JPS63173394A - Electromagnetic wave absorbing material and its composite unit - Google Patents

Electromagnetic wave absorbing material and its composite unit

Info

Publication number
JPS63173394A
JPS63173394A JP405087A JP405087A JPS63173394A JP S63173394 A JPS63173394 A JP S63173394A JP 405087 A JP405087 A JP 405087A JP 405087 A JP405087 A JP 405087A JP S63173394 A JPS63173394 A JP S63173394A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
weight
wave absorbing
absorbing material
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP405087A
Other languages
Japanese (ja)
Inventor
武民 山村
敏弘 石川
昌樹 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP405087A priority Critical patent/JPS63173394A/en
Publication of JPS63173394A publication Critical patent/JPS63173394A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、特定周波数の電磁波を選択的に吸収する電磁
波吸収材及びそれで強化された複合体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electromagnetic wave absorbing material that selectively absorbs electromagnetic waves of a specific frequency and a composite reinforced with the same.

(従来の技術) 電磁波は情報の伝達を空間伝搬という手段で行う際の重
要な役割を演じ、その送受信の主役を勤めるアンテナに
関する測定は、周囲の地形、地物の影響のない無限空間
で行うのが理想的である。
(Prior technology) Electromagnetic waves play an important role in transmitting information through the means of spatial propagation, and measurements regarding antennas that play the main role in transmission and reception are performed in infinite space without the influence of surrounding topography or features. is ideal.

しかし、アンテナ自体がかなり大き(、さらに高い塔を
必要とするなど、上記の条件を完全に満足させることは
極めて困難である。
However, it is extremely difficult to fully satisfy the above conditions, as the antenna itself is quite large (and requires an even taller tower).

そこで、アンテナの特性試験、伝搬路の反射、回折、吸
収材などのモデル実験を行う場合、等測的に自由空間と
みなしうる実験室、例えば電波暗室、電波音響室が必要
とされ、特定の範囲の電磁波を良好に透過する材料が要
求される。
Therefore, when conducting model experiments such as antenna characteristic tests, propagation path reflection, diffraction, and absorbing materials, a laboratory that can be isometrically regarded as free space, such as an anechoic chamber or a radio acoustic chamber, is required. Materials that have good transmission of a range of electromagnetic waves are required.

この材料には、外部電磁波の遮蔽は勿論のこと、実験室
内部で発せられる電波を効果的に透過する壁材が必要と
される。単に電磁波の遮蔽を行うだけであれば、金属板
又は金属網を用いて密閉すればよいが、これらの材料は
直角に平面波が伝搬してきた場合、電磁波は導体面で大
部分が反射されてしまう。従って、上記の材料は外壁に
は使用できても内壁材料としては好ましくない。
This material requires a wall material that not only shields external electromagnetic waves but also effectively transmits radio waves emitted inside the laboratory. If you are simply shielding electromagnetic waves, you can seal it with a metal plate or metal mesh, but when plane waves propagate at right angles to these materials, most of the electromagnetic waves are reflected at the conductor surface. . Therefore, although the above-mentioned materials can be used for outer walls, they are not preferred as inner wall materials.

内壁用電磁波吸収材としては材質と構造が主な要因にな
るので、従来から種々のものが検討されている。
Since the material and structure are the main factors for electromagnetic wave absorbing materials for inner walls, various materials have been studied in the past.

例えば、(1)球状の発泡ポリスチレンと黒鉛との混合
物を金型に入れ、さらに二次発泡させて圧縮成形した面
伏抵抗体、(2)グラスウールや動物の毛に黒鉛及びネ
オプレンを適量含浸させて導電性をもたせた線状抵抗体
、(3)フェライトなどの磁性材料に黒鉛の粉末を混入
した吸収材が開発されている。これらの電磁波吸収材は
、いずれも、強度が非常に小さく構造材料としては適し
ておらず、さらに良好な電磁波吸収性を発現させるには
黒鉛の混合比を種々変えた材料を複数枚積層する必要が
あった。
For example, (1) a face-down resistor made by putting a mixture of spherical expanded polystyrene and graphite into a mold and then performing secondary foaming and compression molding; (2) a face-off resistor made by impregnating glass wool or animal hair with an appropriate amount of graphite and neoprene; (3) Absorbing materials in which graphite powder is mixed into magnetic materials such as ferrite have been developed. All of these electromagnetic wave absorbing materials have extremely low strength and are not suitable as structural materials, and in order to achieve even better electromagnetic wave absorbing properties, it is necessary to laminate multiple sheets of materials with varying graphite mixing ratios. was there.

