JPS63173921A - Apparatus for measuring quality of steam - Google Patents

Apparatus for measuring quality of steam

Info

Publication number
JPS63173921A
JPS63173921A JP62005060A JP506087A JPS63173921A JP S63173921 A JPS63173921 A JP S63173921A JP 62005060 A JP62005060 A JP 62005060A JP 506087 A JP506087 A JP 506087A JP S63173921 A JPS63173921 A JP S63173921A
Authority
JP
Japan
Prior art keywords
steam
temperature
pressure
water
optical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62005060A
Other languages
Japanese (ja)
Inventor
Yutaka Uruma
閠間 裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Atomic Industry Group Co Ltd
Original Assignee
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Atomic Industry Group Co Ltd filed Critical Nippon Atomic Industry Group Co Ltd
Priority to JP62005060A priority Critical patent/JPS63173921A/en
Publication of JPS63173921A publication Critical patent/JPS63173921A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measuring Volume Flow (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To accurately measure the presence of ebullition and the quantity of steam at the time of ebullition, by performing the confirmation of the ebullition point of high temp. and high pressure water and the measurement of the quality of steam from the measurement of the signal intensity between a pair of monitor windows. CONSTITUTION:The transmitting sensor 15 connected to a transmitter 14 for sending an optical signal is arranged on the lateral side of one of the monitor windows 13 of a test tank vessel 1, and the receiver 16 receiving the optical signal and a receiving sensor 17 are arranged on the lateral side of the other monitor window 13. The transmitting and receiving data of both sensors and data of temp., pressure or the like are sent to a computer 19 through an interface 18. The quantity of the steam in the two-phase stream of high temp. and high pressure steam can be continuously calculated by the computer 19.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、水、蒸気バブルの2相流中に詣ける蒸気バブ
ル量を測定し、蒸気クォリティを算出する蒸気クォリテ
ィ測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to a steam quality measuring device that measures the amount of steam bubbles in a two-phase flow of water and steam bubbles and calculates steam quality.

「従来の技術」 沸騰水型軽水炉(BWR)では、蒸気タービンからの蒸
気を給水加熱器で予熱し、この予熱された給水がジェッ
トポンプを経て原子炉内に持ち込まれている。給水加熱
器出口の温度は炉型によって異なるが、はぼ200°C
前後となっている。
"Prior Art" In a boiling water reactor (BWR), steam from a steam turbine is preheated by a feed water heater, and this preheated feed water is brought into the reactor via a jet pump. The temperature at the outlet of the feed water heater varies depending on the furnace type, but is approximately 200°C.
It is before and after.

給水加熱器出口からの高温高圧水 (約70Kg/cm”)は、炉心を下方から上方へ強制
循環されるが、この循環の際に核加熱をしているUO□
ペレット(核燃料)等から、ジルカロイの被覆管を介し
て熱伝達が行われる。
High-temperature, high-pressure water (approximately 70 kg/cm") from the outlet of the feedwater heater is forcedly circulated from the bottom to the top of the reactor core. During this circulation, the UO □
Heat is transferred from pellets (nuclear fuel) etc. through Zircaloy cladding.

はぼ200°Cの温度で炉心近傍に持ち込まれた高温高
圧水は、炉心を上昇しながら通過中に、約4m程の燃料
被覆管表面でバブルを発生し、いわゆる沸騰を開始する
。°炉心上部では蒸気クォリティが20〜30%になる
べく設計されており、この蒸気クォリティは、蒸気と水
との2相流における蒸気の割合(重量比)を意味してい
る。この蒸気は、原子炉圧力容器上部で気水分離器を通
り、蒸気ラインによって蒸気タービンに運ばれてこれを
回転させて発電に至っている。
High-temperature, high-pressure water brought into the vicinity of the reactor core at a temperature of about 200°C generates bubbles on the surface of the fuel cladding tubes at a distance of approximately 4 m while passing through the reactor core while rising, and begins to boil. The upper part of the reactor core is designed to have a steam quality of 20 to 30%, and this steam quality refers to the proportion (weight ratio) of steam in a two-phase flow of steam and water. This steam passes through a steam-water separator at the top of the reactor pressure vessel and is carried by a steam line to a steam turbine, which rotates the turbine and generates electricity.

