JPS63173973A - Quantity of electricity measuring apparatus - Google Patents

Quantity of electricity measuring apparatus

Info

Publication number
JPS63173973A
JPS63173973A JP714687A JP714687A JPS63173973A JP S63173973 A JPS63173973 A JP S63173973A JP 714687 A JP714687 A JP 714687A JP 714687 A JP714687 A JP 714687A JP S63173973 A JPS63173973 A JP S63173973A
Authority
JP
Japan
Prior art keywords
frequency
voltage
current
power
sampling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP714687A
Other languages
Japanese (ja)
Inventor
Toshihisa Funahashi
俊久 舟橋
Yoshito Fujita
藤田 好人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP714687A priority Critical patent/JPS63173973A/en
Publication of JPS63173973A publication Critical patent/JPS63173973A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent errors due to any frequency deviation, by measuring the frequency of a system when deviated from a fundamental frequency to compute the results of computation of voltage, current and power with the correction thereof by a correction factor determined by a measured frequency. CONSTITUTION:An output of a sampling/holding part S/H which samples and holds a voltage (v) and current (i) obtained from a power system is inputted into an A/D convertor section A/D through a multiplexer MPX. An output of the A/D convertor section A/D is computed at an arithmetic section AL and values of voltage, current, effective power, reactive power and the like are inputted into a correcting/computing section CPE, into which also is inputted a frequency (f) of a voltage of the power system as measured with a frequency measuring section FRS. The correcting/computing section CPE corrects values inputted using the frequency (f) and outputs quantity of electricity - voltage, current, effective power, reactive power and the like - free from errors in variations wit time, phase characteristic and frequency characteristic.

Description

【発明の詳細な説明】 A、産業上の利用分野 この発明は電力系統から得られる電圧電流をデジタル処
理して電圧、電流、電力等の電気量を測定する装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application This invention relates to a device that digitally processes voltage and current obtained from a power system to measure electrical quantities such as voltage, current, and power.

B9発明の概要 この発明は電圧、電流、電力等の電気量測定装置におい
て、 系統の周波数が基本周波数からずれたとき、その周波数
を測定し、電圧、電流、電力の演算結果を測定周波数で
定まる補正係数で補正演算することにより、 周波数ずれによる電気量測定の誤差をなくすようにした
ものである。
B9 Summary of the Invention This invention is a device for measuring electrical quantities such as voltage, current, and power, which measures the frequency when the frequency of the grid deviates from the fundamental frequency, and determines the calculation results of the voltage, current, and power based on the measured frequency. By performing correction calculations using correction coefficients, errors in electrical quantity measurement due to frequency deviations are eliminated.

C6従来の技術 第4図は従来例による電気量測定装置を示すブロック図
で、第4図において、S/Hは電力系統から得られた電
圧V、雷電流をサンプリングしてホールドするサンプリ
ング・ホールド部、このサンプリング・ホールド部S/
Hの出力はマルチプレクサMPXを介してアナログ・デ
ジタル変換部A/Dに入力される。アナログ・デジタル
変換部A/Dの出力は演算部ALで演算され、出力に電
圧、電流、有効電力、無効電力等の電気量測定装置が得
られる。
C6 Conventional technology Figure 4 is a block diagram showing a conventional electrical quantity measuring device. In Figure 4, S/H is a sampling/holding system that samples and holds the voltage V and lightning current obtained from the power system. section, this sampling/hold section S/
The H output is input to the analog/digital converter A/D via the multiplexer MPX. The output of the analog-to-digital converter A/D is calculated by the calculation unit AL, and an electrical quantity measuring device such as voltage, current, active power, and reactive power is obtained as an output.

なお、上記装置のサンプリング周波数f、は通常電力系
統の基本周波数f0の4m倍(mは正整数)が使用され
、式で表わすとfs=4mfaとなる。
Note that the sampling frequency f of the above device is normally 4m times the fundamental frequency f0 of the power system (m is a positive integer), and when expressed by the formula, fs=4mfa.

いま、fo=50Hz、m=3とすれば、サンプリング
周波数はf、=4X3X50=600Hzとなる。
Now, if fo = 50 Hz and m = 3, the sampling frequency will be f = 4 x 3 x 50 = 600 Hz.

上記のようにして得られた電圧、電流の瞬時値から電圧
、電流、有効電力、無効電力等の電気量を測定する手段
としては種々の手段が提案されている。その1つとして
実効値を用いた従来の計算手段を次表1に示す。
Various means have been proposed as means for measuring electrical quantities such as voltage, current, active power, and reactive power from the instantaneous values of voltage and current obtained as described above. One example of conventional calculation means using effective values is shown in Table 1 below.

