, or an oil catalyst such as t-butyl hydroperoxide or cumene hydroperoxide.

また、本発明において乳化重合に通常用いられる添加剤
、例えば連鎖移動剤、重合安定化や緩衝効果を目的とし
たエチレンジアミン四酢酸等を必要に応じて使用するこ
とは何ら差しつかえない。
Furthermore, in the present invention, additives commonly used in emulsion polymerization, such as chain transfer agents, ethylenediaminetetraacetic acid for the purpose of polymerization stabilization and buffering effects, etc. may be used as necessary.

本発明のラテックスは、例えばストリッピング等の方法
によって、必要とされる固形分含量に濃縮される。
The latex of the invention is concentrated to the required solids content, for example by methods such as stripping.

得られたラテックスは、pH3〜7、粘度60〜100
0cps程度のもので、より好ましくは安定性を向上さ
せるためアルカリ溶液でpH8〜1oに調整される。
The obtained latex has a pH of 3 to 7 and a viscosity of 60 to 100.
The pH is about 0 cps, and more preferably the pH is adjusted to 8 to 1o with an alkaline solution to improve stability.

〔発明の効果〕〔Effect of the invention〕

こうして得られた本発明のラテックスをバインダとして
用いて不織布加工した場合には、その不織布は極めて耐
溶剤性に優れ、また非常に柔軟なものから硬いものまで
用途に応じた広い範囲の風合を有する不織布が得られる
ので衣料用、資材用不織布として最適である。また含浸
性、スプレー性等安定性も良好である。
When the latex of the present invention thus obtained is used as a binder to process a nonwoven fabric, the nonwoven fabric has extremely excellent solvent resistance and can have a wide range of textures depending on the application, from extremely soft to hard. It is ideal as a nonwoven fabric for clothing and materials. It also has good stability in terms of impregnability and sprayability.

次に実施例によって本発明を具体的に説明する。なお、
文中に表示した部数及び%はそれぞれ重量部、重責%を
示す。
Next, the present invention will be specifically explained with reference to Examples. In addition,
The number of copies and percentages shown in the text indicate parts by weight and weight percentages, respectively.

また、実施例中におけるラテックスの凝集物生成率、機
械的安定性は下記方法で測定した。
In addition, the aggregate formation rate and mechanical stability of the latex in Examples were measured by the following methods.

〔測定方法〕〔Measuring method〕

0+  凝集物生成率(%) 重合反応終了後のラテックス1009を200メツシ二
のf布で1過し、120℃、1時間乾燥後のP残の重惜
全ラテックスの固型分重量で除した値を百分率で表わし
た。
0+ Aggregate formation rate (%) Latex 1009 after the completion of the polymerization reaction was passed through a 200 mesh cloth, and the weight of P remaining after drying at 120°C for 1 hour was divided by the solid weight of the total latex. Values are expressed as percentages.

(2)機械的安定性 マーロン式機械的安定性試験機を用いて50gのラテッ
クスを荷重10kl/、回転数300Orpmで10分
間回転m擦し、生成した凝集物′ft120℃、1時間
乾燥させた後の重量をラテックスの固型分重量で除した
値を百分率で表わした。
(2) Mechanical stability Using a Marlon type mechanical stability tester, 50 g of latex was rubbed at a load of 10 kl/ and a rotation speed of 300 rpm for 10 minutes, and the resulting aggregates were dried at 120°C for 1 hour. The value obtained by dividing the remaining weight by the solid weight of the latex was expressed as a percentage.

実施例1〜4 窒素置換した攪拌機付オートクレーブに1表−1に示す
ワ0 組成の原料を仕込み、Fm″:E1℃で攪拌しながら重
合率959以上になる迄乳化重合を行なった。次いで水
蒸気蒸留により脱モノマーを行なった後、25%アンモ
ニア水を添加してpH8〜9に調整し、さらに必要に応
じてイオン交換水を添加して固型分39.0〜4tO%
のラテックスA、 B。
Examples 1 to 4 Raw materials having the composition shown in Table 1 were charged into a nitrogen-substituted autoclave equipped with a stirrer, and emulsion polymerization was carried out with stirring at Fm'':E1°C until the polymerization rate reached 959 or more. After removing monomer by distillation, 25% ammonia water is added to adjust the pH to 8-9, and if necessary, ion-exchanged water is added to reduce the solid content to 39.0-4tO%.
latex A, B.