このように、核燃料を被覆しているジルカロイからなる
被覆管は、高温高圧水の流体から、蒸気クォリティが位
置によって異なる2相流の流体までの種々の流体に接触
する等のさまざまな環境にさらされている。
In this way, the Zircaloy cladding that covers nuclear fuel is exposed to a variety of environments, including coming into contact with a variety of fluids, from high-temperature, high-pressure water to two-phase fluids where the vapor quality varies depending on the location. has been done.

ところで、BWRプラントでは放射能の発生源として、
給水系から持ち込まれた腐食生成物が燃料集合体表面に
付着して放射化されるものと、中性子照射場の炉内構造
物が直接放射化されるものとがある。
By the way, in BWR plants, as a source of radioactivity,
In some cases, corrosion products brought in from the water supply system adhere to the surface of the fuel assembly and become activated, and in others, the reactor internal structures in the neutron irradiation field are directly activated.

このように、ジルカロイ被覆管表面では腐食生成物の付
着、放射化、再放出という現象が起きて、それらはさら
に燃料の熱流束や沸−状態、腐食生成物の濃度と密接に
関連していて、それらのメカニズムを解明することは学
術的にも重要なテーマである。さらに、腐食生成物の放
出過程が一次系の放射能濃度を決定する主要なパラメー
タの1つであることから、放射能低減という観点からも
見逃せない問題となっている。
In this way, the phenomena of adhesion, activation, and re-release of corrosion products occur on the surface of the Zircaloy cladding tube, and these phenomena are closely related to the heat flux, boiling state, and concentration of corrosion products of the fuel. , elucidating these mechanisms is an important academic theme. Furthermore, since the release process of corrosion products is one of the main parameters that determines the radioactivity concentration in the primary system, it has become an issue that cannot be overlooked from the perspective of reducing radioactivity.

そこで近年、これらのメカニズムを解明するために電気
ヒータを用いて模擬燃料ピンを作り、加熱水の沸騰表面
状態を゛模擬できるような装置が作成されるに至った。
Therefore, in recent years, in order to elucidate these mechanisms, a device has been created that can simulate the boiling surface condition of heated water by creating a simulated fuel pin using an electric heater.

「発明が解決しようとする問題点」 しかしながら、これらの装置では、沸騰や沸騰開始点を
熱計算しているものである。例えば、このような装ばで
は、沸騰開始点は、外気温変化、電源電圧の変化等で敏
感に変動して、沸騰開始点の位置を正確に決定するのは
困難であった。さらに2相流になった下流側における蒸
気クォリティも同様に計算から求めたものであって、こ
れが実際と一致しているのか否かの測定の方法がないと
いう問題があった。
"Problems to be Solved by the Invention" However, in these devices, boiling and boiling start point are calculated thermally. For example, with such equipment, the boiling start point varies sensitively due to changes in outside temperature, power supply voltage, etc., and it is difficult to accurately determine the position of the boiling start point. Furthermore, the steam quality on the downstream side where the flow has become a two-phase flow is similarly determined by calculation, and there is a problem in that there is no way to measure whether or not this corresponds to reality.

この発明は、上記事実を考慮してなされたものであって
、蒸気を含む高温高圧水において、沸騰のを無を判定し
、かつ、その時の蒸気量を正確に測定する装置を提供す
ることを目的としている。
The present invention has been made in consideration of the above-mentioned facts, and an object of the present invention is to provide an apparatus that can determine whether or not boiling occurs in high-temperature, high-pressure water containing steam, and accurately measure the amount of steam at that time. The purpose is

「問題点を解決するための手段」 上記目的を達成するために、この発明に係わる蒸気クォ
リティ測定装置は、測定水中を監視するための監視窓と
、この監視窓に、ある種の光学的信号を送るための信号
発生機と、測定水中を通過した信号を受信するための信
号受信機とを有し、信号発生機と信号受信機の各信号強
度から、加熱水の2相流中に右ける蒸気量を連続測定す
るものである。
"Means for Solving the Problem" In order to achieve the above object, the steam quality measuring device according to the present invention includes a monitoring window for monitoring the measurement water, and a certain type of optical signal in the monitoring window. It has a signal generator for transmitting the signal and a signal receiver for receiving the signal passed through the measurement water, and from the signal strength of the signal generator and signal receiver, it is possible to determine whether This is a device that continuously measures the amount of steam flowing into the tank.