” 表ま ただし サンプリング周波数 f 、=600Hzサンプリング
間隔 θ、=360X50/600=30’V(j )
=sin(2yr ・f o・j /600+ αX第
5図に波形を示す)D0発明が解決しようとする問題点 火に上記計算手段による計算結果を時間的変動、位相特
性及び周波数特性別について以下述べる。
” Sampling frequency f, = 600Hz sampling interval θ, = 360X50/600 = 30'V (j)
= sin (2yr ・f o ・j /600 + αX The waveform is shown in FIG. 5) D0 The problem to be solved by the invention The calculation results by the above calculation means for ignition will be described below in terms of temporal fluctuations, phase characteristics, and frequency characteristics. .

まず、時間的変動について述べる。次表2は面記表1の
5つの手段のアルゴリズムについての変動の振幅を示し
、また、第6図A−F及び第7図A−Fは時間的変動を
示したものである。
First, we will discuss temporal fluctuations. Table 2 below shows the amplitude of fluctuations for the algorithms of the five means in Table 1, and FIGS. 6A-F and 7A-F show the temporal fluctuations.

第6図A−F及び第7図A−F’と、表2から以下に示
すような問題点が発生する。
From FIGS. 6A-F and 7A-F' and Table 2, the following problems occur.

(1)f=50Hzにおいては、どのアルゴリズムも一
定値に落ち着き、実効値を正しく演算することができる
。ただし、面積法の場合だけサンプリング位相αによっ
て計算値が異なるため誤差を生じる。面積法の計算値は
α=0°、30”。
(1) When f=50Hz, all algorithms settle on a constant value and can calculate the effective value correctly. However, only in the case of the area method, an error occurs because the calculated value differs depending on the sampling phase α. The calculated value using the area method is α=0°, 30”.

60°・・・で最小、α=15@、45°、75@・・
・で最大となるため、これらの位相において誤差の最大
値が生じる。
Minimum at 60°, α=15@, 45°, 75@...
・The maximum value of the error occurs at these phases.

(2)f≠50 Hzでは、どのアルゴリズムも周波数
fの2倍の周期で振動し、表2より各アルゴリズムにつ
いて、その変動振幅を比較すると次のようになる。
(2) When f≠50 Hz, all algorithms oscillate at a period twice the frequency f, and from Table 2, the fluctuation amplitudes of each algorithm are compared as follows.

(a)2乗加算、3積法においてルートを取ると変動振
幅が小さくなる。
(a) If the root is taken in the square addition and triple product methods, the fluctuation amplitude becomes smaller.

(b)2乗加算Rと3積Rでは、2乗加算Rの方が変動
振幅が小さい。
(b) Between square addition R and triple product R, square addition R has a smaller fluctuation amplitude.

次に位相特性における問題点について示す。Next, problems with phase characteristics will be explained.

上述したように面積法ではf =50Hzにおいても、
位相角αの影響を受ける。その他の手段ではf=50H
zにおいては位相角αの影響を受けないが、f≠50 
Hzにおいては位相角αの値によって計算値(1サイク
ル平均値)が変動する。
As mentioned above, in the area method, even at f = 50Hz,
Affected by phase angle α. For other means f = 50H
At z, it is not affected by the phase angle α, but f≠50
At Hz, the calculated value (one cycle average value) varies depending on the value of the phase angle α.

この変動の様子をf=45Hzの場合を例にとって計算
した結果を表3に示す。
Table 3 shows the results of calculating this variation using the case of f=45 Hz as an example.

表3 最後に周波数特性について述べる。上記した5つの手段
のアルゴリズムについて、f=40〜601−1 zに
おける周波数特性を表4〜6及び第8図。
Table 3 Finally, we will discuss the frequency characteristics. Tables 4 to 6 and FIG. 8 show the frequency characteristics at f=40 to 601-1 z for the algorithms of the five means described above.

第9図A、Hに示す。これら表4〜6及び第8図。Shown in FIGS. 9A and 9H. These Tables 4 to 6 and FIG.

第9図A、I3はV 1.V2R,V3Rの1サイクル
積分値を50サイクルの計算値で正規化したものである
。なお、面積法についてはf=50Hzにおける平均値
汐1 (α=0”)+ V 1 (α=15°)/2で
正規化した。
Figure 9A, I3 is V1. The 1-cycle integral values of V2R and V3R are normalized by the calculated value of 50 cycles. In addition, regarding the area method, the average value at f=50 Hz was normalized by 1 (α=0″)+V 1 (α=15°)/2.

表4 各種アルゴリズムの周波数特性 正規化したlサイクル平均値の比較 f 、=600H
z  α=0度表5 各種アルゴリズムの周波数特性 正規化した1サイクル平均値の比較 f、=600Hz
  α=15度表6 各種アルゴリズムの周波数特性(
誤差)正規化したlサイクル平均値のもつ誤差の比較f
 、=600Hz α=0度 上記表3〜6及び第8図、第9図A、Bから次のような
問題点が生じる。
Table 4 Comparison of normalized l-cycle average values of frequency characteristics of various algorithms f, = 600H
z α = 0 degrees Table 5 Comparison of normalized 1-cycle average values of frequency characteristics of various algorithms f, = 600 Hz
α=15 degrees Table 6 Frequency characteristics of various algorithms (
Error) Comparison of errors of normalized l-cycle average values f
, = 600 Hz α = 0 degree The following problems arise from the above Tables 3 to 6 and FIGS. 8 and 9 A and B.