C,Dを得危工化重合はいずれも目標とする95%以上
の重合率になる迄安定に進行し、表−1に−示す結果の
如く重合中に発生する凝集物の債も非常に少ないもので
あった。
The critical polymerization to obtain C and D proceeded stably until the target polymerization rate of 95% or more was reached, and as shown in Table 1, the amount of aggregates generated during the polymerization was extremely low. It was small.

得られたラテックスの粘度も低く、又、機械的安定性も
極めて良好であった。
The viscosity of the obtained latex was low, and the mechanical stability was also extremely good.

比較例1,2 実施例1〜4と同様の方法で表−1に示す組成の原料を
仕込み、50℃で攪拌しながら重合率95%以上を目標
に乳化重合を行なった。次いで実施例1〜4と同様の方
法で脱モノマー、pH調整、固型分調整を行なってpH
8〜9、固型分390〜4tO%のラテックスを得た。
Comparative Examples 1 and 2 Raw materials having the compositions shown in Table 1 were charged in the same manner as in Examples 1 to 4, and emulsion polymerization was carried out at 50° C. with stirring, aiming at a polymerization rate of 95% or more. Next, in the same manner as in Examples 1 to 4, demonomer, pH adjustment, and solid content adjustment were performed to adjust the pH.
8-9, a latex with a solid content of 390-4 tO% was obtained.

結果は表−1に示す如く、メタクリロニトリルを使用し
ていない比較例1においては重合が全く不安定で、重合
開始8時間後に重合中のポリマー粒子が凝集し、ラテッ
クスを得ることが出来なかった。
The results are shown in Table 1. In Comparative Example 1, in which methacrylonitrile was not used, the polymerization was completely unstable, and 8 hours after the start of polymerization, the polymer particles during polymerization agglomerated, making it impossible to obtain latex. Ta.

また、メタクリロニトリルの使用量が少ない比較例2に
おいては重合反応が進行しにくく、20時間もの長時間
反応を継続しても重合光は93.8%と非常に低い。ま
た重合中に発生した凝集物の竜も、本発明例である実施
例1〜5に比較してはるかに多く、重合が不安定である
ことを示している。さらに得られたラテックスEは機械
的安定性が極めて悪かった。
Furthermore, in Comparative Example 2 in which the amount of methacrylonitrile used was small, the polymerization reaction was difficult to proceed, and even if the reaction was continued for as long as 20 hours, the polymerization light was extremely low at 93.8%. Furthermore, the number of aggregates generated during polymerization was much larger than in Examples 1 to 5, which are examples of the present invention, indicating that the polymerization was unstable. Furthermore, the obtained latex E had extremely poor mechanical stability.

以上の結果から、メタクリコニトリル5%未満でしかも
ニトリル基含有量の多い単量体組成の場合は安定な乳化
重合が田作であジ、得られたラテックスも不安定である
ことがわかる。
From the above results, it can be seen that in the case of a monomer composition containing less than 5% methacriconitrile and a high nitrile group content, stable emulsion polymerization is possible, but the obtained latex is also unstable.

比較例3〜6 実施例1〜4と同様の方法で表−1に示す組成の原料を
仕込み、50℃で撹拌しながら重合光95%以上になる
迄乳化重合を行なった。次いで実施例1〜4と同様の方
法で脱モノマー、pH調整、固型分調整を行なってpH
8〜9、固型分320〜410%のラテックスを得た。
Comparative Examples 3 to 6 Raw materials having the compositions shown in Table 1 were charged in the same manner as in Examples 1 to 4, and emulsion polymerization was carried out at 50° C. with stirring until the polymerization light reached 95% or more. Next, in the same manner as in Examples 1 to 4, demonomer, pH adjustment, and solid content adjustment were performed to adjust the pH.
A latex with a solid content of 320-410% was obtained.