「実施例」 以下本発明の一実施例を、図面に基づいて説明する。第
1図はこの発明に係わる蒸気クォリティ測定装置の一実
施例を、BWR核燃料表面における沸騰状態を模擬でき
る装置に適用した状態を示す概略構成図である。
"Embodiment" An embodiment of the present invention will be described below based on the drawings. FIG. 1 is a schematic diagram showing a state in which an embodiment of the steam quality measuring device according to the present invention is applied to a device capable of simulating the boiling state on the surface of BWR nuclear fuel.

試験槽ベッセル1は縦向きに円筒状をなしていて密封さ
れた状態にあり、試験槽ベッセルl中には、下部の供給
管2から供給されるとともに上部の排出管3から排出さ
れる高温高圧水4が強制循環されている。この試験槽ベ
ッセル1は、高温高圧水4の温度を測定する温度計5と
、圧力を測定する発振式圧力計6を備えている。
The test tank vessel 1 has a vertical cylindrical shape and is in a sealed state, and inside the test tank vessel 1, high temperature and high pressure gas is supplied from the supply pipe 2 at the bottom and discharged from the discharge pipe 3 at the top. Water 4 is forcedly circulated. This test tank vessel 1 is equipped with a thermometer 5 that measures the temperature of high-temperature, high-pressure water 4, and an oscillation type pressure gauge 6 that measures the pressure.

試験槽ベッセル1内の中心部には、模擬燃料ピン7が縦
向きに配置されている。この模擬燃料ピン7は、第2図
に示すようにジルカロイ被覆管8内の断熱材9にコイル
状の発熱体11を埋め込んだ電気ヒータから構成されて
いる。この模擬燃料ピン7は、BWRにおける核加熱を
、電気ヒータの加熱に置き換えて、燃料ピンを模擬した
ものである。
At the center of the test tank vessel 1, a simulated fuel pin 7 is arranged vertically. The simulated fuel pin 7 is constituted by an electric heater in which a coil-shaped heating element 11 is embedded in a heat insulating material 9 within a Zircaloy cladding tube 8, as shown in FIG. This simulated fuel pin 7 simulates a fuel pin by replacing the nuclear heating in the BWR with heating by an electric heater.

試験槽ベッセル10周面の適所には、横向きの引き込み
管12がほぼ対称位置に形成されていて、その端面の閉
塞部には監視窓13がそれぞれ設けられている。BWR
の温度、圧力条件下では、監視窓13としてルビーの単
結晶等の光の透過性が設けられており、このようにする
ことにより、監視窓13の選択の幅を拡げることができ
る。例えば、石英などは光の透過性が高いが、BWR,
の温度、圧力条件では徐々にではあるが溶出する問題が
あるが、上記のような構造とすれば石英を利用すること
が可能となる。
Horizontal lead-in pipes 12 are formed at appropriate positions on the circumferential surface of the test tank vessel 10 at approximately symmetrical positions, and monitoring windows 13 are provided at the closed portions of the end faces of the lead-in pipes 12, respectively. BWR
Under these temperature and pressure conditions, the monitoring window 13 is made of a light-transmissive material such as a ruby single crystal, and by doing so, the range of choices for the monitoring window 13 can be expanded. For example, quartz has high light transmittance, but BWR,
Although there is a problem of gradual elution under the temperature and pressure conditions of , it becomes possible to use quartz with the above structure.

このような構造をもつ試験槽ベッセル1の監視窓13の
一方の側方には、光学的信号を送る送信機14に接続さ
れた送信センサ15が、また他方の監視窓13には、光
学的信号を受信する受信機16と受信センサ17がそれ
ぞれ配置されている。
On one side of the monitoring window 13 of the test tank vessel 1 having such a structure, there is a transmission sensor 15 connected to a transmitter 14 that sends an optical signal, and on the other side of the monitoring window 13 there is an optical signal. A receiver 16 and a reception sensor 17 for receiving signals are respectively arranged.