(1)面積法では第1O図A−Cに示すようにf=50
Hz近辺でも誤差が大きくなる。
(1) In the area method, f = 50 as shown in Figure 1A-C.
The error becomes large even near Hz.

(2)面積性以外の手段ではf=50Hz近辺では精度
がよいが、系統の周波数が基本周波数からずれた場合に
は誤差が大きくなる。(第1O図B、C)また、これら
の誤差の値はサンプリング位相αによって変動するため
、周波数による補正を行なうこともできない。
(2) Means other than areal measurement have good accuracy near f=50Hz, but errors increase when the frequency of the system deviates from the fundamental frequency. (B, C in FIG. 1O) Moreover, since the values of these errors vary depending on the sampling phase α, it is also impossible to perform correction based on the frequency.

E0問題点を解決するための手段 この発明は電力系統から得られる電圧電流を系統の基本
周波数の4m倍(m:正整数)の周波数でサンプリング
する手段と、このサンプリング手段でサンプリングされ
た電圧電流データをデジタル量に変換する手段と、この
手段により変換されたデジタル量から電圧、電流、電力
の波高値を演算する手段と、前記電力系統の電圧から周
波数を測定する手段と、前記演算手段で演算された電圧
Means for Solving the E0 Problem This invention provides means for sampling the voltage and current obtained from the power system at a frequency that is 4m times the fundamental frequency of the power system (m: a positive integer), and the voltage and current sampled by this sampling means. means for converting data into a digital quantity; means for calculating peak values of voltage, current, and power from the digital quantity converted by the means; means for measuring a frequency from the voltage of the electric power system; and the calculating means. Calculated voltage.

電流、電力の演算結果が入力されるとともに前記周波数
測定手段により測定された周波数により定まる補正係数
が入力され、この補正係数により前記電圧、電流、電力
の演算結果を補正し、出力に電気量測定結果を送出する
補正演算手段とを備えたものである。
The calculation results of current and power are input, and at the same time, a correction coefficient determined by the frequency measured by the frequency measuring means is input, and the calculation results of voltage, current, and power are corrected by this correction coefficient, and the output is used to measure the quantity of electricity. and correction calculation means for sending out the results.

F0作用 この発明では電力系統の電圧から周波数を測定してその
測定した周波数で演算部の演算結果を補正するようにし
た。このため、周波数ずれによる誤差はなくすることが
できる。この誤差補正はサンプリング位相αに依存され
ないため、いかなるタイミングでサンプリングしても正
確な測定ができる。
F0 Effect In this invention, the frequency is measured from the voltage of the power system, and the calculation result of the calculation section is corrected using the measured frequency. Therefore, errors due to frequency deviation can be eliminated. Since this error correction is not dependent on the sampling phase α, accurate measurements can be made no matter what timing the sample is taken.

G、実施例 以下図面を参照してこの発明の一実施例を説明するに、
第4図と同一部分には同一符号を付して述べる。
G. Example An example of the present invention will be described below with reference to the drawings.
The same parts as in FIG. 4 will be described with the same reference numerals.

第4図において、演算部ALの出力に得られた電圧V1
.電流■、有効電力Pl、無効電力Q1等の6値が補正
演算部CPEに入力される。この補正演算部CPEには
また、周波数測定部F’RSで測定された電力系統の電
圧の周波数fが入力される。補正演算部CPEは入力さ
れたV、、  I 、、 P;。
In FIG. 4, the voltage V1 obtained at the output of the calculation unit AL
.. Six values, such as current ■, active power Pl, and reactive power Q1, are input to the correction calculation unit CPE. The correction calculation unit CPE also receives the frequency f of the voltage of the power system measured by the frequency measurement unit F'RS. The correction calculation unit CPE receives the input V,, I,, P;.

Ql等の6値を同じく入力された周波数fを用いて補正
して出力に、時間的変動、位相特性及び周波数特性にお
いて誤差が生じない電圧vt、電流!、、有効電力Pa
、無効電力Q2等の電気量を得る。
The six values such as Ql are corrected using the frequency f that is also input, and the output is a voltage vt, current that does not cause errors in temporal fluctuations, phase characteristics, and frequency characteristics! ,,active power Pa
, reactive power Q2, etc. are obtained.