結果は表−1に示す如く、エチレン性不飽和カルボン酸
の少ない比較例6においては、2テツクスの機械的性が
極めて悪かった。
The results are shown in Table 1. In Comparative Example 6, which contained less ethylenically unsaturated carboxylic acid, the mechanical properties of the 2-tex were extremely poor.

また、エチレン性不飽和カルボン酸の多い比較例4にお
いては、ラテックスの粘度が3,620 cpsと著し
く高いも試験例 実施例1〜4で得たラテックスA−Dをガラス板上に流
延し、25℃で2日間乾燥して、膜厚a3〜15WII
の乾燥皮膜を得た。次いで、この皮膜を熱風循環乾燥機
にて140℃、10分間熱処理した後、トルエン中に浸
漬して25℃で4日間静置して、次式に従って重量膨潤
率を算出した。
Furthermore, in Comparative Example 4, which contains a large amount of ethylenically unsaturated carboxylic acid, the viscosity of the latex was extremely high at 3,620 cps. , dried at 25°C for 2 days to obtain a film thickness of a3 to 15WII.
A dry film was obtained. Next, this film was heat-treated at 140°C for 10 minutes in a hot air circulation dryer, then immersed in toluene and allowed to stand at 25°C for 4 days, and the weight swelling ratio was calculated according to the following formula.

結果は表−2に示す如く、いずれもトルエンで膨潤はし
ているものの膨潤率200%以下の値を保持しており、
ニトリル基含有率の高い程優れた耐溶剤性を示していた
The results are shown in Table 2.Although they all swelled with toluene, the swelling rate remained below 200%.
The higher the nitrile group content, the better the solvent resistance.

次に実施例1〜4で得たラテックスA、B、C,Dをそ
れぞれ水で希釈して固型分12.5%に調整しfC後、
目付309/m”のポリエステルウェブを金網にはさん
でラテックス中に浸漬しウェブ中にラテックスを浸透さ
せて浸透のし易さを観察した。含浸後の不織布をゴムロ
ール/ステンレスロールのマングルにてラテックス(w
et)/繊維=32.5/100(重量比)になるよう
に一定条件で絞り、金網、マングル上へのラテックスの
凝集物の生成の有無を置県した。次に、100℃、5分
乾燥後、150℃、1分ベーキングすることによりラテ
ックス固型分/@維=13/100(重量比)の不織布
を得た。次いで、不織布芯地試験方法(JIS  L−
1085)に従って3 cycle迄の不織布のドライ
クリーニング強さ試験における不織布の形態変化を次の
判定基準に従って評価した。なお形態変化の判定基準 A級  変化なし B級  変化の目立つもの 0級  変化の著しいもの 結果は表−2に示す如く、いずれもマングル絞りにおけ
るラテックスの安定も良好で、また不織布のドライクリ
ーニング強さ試験による形態変化もなかった。
Next, latex A, B, C, and D obtained in Examples 1 to 4 were each diluted with water to adjust the solid content to 12.5%, and after fC,
A polyester web with a basis weight of 309/m" was sandwiched between wire meshes and dipped in latex to allow the latex to penetrate into the web to observe the ease of penetration. After impregnation, the nonwoven fabric was mixed with latex using a mangle of rubber rolls/stainless steel rolls. (w
et)/fiber=32.5/100 (weight ratio) under certain conditions, and the presence or absence of latex aggregates on the wire mesh and mangle was determined. Next, after drying at 100° C. for 5 minutes, baking was performed at 150° C. for 1 minute to obtain a nonwoven fabric with latex solid content/@fiber=13/100 (weight ratio). Next, the nonwoven fabric interlining test method (JIS L-
1085), the morphological change of the nonwoven fabric in the dry cleaning strength test of the nonwoven fabric up to 3 cycles was evaluated according to the following criteria. In addition, the judgment criteria for morphological changes are: Class A, no change Class B, noticeable change Class 0, marked change As shown in Table 2, the stability of the latex during mangle drawing was good in all cases, and the dry cleaning strength of the nonwoven fabric was There was no morphological change due to the test.