(発明の目的) 本発明の目的は、強度及び弾性率が高く、500MII
z〜300001+2の範囲のマイクロ波を選択的に吸
収する電磁波吸収材及びそれで強化された複合体を提供
することにある。
(Objective of the Invention) The object of the present invention is to have high strength and elastic modulus, and to obtain 500 MII
An object of the present invention is to provide an electromagnetic wave absorbing material that selectively absorbs microwaves in the range of z to 300001+2, and a composite reinforced therewith.

(発明の要旨) 本発明によれば、珪素30〜62重量%、炭素24〜6
1重量%及び酸素2〜30重量%から実質的になる、非
晶質無機繊維及び/又は粒径500Å以下のβ−SiC
の結晶質超微粒子、結晶質の炭素及び非晶質SiO2の
集合体からなる無機繊維で構成され、10−2〜102
Ω・cmO比抵抗を有し、500 MHz〜3000 
GHzの範囲のマイクロ波を選択的に吸収することを特
徴とする電磁波吸収材が提供される。
(Summary of the Invention) According to the present invention, 30-62% by weight of silicon, 24-6% by weight of carbon
Amorphous inorganic fibers and/or β-SiC with a particle size of 500 Å or less, consisting essentially of 1% by weight and 2-30% by weight of oxygen
It is composed of inorganic fibers consisting of an aggregate of crystalline ultrafine particles, crystalline carbon and amorphous SiO2,
Has a resistivity of Ω・cmO, 500 MHz to 3000
An electromagnetic wave absorbing material is provided that is characterized by selectively absorbing microwaves in the GHz range.

本発明によれば、上記電磁波吸収材で強化された複合体
が提供される。
According to the present invention, a composite reinforced with the electromagnetic wave absorbing material described above is provided.

(発明の詳細な説明) 本発明の電磁波吸収材は、 (i)Si、C及び0から実質的になる非晶質物質、 (ii )粒径が500Å以下の実質的にβ−SiCか
らなる結晶質超微粒子、結晶質炭素及び非晶質のSiO
2からなる集合体、又は、 (iii )上記(i)の非晶質物質と上記(11)の
集合体の混合系、 からなる珪素、炭素及び酸素から実質的になる無!M繊
維で構成されている。
(Detailed Description of the Invention) The electromagnetic wave absorbing material of the present invention comprises: (i) an amorphous substance consisting essentially of Si, C and 0; (ii) consisting essentially of β-SiC with a particle size of 500 Å or less Crystalline ultrafine particles, crystalline carbon and amorphous SiO
(iii) a mixed system of the amorphous material of (i) above and the aggregate of (11) above; Composed of M fibers.

無機繊維の各元素の割合は、 Si ;30〜62重量% C;24〜61ffi量% 0 ; 2〜30重量% である。The proportion of each element in inorganic fiber is Si; 30-62% by weight C; 24-61ffi amount% 0; 2-30% by weight It is.

本発明の電磁波吸収材は、例えば次の方法によって製造
することができる。
The electromagnetic wave absorbing material of the present invention can be manufactured, for example, by the following method.