次に演算部ALにより電圧vl、電流I5.有効電力P
t、無効電力Q、を演算して得る手段を数式を用いて述
べるに、まず各符号の意味を次のように定義する。
Next, the voltage vl, the current I5. Active power P
To describe the means for calculating and obtaining t and reactive power Q using mathematical formulas, first, the meaning of each symbol is defined as follows.

f :系統周波数(例えばf=45〜55Hz)fo 
:系統の基本周波数(fo=50Hzとする)f、:サ
ンプリング周波数(f−=4fOとする)τ :サンプ
リング間隔(τ=2πf / f 、)V :入力電圧
瞬時値 i :入力端子瞬時値 v= Vsin(ωL+θv)=VsinAi= l5
in(ωを十〇i)= l5inBθ :電圧電流の位
相差(θ=θV−θi= A −B )vn:第2図に
示す現時点のデータ V n−+ :第2図に示す!サンプリング前のデータ
Vn−9:第2図に示す2サンプリング前のデータ前記
演算部ALの出力に得られる電圧v2.無効電力Q5.
有効電力P1は次式(1)、(2)。
f: System frequency (e.g. f = 45-55Hz) fo
: Fundamental frequency of the system (fo=50Hz) f, : Sampling frequency (f-=4fO) τ : Sampling interval (τ=2πf/f,) V : Input voltage instantaneous value i : Input terminal instantaneous value v = Vsin(ωL+θv)=VsinAi= l5
in (ω = 10i) = l5inBθ: Phase difference of voltage and current (θ = θV - θi = A - B) vn: Current data shown in Figure 2 V n-+: Shown in Figure 2! Data before sampling Vn-9: Data before two samplings shown in FIG. 2 Voltage v2. obtained at the output of the arithmetic unit AL. Reactive power Q5.
The active power P1 is expressed by the following formulas (1) and (2).

(3)式を演算することにより得る。Obtained by calculating equation (3).

Yl”” Vn−1”−VnVn−*    ”” (
1)QI  −Vn−11n−Vnln−1”” (2
)P+=Vn−言n−+−1/2(Vnln−*+Vn
−tln)”” (3)次1.: (1) 〜(3)式
によッテV In P r、 Q +が求められること
を以下に説明する。まず(1)〜(3)式を展開すると
(4)〜(6)式のようになる。
Yl""Vn-1"-VnVn-*"" (
1) QI -Vn-11n-Vnln-1"" (2
)P+=Vn-wordn-+-1/2(Vnln-*+Vn
-tln)”” (3) Next 1. : It will be explained below that V In Pr, Q + is determined by the equations (1) to (3). First, when formulas (1) to (3) are expanded, formulas (4) to (6) are obtained.

Vl′=Vn−+”−VnVn−t = V”sin”(A−r )−VsinAXVsin
(A−2r )= V”((sinAcosr −co
sAsinr )”−5inA(sinAcos2r 
−cosAsin2r ))= Y” (sin”Ac
os” r +cos”As1n” r−2sinAc
osAs+1nrcos r−sin”Acos’ r
 +sin”As1n” r+2sinAcosAsi
nτ cosτ )= V”cos(A−A)sin”
 r==V”sin’τ             ・
・・(4)Qr  = Vn−tIn−Vnln−+=
 Vsin(^−r )X1sinB−VsinAXI
sin(B−r )=Vl ((sinAcost −
cosAsinr )sinB−sinA(sinBc
osr −cosBsinr ))= V、l5in(
A−B)sinr 、      =VIsinθminτ       
   ・・・(5)’P+ 、== Vn−tjn−t
−VnL−t= Vn−lIn−+−1/2(Valn
−t”Vn−tlvi)= Ysin(A−r )Xl
sin(B−r )−1/2(VsinAxlsin(
B−2r )+Vsin(A−2r )XIsinB)
= Vl((sinAcosr −cosAsinr 
)(sinBcosr −cosBsinr )−1/
2sinA(sinBcos2r −cosBsin2
r )−1/2sinB(sinAcos2r −co
sAsin2r ))= Vl (sinAsinBc
os”r +cosAcosBsin”r−(sinA
cosB+cosAsinB)sinr cosr−1
/2sinAsinB(cos”r−sin宜τ)+5
inAcosBsin r cos r−1/2sin
AsinB(cos’t−5in”r )+cossi
nBsinτCo1tτ)= VI(cosAcosB
+5inAsinB)sin”r= Vlcos(A−
B)sin”r = VIcosAsin’t          ”・
(6)ここで、系統の周波数fがf = f o (5
0Hz )ならば以下のように正確にV、I、P、Qを
求めることができる。
Vl'=Vn-+"-VnVn-t=V"sin"(A-r)-VsinAXVsin
(A-2r)=V”((sinAcosr-co
sA sinr )”-5inA(sinA cos2r
−cosAsin2r ))= Y” (sin”Ac
os” r +cos”As1n” r-2sinAc
osAs+1nrcos r-sin"Acos' r
+sin”As1n” r+2sinAcosAsi
nτ cosτ )=V”cos(A-A)sin”
r==V"sin'τ・
...(4) Qr = Vn-tIn-Vnln-+=
Vsin(^-r)X1sinB-VsinAXI
sin(Br)=Vl((sinAcost−
cosA sinr) sinB-sinA(sinBc
osr − cosBsinr )) = V, l5in(
A-B) sinr, =VIsinθminτ
...(5)'P+,==Vn-tjn-t
−VnL−t=Vn−lIn−+−1/2(Valn
−t”Vn−tlvi)=Ysin(A−r)Xl
sin(B-r)-1/2(VsinAxlsin(
B-2r)+Vsin(A-2r)XIsinB)
= Vl((sinAcosr −cosAsinr
)(sinBcosr-cosBsinr)-1/
2sinA(sinBcos2r-cosBsin2
r )-1/2sinB(sinAcos2r-co
sA sin2r )) = Vl (sinA sinBc
os"r +cosAcosBsin"r-(sinA
cosB+cosAsinB) sinr cosr-1
/2sinAsinB(cos”r−sin τ)+5
inAcosBsin r cos r-1/2sin
AsinB(cos't-5in"r)+cossi
nBsinτCo1tτ) = VI(cosAcosB
+5inAsinB)sin”r=Vlcos(A-
B) sin”r = VI cos Asin’t”・
(6) Here, the frequency f of the system is f = f o (5
0Hz), then V, I, P, and Q can be determined accurately as follows.