光学的信号としては、各種波長をもつ白色光や短波長を
もつ単色光、もしくはレーザ光等が利用可能であり、こ
の光学的信号は試験槽ベッセル1の周面の近傍を通過す
るようになっている。   −1さらに、これらの送受
信データと温度、圧力等のデータは全てインターフェイ
ス18を経てコンピュータ19に送られている。このよ
うな構造の蒸気クォリティ測定装置において、送信セン
サ15から連続的もしくはパルス的に光学的信号が送ら
れ、受信センサ17においてそれを受信して、光学的信
号の強度が測定されている。
As an optical signal, white light with various wavelengths, monochromatic light with a short wavelength, laser light, etc. can be used, and this optical signal passes near the circumferential surface of the test chamber vessel 1. ing. -1 Further, all of these transmitted/received data, temperature, pressure, etc. data are sent to the computer 19 via the interface 18. In the vapor quality measuring device having such a structure, an optical signal is sent continuously or in pulses from the transmitting sensor 15, and is received by the receiving sensor 17, and the intensity of the optical signal is measured.

試験槽ベッセル1内に強制循環により持ち込まれた高温
高圧水は模擬燃料ピン7から熱をもらい、圧力計6で検
出される圧力における飽和温度以上の温度に高温高圧水
が加熱されると、模擬燃料ピン7表面でバブルを発生し
て徐々に沸騰を開始する。蒸気量は、試験槽ベッセル1
の上方に行くに従い増加して沸騰開始点からある種の分
布をもつことになる。
The high-temperature, high-pressure water brought into the test tank vessel 1 by forced circulation receives heat from the simulated fuel pin 7, and when the high-temperature, high-pressure water is heated to a temperature higher than the saturation temperature at the pressure detected by the pressure gauge 6, the simulated Bubbles are generated on the surface of the fuel pin 7 and boiling gradually begins. The amount of steam is the test tank vessel 1.
It increases as you move upwards and has a certain distribution from the boiling point.

このように形成された蒸気クォリティ測定装置に右いて
、まず純水を試験槽ベッセル1内に強制循環させて、圧
力の変化に対する受信機16の信号強度の変化を測定す
ると、第3図に示すような結果が得られる。第3図にお
いて、縦軸は(受信強度り/(発信強度1o)X100
であり、この値が100にならないのは、大気圧下にお
ける純水中での光の吸収と、装置のシステムエラー的な
要素があるからである。測定系の圧力が増すと水の密度
が高くなり、高温高圧水4の循環経路間で光の吸収され
る割合が高くなって受信機16の受信強度が低下する。
Using the steam quality measuring device formed in this manner, first, pure water is forcedly circulated in the test tank vessel 1, and changes in the signal strength of the receiver 16 in response to changes in pressure are measured, as shown in FIG. You will get a result like this. In Figure 3, the vertical axis is (reception strength / (transmission strength 1o) x 100
The reason why this value is not 100 is due to the absorption of light in pure water under atmospheric pressure and the system error of the device. As the pressure of the measurement system increases, the density of water increases, and the proportion of light absorbed between the circulation paths of the high-temperature, high-pressure water 4 increases, reducing the reception intensity of the receiver 16.

例えば、大気圧で純水を強制循環しながら模擬燃料ピン
7を加熱させ、監視窓13の位置で徐々に沸騰する状態
とし、このときの受信強度の変化の様子を第4図に示す
。まず温度計5の値は、模擬燃料ピン7の出力上昇とと
もに増加し、沸騰点において大気圧における飽和温度(
100°C)に達し、それ以降は温度変化はない。
For example, the simulated fuel pin 7 is heated while deionized water is forcibly circulated at atmospheric pressure to gradually boil at the position of the monitoring window 13, and the change in reception intensity at this time is shown in FIG. First, the value of the thermometer 5 increases as the output of the simulated fuel pin 7 increases, and at the boiling point, the saturation temperature at atmospheric pressure (
100°C) and there is no temperature change thereafter.

一方、光学的信号の強度は、沸騰開始点まで一定であり
、それ以降はバブル発生によって気相分が存在すること
となって光学的信号の強度は増加傾向を示す。それは、
気相中にふける光学的信号の吸収が液相中のそれと比べ
ると無視で寺る程度のものであり、バブル量の増加に伴
って気相分が増えることによる。さらに模擬燃料ピン7
の出力を増加させると最終的には全部蒸気となり、光学
的信号の強度は再び一定値を示すことになる。
On the other hand, the intensity of the optical signal is constant until the boiling start point, and after that point, gas phase components exist due to bubble generation, and the intensity of the optical signal tends to increase. it is,
This is because the absorption of optical signals in the gas phase is negligible compared to that in the liquid phase, and the amount of the gas phase increases as the amount of bubbles increases. Furthermore, simulated fuel pin 7
When the output of the optical signal is increased, it will eventually become all vapor, and the intensity of the optical signal will again show a constant value.