比較試験例 比較例2〜6で得たラテックスE−Iを用いて試験例と
同様の方法で熱処理皮膜のトルエンに対する重量膨潤率
を測定した。次いで、試験例と同様の方法で不織布加工
を行ないマングル絞シにおけるラテックスの安定性及び
ドライクIJ −ニング強さ試験における形態変化を調
べた。
Comparative Test Example Using the latex E-I obtained in Comparative Examples 2 to 6, the weight swelling ratio of the heat-treated film to toluene was measured in the same manner as in the test example. Next, the nonwoven fabric was processed in the same manner as in the test example, and the stability of the latex in mangle drawing and the morphological change in the dry IJ-ning strength test were investigated.

結果は表−2に示す如く、ニトリル基含有率が16.6
%のラテックスIの熱処理皮膜は、トルエンによる″i
f膨潤率が高く、また加工した不織布のドライクリーニ
ング強さも劣っていた。
As shown in Table 2, the nitrile group content was 16.6.
% of latex I was heat-treated by toluene.
The f-swelling rate was high, and the dry cleaning strength of the processed nonwoven fabric was also poor.

メタクリロニトリル含有量が4%のラテックスE及びエ
チレン性不飽和カルボン酸の使用量が05%のラテック
スFはマングル絞りにより、凝集物が発生し、著しく、
安定性が劣っていた。
Latex E with a methacrylonitrile content of 4% and latex F with an ethylenically unsaturated carboxylic acid content of 0.5% produced aggregates during mangle squeezing, resulting in significant
Stability was poor.

また、エチレン性不飽和カルボン酸の使用量が10%の
ラテックスGは、粘度が高すぎるために不織布への浸透
が不均一となり、その結果、ドライクリーニング強さに
も劣るものであった。
In addition, Latex G containing 10% of ethylenically unsaturated carboxylic acid had too high a viscosity, resulting in uneven penetration into the nonwoven fabric, and as a result, its dry cleaning strength was poor.

ブタジェンの使用量か36%であるラテックスHは常温
(25℃)における皮膜形成能力がなく、このためマン
グル絞りにおいてロールの端部に粉末状の乾燥物が発生
し、含浸液に落下混入して作業性が著しく劣っていた。
Latex H, which contains 36% butadiene, does not have the ability to form a film at room temperature (25°C), and as a result, powdery dry matter is generated at the end of the roll during mangle squeezing, and it falls into the impregnating liquid. Workability was significantly poor.

以上の結果から、本発明の特許請求範囲からはずれた単
量体組成及びニトリル基含有率のラテックスは、耐溶剤
性不織布のバインダーとして適さないことがわかる。
From the above results, it can be seen that a latex having a monomer composition and a nitrile group content outside the scope of the claims of the present invention is not suitable as a binder for a solvent-resistant nonwoven fabric.

z″ /′z″ /′

Claims (1)

【特許請求の範囲】[Claims] 1.ブタジエン35〜60重量%、メタクリロニトリル
5〜60重量%、エチレン性不飽和カルボン酸1〜8重
量%及びこれらの単量体と共重合可能なその他のエチレ
ン性不飽和単量体0〜59重量%からなる単量体混合物
を乳化重合し、且つポリマー中に占めるエトリル基(−
C≡N)の割合を17重量%以上としたラテツクスを用
いる耐溶剤性に優れる不織布用結合剤。
1. 35-60% by weight of butadiene, 5-60% by weight of methacrylonitrile, 1-8% by weight of ethylenically unsaturated carboxylic acid, and 0-59% of other ethylenically unsaturated monomers copolymerizable with these monomers. Emulsion polymerization of a monomer mixture consisting of
A binder for nonwoven fabrics having excellent solvent resistance using latex with a proportion of C≡N) of 17% by weight or more.
JP62001511A 1987-01-07 1987-01-07 Non-woven fabric binder with excellent solvent resistance Expired - Lifetime JPH0791767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62001511A JPH0791767B2 (en) 1987-01-07 1987-01-07 Non-woven fabric binder with excellent solvent resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62001511A JPH0791767B2 (en) 1987-01-07 1987-01-07 Non-woven fabric binder with excellent solvent resistance