τ=2πf/f、−2πfo/4f、=π/2sinr
 =sinyr /2 = 1となり、(4)式より V 1”” Vn−1”−Vn”Vn−1= V”  
      ”” (7)(5)式より Q r= Vn−3・In−Vn”In−t= Vls
inθ=(1−−−(+3)(6)式より P1=Vn−1・tn−+−1/2(V+%・In−*
”Vn−t・tn)= VIcosQ= P     
        ・・・(9)ところが系統の周波数f
が基本周波数f0からずれた場合、f f−f o (
50Hz )はτ=2πf/f、=2π(/4fo=π
/2−f/f。
τ=2πf/f, -2πfo/4f, =π/2sinr
= sinyr /2 = 1, and from equation (4), V 1""Vn-1"-Vn"Vn-1=V"
"" From equations (7) and (5), Q r= Vn-3・In-Vn"In-t= Vls
inθ=(1−−−(+3)) From formula (6), P1=Vn−1・tn−+−1/2(V+%・In−*
”Vn-t・tn)=VIcosQ=P
...(9) However, the frequency f of the system
deviates from the fundamental frequency f0, f f−f o (
50Hz) is τ=2πf/f, =2π(/4fo=π
/2-f/f.

5inr=sin(yr/2・f/fo)≠1となる。5inr=sin(yr/2·f/fo)≠1.

このため(4)式より V l”= Vn−t−Vn”Vn−*= V”sxn
”r    ”” (10)(5)式より Q1=Vn−t・I n−Vn・in−+=Qsinτ
   −−−(11)(6)式より P+−Vn−+”In−+−Vn’In−1= Psi
n”τ −−−(12)となり、(10)、(11)、
(12)式は(7)。
Therefore, from equation (4), V l"= Vn-t-Vn"Vn-*= V"sxn
"r"" (10) From formula (5), Q1=Vn-t・I n-Vn・in-+=Qsinτ
--- From equations (11) and (6), P+-Vn-+"In-+-Vn'In-1= Psi
n”τ ---(12), (10), (11),
Equation (12) is (7).

(8)、(9)式は等しくならず誤差を持つ。Equations (8) and (9) are not equal and have errors.

上記(10)、(II)、(12)式よりf f f 
oの場合には(1)式〜(3)式による演算結果は系統
周波数fと基本周波数f。によって決まる誤差を持つよ
うになる。この誤差はサンプリング位相αには関係しな
い。
From the above formulas (10), (II), and (12), f f f
In the case of o, the calculation results according to equations (1) to (3) are the system frequency f and the fundamental frequency f. It will have an error determined by This error is not related to the sampling phase α.

例えば、無効電力Qの測定誤差を評価してみる。For example, let's evaluate the measurement error of reactive power Q.

無効電力の真値をQとすると測定値Q、はQ 1=Qs
int =Qsin(g/2 ・f /f o )とな
る。
If the true value of reactive power is Q, the measured value Q is Q1=Qs
int=Qsin(g/2·f/f o ).

誤差εQ=(Q、−ψ/QXIQG= (stir −
1)XIOQ (%)となるから f = 45 Hz
の場合Ql= Qsinr= Qsin(z /2X4
5150)= QXo、9877となる。また、誤差ε
9は e Q=(Ql−Q)/QX100= (0,9877
−1)X100= −1,23(%)となる。
Error εQ=(Q, −ψ/QXIQG= (stir −
1) Since XIOQ (%), f = 45 Hz
If Ql = Qsinr = Qsin(z /2X4
5150)=QXo, 9877. Also, the error ε
9 is e Q=(Ql-Q)/QX100= (0,9877
-1)X100=-1,23(%).