次に蒸気クォリティの算出方法について述べる。Next, a method for calculating steam quality will be described.

例えば、第4図において光学的信号の強度変換のA点の
状態を想定する。ここでは水と蒸気が容積比で1=1の
条件である。水と蒸気の温度(100°C)における各
々の比重は測定されているので、容積を重量比に変換し
て蒸気クォリティ値とする。
For example, assume the state at point A of the intensity conversion of the optical signal in FIG. Here, the condition is that the volume ratio of water and steam is 1=1. Since the specific gravity of water and steam at a temperature (100° C.) has been measured, the volume is converted into a weight ratio to obtain the steam quality value.

同様に、BWRの圧力条件(70〜80 a tm)に
おいても第4図と同様な線図が得られる。しかしながら
、この場合は発生したバブルが雰囲気中の圧力で押しつ
ぶされて小径となるため、沸騰開始後の光学的信号の強
度増加は大気圧と比べて僅かなものである。しかしなが
ら、この僅かな変化量でもコンビ二−タ19を導入する
ことにより水/蒸気の容積比を求めて蒸気クォリティを
正確に算出できることとなる。
Similarly, a diagram similar to that in FIG. 4 is obtained under the BWR pressure conditions (70 to 80 atm). However, in this case, the generated bubbles are crushed by the pressure in the atmosphere and become smaller in diameter, so the increase in the intensity of the optical signal after the start of boiling is small compared to atmospheric pressure. However, even with this slight amount of change, by introducing the combinator 19, the water/steam volume ratio can be determined and the steam quality can be calculated accurately.

このように、対象とする圧力域における飽和温度のその
温度における水と蒸気の比重をコンピュータ19に記憶
させておいて一連の沸騰試験を行い、光学的信号の強度
変化量を等分することにより、各々における蒸気クォリ
ティを瞬時に算出することができる。また、高圧系にお
ける沸騰開始点の測定では、発生したバブル径が小さく
て肉眼では沸騰を確認することが困難であるが、本発明
の蒸気クォリティ測定装置では沸騰を容易にδ忍知する
ことができる。
In this way, by storing the specific gravity of water and steam at the saturation temperature in the target pressure range in the computer 19, performing a series of boiling tests, and dividing the amount of change in the intensity of the optical signal into equal parts, , the steam quality in each can be calculated instantaneously. In addition, when measuring the boiling start point in a high-pressure system, it is difficult to confirm boiling with the naked eye due to the small diameter of the generated bubbles, but with the steam quality measurement device of the present invention, boiling can be easily detected. can.

なお、上記実施例では、加熱用の模擬燃料ピン7が1本
の場合について述べたが、この模擬燃料ピン7を例えば
2本並設して、それらの間に光学的信号を通過させるこ
とも可能である。
In the above embodiment, the case where there is one simulated fuel pin 7 for heating has been described, but it is also possible to arrange two simulated fuel pins 7 in parallel and pass an optical signal between them. It is possible.

「発明の効果」 以上説明したように本発明に係わる蒸気クォリティ測定
装置によれば、1対の監視窓間における信号の強度の測
定から、高温高圧水の沸騰点の認知および蒸気クォリテ
ィの測定を行うことができる。さらに、この測定装置を
用いれば、BWRの燃料棒におけるジルカロイ被覆管の
沸騰表面における腐食生成物の付着、放射化ならびに放
出とい′うメカニズムの解明のために資することが大で
ある。
"Effects of the Invention" As explained above, according to the steam quality measuring device according to the present invention, the boiling point of high-temperature, high-pressure water can be recognized and the steam quality can be measured by measuring the signal strength between a pair of monitoring windows. It can be carried out. Furthermore, the use of this measuring device will greatly contribute to the elucidation of the mechanisms of attachment, activation, and release of corrosion products on the boiling surface of the Zircaloy cladding in BWR fuel rods.