Publications (2)

Publication Number Publication Date
JPS63175151A true JPS63175151A (en) 1988-07-19
JPH0791767B2 JPH0791767B2 (en) 1995-10-04

Family

ID=11503507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62001511A Expired - Lifetime JPH0791767B2 (en) 1987-01-07 1987-01-07 Non-woven fabric binder with excellent solvent resistance

Country Status (1)

Country Link
JP (1) JPH0791767B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296306A (en) * 1992-11-18 1994-03-22 Great Lakes Chemical Corp. Flame retardant brominated styrene graft latex coatings
US5484839A (en) * 1992-11-18 1996-01-16 Great Lakes Chemical Corp. Flame retardant brominated styrene graft latex compositions
JP2007002125A (en) * 2005-06-24 2007-01-11 Asahi Kasei Chemicals Corp Copolymer latex for nonwoven fabric binder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296306A (en) * 1992-11-18 1994-03-22 Great Lakes Chemical Corp. Flame retardant brominated styrene graft latex coatings
US5484839A (en) * 1992-11-18 1996-01-16 Great Lakes Chemical Corp. Flame retardant brominated styrene graft latex compositions
JP2007002125A (en) * 2005-06-24 2007-01-11 Asahi Kasei Chemicals Corp Copolymer latex for nonwoven fabric binder
JP4641876B2 (en) * 2005-06-24 2011-03-02 旭化成ケミカルズ株式会社 Copolymer latex for nonwoven fabric binder

Also Published As

Publication number Publication date
JPH0791767B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
US3787232A (en) Low temperature curing polymers used as coatings for fibrous materials
CA1272543A (en) Fabric coating compositions with low formaldehyde evolution
EP0176609B1 (en) Process for preparing latexes of polymers having pendant coreactive and oxazoline groups
JP2918052B2 (en) Film-forming self-crosslinking aqueous plastic dispersion, method for producing the same and method for finishing textile products
US4455342A (en) Acrylic resin dispersions
JPH0249337B2 (en)
CA1332544C (en) Two-stage heat resistant binders for nonwovens
KR0155376B1 (en) Aqueous polymer dispersion
JPS63223018A (en) Production of emulsified polymer composition
JP2559427B2 (en) Nonwoven fabric containing acrylate interfiber binder and method for producing the nonwoven fabric
JPS63175151A (en) Binder for nonwoven fabric excellent in solvent resistance
JPH04261416A (en) Functinalized styrene-butadiene- latex binders
CN114072479B (en) Aqueous polymer formulations
US10421877B2 (en) Core-shell aqueous latex
JP2001098465A (en) Adhesive for treating fiber
RU2573017C2 (en) Curable water-based composition
JP2576505B2 (en) Non-woven fabric binder
JP3311086B2 (en) Emulsion composition
JPH0892853A (en) Polymer latex for rock fiber aggregate, adhesive composition for rock fiber aggregate and rock fiber aggregate
JP2977794B2 (en) One-component systems based on co-reactive copolymers that form low-temperature crosslinkable coatings without forming formaldehyde
CN108368406B (en) Formaldehyde-free curable formulations
JPH0463816A (en) Aqueous copolymer emulsion containing vinylsilane and diallyl ester of dibasic acid and preparation thereof
JP4641876B2 (en) Copolymer latex for nonwoven fabric binder
JPS61239085A (en) Production of impregnated paper for filter
JP5667772B2 (en) Resin emulsion for glass fiber treatment

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term