次にf=55Hzの場合のQ、とεQを求めるとQr=
 Qsint= Qsin(r /2X55150)=
 QxO,9877εo=−1,23(%)となる。
Next, finding Q and εQ when f=55Hz, Qr=
Qsint=Qsin(r/2X55150)=
QxO, 9877εo=-1,23 (%).

ここでf=45Hz〜55Hzについて誤差εQの傾向
を図示すると第3図のようになる。
Here, the tendency of the error εQ for f=45 Hz to 55 Hz is illustrated as shown in FIG. 3.

上記のようにして演算部ALの出力に得られたv、、 
 I 、、 Pt、 Qtはf=foの場合には誤差が
ないから補正演算部CPEで補正する必要なくその出力
にVt、  I t、 P *、Qtの電気量として得
られる。しかし、ff−foのときには(10)弐〜(
12)式のような誤差sinτ、 sin”τが生じる
ので、この誤差を補正する必要がある。この誤差は周波
数fとf。によって決まるものであるから系統の周波数
「を周波数測定部FR8により求めることによりその補
正は可能である。なおfoは系統によって例えば5 G
Hzに固定される。周波数測定手段としては電圧Vの1
サイクルをIMHzのクロックパルスでパルス数に変換
し、そのパルス数をカウンタで計数することによって行
なう。
v obtained as the output of the calculation unit AL as described above,
Since there is no error in I,, Pt, and Qt when f=fo, there is no need for correction in the correction calculation unit CPE, and the outputs thereof can be obtained as electrical quantities of Vt, It, P*, and Qt. However, in the case of ff-fo, (10)2~(
12) Errors sin τ and sin" τ occur as shown in equation 12), so it is necessary to correct this error. Since this error is determined by the frequencies f and f, the system frequency " is determined by the frequency measurement unit FR8. This can be corrected by
Fixed at Hz. As a frequency measuring means, 1 of the voltage V is used.
This is done by converting the cycle into a number of pulses using an IMHz clock pulse and counting the number of pulses with a counter.

ここで基本周波数f o = 50 Hzのとき、カウ
ンタの出力はIXI O”150=20,000となる
から、周波数計測の分解能は 50/20,0OO=0.0025Hzとなる。
Here, when the fundamental frequency fo = 50 Hz, the output of the counter is IXI O''150 = 20,000, so the resolution of frequency measurement is 50/20,0OO = 0.0025 Hz.

上記のようにして得た計測周波数を45Hzから55H
zまで予め計測してその出力Fを補正演算部CPE内に
記憶させておく。表7に周波数fと周波数測定部の出力
Fを示すとともに誤差sinτ、 sin″τも同時に
示す。
Change the measurement frequency obtained as above from 45Hz to 55H.
z is measured in advance and its output F is stored in the correction calculation unit CPE. Table 7 shows the frequency f and the output F of the frequency measuring section, and also shows the errors sinτ and sin″τ.

表7 演算部ALの出力に得られたv、、x 、、p、。Table 7 v, , x, , p, obtained at the output of the arithmetic unit AL.

Ql、は補正演算部CPEに入力される。補正回路部C
PEでは次式(13)〜(15)による補正演算が行わ
れて出力に電気量が得られる。
Ql is input to the correction calculation unit CPE. Correction circuit section C
In the PE, correction calculations according to the following equations (13) to (15) are performed to obtain an electrical quantity as an output.

補正演算式は(4)式から(6)式によりvl−v1′
/sinτ・・・(13)Qt  = Ql/5inr
      ”・(14)Pt= P+/sin”r 
    −−−(15)となる。
The correction calculation formula is vl-v1' from equations (4) to (6).
/sinτ...(13) Qt = Ql/5inr
”・(14)Pt=P+/sin”r
---(15).

(13)式から(15)式におイテ、v、、Q、。From equation (13) to equation (15), ite,v,,Q,.

P+は演算部ALの出力に得られ、sinτ、 sin
”ではfとfoによって前述したように決定されるから
Vt”、 Ql、 P tは容易に求められる。特にs
inτ。
P+ is obtained at the output of the calculation unit AL, and sinτ, sin
"Vt", Ql, and Pt can be easily determined because they are determined by f and fo as described above. Especially s
inτ.

sin”τはf、foが決定されれば、予め表7に示す
ような値を補正演算部CPEに記憶させておくことによ
り簡単に補正演算ができ、周波数fが基本周波数f0か
らずれた場合でもV t、  I t、 P t。
Once f and fo have been determined, sin"τ can be easily corrected by storing the values shown in Table 7 in the correction calculation unit CPE in advance. If the frequency f deviates from the fundamental frequency f0, But V t, I t, P t.

Q、の電気量を正確に求めることができる。The amount of electricity Q can be determined accurately.

上記実施例ではサンプリング周波数f−=4f。In the above embodiment, the sampling frequency f-=4f.