また、一般のボイラでよく見られるパイプへのスケール
の付着により伝熱が行われ難くなって、沸騰開始点が変
化するという現象の測定が可能であり、ボイラの洗浄期
間の目安として利用することも可能である。
In addition, it is possible to measure the phenomenon that is often seen in general boilers, where scale adhesion to pipes makes heat transfer difficult and the boiling start point changes, and can be used as a guide for the boiler cleaning period. is also possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の係わる蒸気クォリティ測定装置の一実
施例を、BWR燃料表面における沸騰状態を模擬できる
装置に適用した状態を示す概略構成図、第2図は模擬燃
料ピンの一例を示す縦断側面図、第3図は光学的信号の
受信強度と水の圧力のとの相関図、第4図は大気圧下に
おける水の温度変化と、光学的信号の受信強度を、燃料
ピンの出力に対してプロットした模式図である。 1・・・・・・試験槽ヘラセル、 4・・・・・・高温高圧水、 5・・・・・・温度計、 6・・・・・・発振式圧力計、 7・・・・・・模擬燃料ピン、 8・・・・・・ジルカロイ被覆管、 9・・・・・・断熱材、 11・・・・・・発熱体、 12・・・・・・引き込み管、 13・・・・・・監視窓、 14・・・・・・送信機、 15・・・・・・送信センサ、 16・・・・・・受信機、 17・・・・・・受信センサ、 18・・・・・・インターフェイス、 19・・・・・・コンピュータ、 ■・・・・・・受信強度、 Io・・・・・・発信強度。 出  願  人 日本原子力事業株式会社 代  理  人
Fig. 1 is a schematic configuration diagram showing a state in which an embodiment of the steam quality measuring device according to the present invention is applied to a device capable of simulating the boiling state on the surface of BWR fuel, and Fig. 2 is a longitudinal section showing an example of a simulated fuel pin. The side view, Figure 3 is a correlation diagram between the received strength of the optical signal and the water pressure, and Figure 4 shows the relationship between the temperature change of water under atmospheric pressure and the received strength of the optical signal, and the output of the fuel pin. FIG. 1...Test tank Heracel, 4...High temperature and high pressure water, 5...Thermometer, 6...Oscillating pressure gauge, 7... - Simulated fuel pin, 8...Zircaloy cladding tube, 9...Insulating material, 11...Heating element, 12...Leading pipe, 13... ...Monitoring window, 14...Transmitter, 15...Transmission sensor, 16...Receiver, 17...Reception sensor, 18... ...Interface, 19...Computer, ■...Reception strength, Io...Output strength. Applicant: Japan Atomic Energy Corporation, Agent

Claims (1)

【特許請求の範囲】[Claims] 中心部に加熱用の模擬燃料ピンが配置されていて、高温
高圧水が強制循環される試験槽ベッセルと、試験槽ベッ
セル内の高温高圧水中を監視するものであって、前記試
験槽ベッセルの概ね対称をなす側部にそれぞれ設けられ
た1対の監視窓と、この監視窓の一方から、適宜の光学
的信号を送るための信号発生機と、高温高圧水中を通過
した信号を他方の監視窓から受信するための信号受信機
と、前記高温高圧水の温度および圧力をそれぞれ測定す
る温度計および圧力計とを有し、信号発生機と信号受信
機の各信号強度から、高温高圧水の2相流中における蒸
気量を連続測定することを特徴とする蒸気クォリティ測
定装置。
A test tank vessel in which a simulated fuel pin for heating is placed in the center and high-temperature, high-pressure water is forcibly circulated, and the high-temperature, high-pressure water inside the test tank vessel is monitored. A pair of monitoring windows are provided on each symmetrical side, a signal generator for sending appropriate optical signals from one of the monitoring windows, and a signal generator that transmits the signal passed through high temperature and high pressure water to the other monitoring window. and a thermometer and a pressure gauge for respectively measuring the temperature and pressure of the high-temperature, high-pressure water, and from the respective signal strengths of the signal generator and the signal receiver, A steam quality measuring device characterized by continuously measuring the amount of steam in a phase flow.
JP62005060A 1987-01-14 1987-01-14 Apparatus for measuring quality of steam Pending JPS63173921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62005060A JPS63173921A (en) 1987-01-14 1987-01-14 Apparatus for measuring quality of steam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62005060A JPS63173921A (en) 1987-01-14 1987-01-14 Apparatus for measuring quality of steam

Publications (1)

Publication Number Publication Date
JPS63173921A true JPS63173921A (en) 1988-07-18