の場合について述べて来たが、fs=4mf0(mは正
整数)の関係を満たせばサンプリング周波数f、はいく
らでもよく、V In  I In P In Q +
’D演算にはm個おきのデータを用いればよい。
We have described the case of , but as long as the relationship fs = 4mf0 (m is a positive integer) is satisfied, the sampling frequency f may be any value, and V In I In P In Q +
It is sufficient to use every m data for the 'D operation.

例えばm = 3−、 f o= 50 Hzの場合f
a=4X3X50=600Hzとなるが、このときvl
の演算は以上のように3個おきのデータを用いればよい
For example, if m = 3−, f o = 50 Hz, f
a=4X3X50=600Hz, but at this time vl
The calculation can be performed using every third piece of data as described above.

((4)式より) Y r”= Vn−s”−Vn@Vn−sI In P
 l+ Q+についても同様である。また、以上の説明
では系統の基本周波数f o= 50 HzとしたがF
 o= 60 Hzあるいはその他の値であっても成立
することは明らかである。
(From formula (4)) Y r"= Vn-s"-Vn@Vn-sI In P
The same applies to l+Q+. Also, in the above explanation, the fundamental frequency of the system f o = 50 Hz, but F
It is clear that o=60 Hz or other values also hold true.

H8発明の効果 以上述べたように、この発明によれば、系統の周波数が
基本周波数からずれた場合にもその周波数を測定して電
圧、電流、電力の測定結果を補正演算することにより、
周波数ずれによる誤差をなくすことができる。このとき
の誤差補正はサンプリング位相αに依存しないため、い
かなるタイミングでサンプリングしても正確な測定がで
きる。
H8 Effects of the invention As described above, according to the invention, even when the frequency of the grid deviates from the fundamental frequency, by measuring the frequency and performing correction calculations on the measurement results of voltage, current, and power,
Errors due to frequency deviation can be eliminated. Since the error correction at this time does not depend on the sampling phase α, accurate measurements can be made no matter what timing the sampling is performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示すブロック図、第2図
はサンプリングデータを示す電圧、電流波形図、第3図
は誤差の傾向を示す特性図、第4図は従来例を示すブロ
ック図、第5図はサンプリング点を示す波形図、第6図
AからFは面積法、2乗加算法及び3積法による時間的
変動を示す特性図、第7図AからFは面積法、2乗加算
R及び3積Rによる時間的変動を示す特性図、第8図は
面積法、2乗加算法、3積法、2乗加算R法及び3積R
法による周波数特性図、第9図A、Bは面積法、2乗加
算R法及び3積R法による周波数特性図、第1O図Aか
らCはα=θ°とα=15°のときの面積法、2乗加算
R法及び3積R法のそれぞれの周波数特性図である。 S/H・・・サンプリングホールド部、MPX・・・マ
ルチプレクサ、A/D・・・アナログデジタル変換部、
AL・・・演算部、FRS・・・周波数測定部、CPE
・・・補正演算部。 第1図 〕シ伸?汐11の70シワ口 第2図     第3図
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a voltage and current waveform diagram showing sampling data, Fig. 3 is a characteristic diagram showing error trends, and Fig. 4 is a block diagram showing a conventional example. Figure 5 is a waveform diagram showing the sampling points, Figure 6 A to F are characteristic diagrams showing temporal fluctuations by the area method, square addition method, and triple product method, Figure 7 A to F are the area method, A characteristic diagram showing temporal fluctuations due to square addition R and triple product R. Figure 8 shows the area method, square addition method, triple product method, square addition R method, and triple product R.
Figures 9A and B are frequency characteristic diagrams based on the area method, square-addition R method, and triple product R method. Figure 1O A to C are frequency characteristics diagrams when α=θ° and α=15°. It is a frequency characteristic diagram of each of the area method, the square addition R method, and the 3 product R method. S/H...sampling hold section, MPX...multiplexer, A/D...analog-to-digital conversion section,
AL...Arithmetic unit, FRS...Frequency measurement unit, CPE
...Correction calculation section. Figure 1] Shishin? Shio 11 70 wrinkle opening Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)電力系統から得られる電圧電流を系統の基本周波
数の4m倍(m:正整数)の周波数でサンプリングする
手段と、このサンプリング手段でサンプリングされた電
圧電流データをデジタル量に変換する手段と、この手段
により変換されたデジタル量から電圧、電流、電力の波
高値を演算する手段と、前記電力系統の電圧から周波数
を測定する手段と、前記演算手段で演算された電圧、電
流、電力の演算結果が入力されるとともに前記周波数測
定手段により測定された周波数により定まる補正係数が
入力され、この補正係数により前記電圧、電流、電力の
演算結果を補正し、出力に電気量測定結果を送出する補
正演算手段とを備えた電気量測定装置。
(1) A means for sampling the voltage and current obtained from the power grid at a frequency that is 4m times the fundamental frequency of the grid (m: a positive integer), and a means for converting the voltage and current data sampled by the sampling means into a digital quantity. , means for calculating peak values of voltage, current and power from the digital quantities converted by this means; means for measuring frequency from the voltage of the power system; and means for calculating the peak values of voltage, current and power from the digital quantities converted by the means; When the calculation results are input, a correction coefficient determined by the frequency measured by the frequency measuring means is input, and the calculation results of the voltage, current, and power are corrected by this correction coefficient, and the electrical quantity measurement results are sent to the output. An electrical quantity measuring device comprising a correction calculation means.
JP714687A 1987-01-14 1987-01-14 Quantity of electricity measuring apparatus Pending JPS63173973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP714687A JPS63173973A (en) 1987-01-14 1987-01-14 Quantity of electricity measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP714687A JPS63173973A (en) 1987-01-14 1987-01-14 Quantity of electricity measuring apparatus

Publications (1)

Publication Number Publication Date
JPS63173973A true JPS63173973A (en) 1988-07-18

Family

ID=11657930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP714687A Pending JPS63173973A (en) 1987-01-14 1987-01-14 Quantity of electricity measuring apparatus

Country Status (1)

Country Link
JP (1) JPS63173973A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283728A (en) * 1990-03-30 1991-12-13 Anritsu Corp Radio equipment tester
JPH06123749A (en) * 1992-10-12 1994-05-06 Mitsubishi Electric Corp Ac measuring instrument
JP2009071637A (en) * 2007-09-13 2009-04-02 Toshiba Corp Protection control measurement system
ES2342959A1 (en) * 2007-09-26 2010-07-19 Osaki Electric Co. Ltd. Electric power measurement method and electric power measuring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544984A (en) * 1978-09-27 1980-03-29 Mitsubishi Electric Corp Peak value calculating circuit
JPS6026410A (en) * 1983-07-25 1985-02-09 日新電機株式会社 Sampling device of power system digital relay
JPS6085371A (en) * 1983-10-17 1985-05-14 Mitsubishi Electric Corp Ac measuring apparatus
JPS62867A (en) * 1985-06-26 1987-01-06 Toshiba Corp Arithmetic unit for amplitude value

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544984A (en) * 1978-09-27 1980-03-29 Mitsubishi Electric Corp Peak value calculating circuit
JPS6026410A (en) * 1983-07-25 1985-02-09 日新電機株式会社 Sampling device of power system digital relay
JPS6085371A (en) * 1983-10-17 1985-05-14 Mitsubishi Electric Corp Ac measuring apparatus
JPS62867A (en) * 1985-06-26 1987-01-06 Toshiba Corp Arithmetic unit for amplitude value

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283728A (en) * 1990-03-30 1991-12-13 Anritsu Corp Radio equipment tester
JPH06123749A (en) * 1992-10-12 1994-05-06 Mitsubishi Electric Corp Ac measuring instrument
JP2009071637A (en) * 2007-09-13 2009-04-02 Toshiba Corp Protection control measurement system
ES2342959A1 (en) * 2007-09-26 2010-07-19 Osaki Electric Co. Ltd. Electric power measurement method and electric power measuring device

Similar Documents

Publication Publication Date Title
EP0702212A2 (en) Phase difference measuring apparatus and mass flowmeter thereof
US8165835B1 (en) Complex wavelet filter based power measurement and calibration system
NO864053L (en) CIRCUIT FOR CREATING A MULTIPLE PHASE SINUS SHAPED OUTPUT.
Hill et al. Design of a microprocessor-based digital wattmeter
US4291377A (en) Apparatus for measuring electrical power
JPS63188775A (en) Effective value and electric power detection system
JPS63173973A (en) Quantity of electricity measuring apparatus
CN104020350B (en) A kind of voltage fundamental component detection method overcoming frequency to perturb
JPS5819068B2 (en) Denshiki Denryokuriyokei
JPH06308167A (en) Measurement device of effective value
RU2363005C1 (en) Method of spectral analysis of polyharmonic signals and device to this end
JPH01138992A (en) Digital method and apparatus for generting slipping frequency
JP3182777B2 (en) Electric energy measurement method
JP7009113B2 (en) AC signal generator
JP5022545B2 (en) Phase difference calculation method
JPH055504Y2 (en)
JPS61284669A (en) Digital watthour meter
JPH07225250A (en) Phase detector
SU1566299A1 (en) Method of determining phase shift of sine signals
JPH0382970A (en) Apparatus for measuring phase difference of ac waveform
JPS5811577B2 (en) Calculation device for trigonometric function variation
SU1651090A1 (en) Method for conversion of angular movement into phase of output signal and device for its performance
JPS62161061A (en) Method for measuring electric power
JPS62201369A (en) Digital detecting method for alternating current effective value
KR0184894B1 (en) L.c measuring method by phase difference measurement