Family

ID=11600854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62005060A Pending JPS63173921A (en) 1987-01-14 1987-01-14 Apparatus for measuring quality of steam

Country Status (1)

Country Link
JP (1) JPS63173921A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2691541A1 (en) * 1992-05-20 1993-11-26 Commissariat Energie Atomique Installation for surface measurement of the gas rate of a two-phase mixture passing through a transparent cylindrical conduit.
JP2005083842A (en) * 2003-09-08 2005-03-31 Toshihisa Shirakawa Void rate of boiling water reactor
JP2007171025A (en) * 2005-12-22 2007-07-05 Mitsubishi Heavy Ind Ltd Vapor-liquid two-phase flow simulation testing device, and vapor-liquid two-phase flow simulation test method
JP2010071409A (en) * 2008-09-19 2010-04-02 Kyoritsu Kizai Kk Inspection window of pressure fluid vessel, and transparent protection plate for inspection window of pressure fluid vessel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2691541A1 (en) * 1992-05-20 1993-11-26 Commissariat Energie Atomique Installation for surface measurement of the gas rate of a two-phase mixture passing through a transparent cylindrical conduit.
JP2005083842A (en) * 2003-09-08 2005-03-31 Toshihisa Shirakawa Void rate of boiling water reactor
JP2007171025A (en) * 2005-12-22 2007-07-05 Mitsubishi Heavy Ind Ltd Vapor-liquid two-phase flow simulation testing device, and vapor-liquid two-phase flow simulation test method
JP2010071409A (en) * 2008-09-19 2010-04-02 Kyoritsu Kizai Kk Inspection window of pressure fluid vessel, and transparent protection plate for inspection window of pressure fluid vessel

Similar Documents

Publication Publication Date Title
CN108713229B (en) Real-time reactor cooling system boron concentration monitor using ultrasonic spectroscopy system
JPH04332897A (en) Monitor for level in container of voilling water type nuclear reactor
JP7022692B2 (en) Reactor cooling system piping temperature distribution measurement system
Kishore et al. An experimental study on impingement wastage of Mod 9Cr 1Mo steel due to sodium water reaction
JPS63173921A (en) Apparatus for measuring quality of steam
Gui et al. Void fractions in a rod bundle geometry at high pressure–part Ⅰ: Experimental study
US3350271A (en) Nuclear reactor transducer
Buell et al. A neutron scatterometer for void-fraction measurement in heated rod-bundle channels under CANDU LOCA conditions
Allemann et al. EXPERIMENTAL HIGH ENTHALPY WATER BLOWDOWN FROM A SIMPLE VESSEL THROUGH A BOTTOM OUTLET.
CN206891524U (en) A kind of container boiling water level measurement device based on multiple repairing weld
Auban et al. Experimental investigation of natural-circulation flow behavior under low-power/low-pressure conditions in the large-scale PANDA facility
CN116798667B (en) Material identification type wetting front position measurement method
JP3142973B2 (en) Reactor cooling water flow rate measurement method using rubidium tracer
Wu et al. Investigation of the two-phase flow stability in a natural circulation system
Guenadou et al. MILIPOSO, Mock-up of the Diagrid and the Coupling Pipes in Support of the ASTRID SFR Program
Davydov et al. Optical Flowmeter for Measuring the Coolant Flow Rate in the Primary Loop of a Nuclear Reactor
Aleksandrov et al. lnvestigation of β-Emission Methods of Monitoring Coolant Water Level in Nuclear Power Plants
Gillins et al. Experiment data report for Semiscale Mod-1 test S-28-3 (steam generator tube rupture test).[PWR]
Menant Nucleation, dry-out and boiling behind a sodium-tight local blockage in a 9-pin bundle with helical wire spacers
Galvez Flow rate measurement in a volume
Wazzan et al. I. Circulation ratio and carry-under in a PWR steam generator (Bugey-4 nuclear power plant)
Collins et al. Experiment data report for Semiscale Mod-1 Test S-28-1 (steam generator tube rupture test series)
Heidrich et al. In-Pile Instrumentation Initiative–Focused Sensor Development for Test Reactors
Hurley et al. DESIGN OF A HIGH-PRESSURE WATER LOOP FOR OPTICAL FIBER MEASUREMENT OF POST-CHF HEAT TRANSFER
Girard et al. A feasibility study on active ultrasonic techniques for water into sodium leak detection on FBR steam generator units