側鎖に少なくとも1個のアルキル基を有するポリシラン
とピンチ中の多環芳香族化合物との混合物を、触媒の存
在下又は不存在下に加熱するか、(llI鎖に少なくと
も1個のアルキル基を有するポリシランを予め加熱処理
したものとピンチ中の多環芳香族化合物との混合物を、
触媒の存在下又は不存在下に加熱するかして、多環芳香
族化ポリカルボシランを生成させる第1工程と、上記多
環芳香族化ポリカルボシランの紡糸原液を造り紡糸する
第2工程と、該紡糸繊維を張力あるいは無張力下で不融
化する第3工程と、不融化した前記紡糸繊維を真空中あ
るいは不活性ガス雰囲気中で800〜1500℃の範囲
の温度で焼成する第4工程から、実質的にSi、C及び
0からなる電磁波吸収材を製造することができる。第1
工程におけるポリシランの使用量は、多環芳香族化合物
に対して1〜40重量倍であることが好ましい。第4工
程の焼成温度範囲内で焼成温度を高めるほど得られる電
磁波吸収材の比抵抗が減少する。
A mixture of a polysilane having at least one alkyl group in the side chain and a polycyclic aromatic compound in a pinch is heated in the presence or absence of a catalyst or A mixture of preheated polysilane and a pinch of polycyclic aromatic compound,
A first step of producing polycyclic aromatic polycarbosilane by heating in the presence or absence of a catalyst, and a second step of preparing and spinning a spinning dope of the polycyclic aromatic polycarbosilane. a third step of making the spun fibers infusible under tension or no tension; and a fourth step of firing the infusible spun fibers at a temperature in the range of 800 to 1500°C in vacuum or in an inert gas atmosphere. An electromagnetic wave absorbing material consisting essentially of Si, C, and 0 can be manufactured from the above. 1st
The amount of polysilane used in the process is preferably 1 to 40 times the weight of the polycyclic aromatic compound. The specific resistance of the obtained electromagnetic wave absorbing material decreases as the firing temperature is increased within the firing temperature range of the fourth step.

本発明の電磁波吸収材は必要に応じて、プラスチック又
はセラミックをマトリックスとする複合体として使用す
ることができる。
The electromagnetic wave absorbing material of the present invention can be used as a composite having a plastic or ceramic matrix, if necessary.

プラスチックマトリックスの例としては、エポキシ樹脂
、変性エポキシ樹脂、ポリエステル樹脂、ポリイミド樹
脂、フェノール樹脂、ポリウレタン樹脂、ポリアミド樹
脂、ポリカーボネート樹脂、シリコン樹脂、フェノキシ
樹脂、ポリフェニレンサルファイド樹脂、フン素樹脂、
炭化水素樹脂、含ハロゲン樹脂、アクリル酸系樹脂、A
BS樹脂、超高分子量ポリエチレン、変性ポリフェニレ
ンオキサイド、ポリスチレン等が挙げられる。
Examples of plastic matrices include epoxy resin, modified epoxy resin, polyester resin, polyimide resin, phenol resin, polyurethane resin, polyamide resin, polycarbonate resin, silicone resin, phenoxy resin, polyphenylene sulfide resin, fluorine resin,
Hydrocarbon resin, halogen-containing resin, acrylic acid resin, A
Examples include BS resin, ultra-high molecular weight polyethylene, modified polyphenylene oxide, and polystyrene.

セラミックマトリックスの例としては、炭化珪素、炭化
チタン、炭化ジルコニウム、炭化ニオブ、炭化タンタル
、炭化ホウ素、炭化クロム、炭化タングステン、炭化モ
リブデンのような炭化物セラミック;窒化珪素、窒化チ
タン、窒化ジルコニウム、窒化バナジウム、窒化ニオブ
、窒化タンタル、窒化ホウ素、窒化珪素アルミニウム、
窒化ハフニウムのような窒化物セラミック;アルミナ、
マグネシア、ムライト、コージライトのような酸化物セ
ラミックが挙げられる。
Examples of ceramic matrices include carbide ceramics such as silicon carbide, titanium carbide, zirconium carbide, niobium carbide, tantalum carbide, boron carbide, chromium carbide, tungsten carbide, molybdenum carbide; silicon nitride, titanium nitride, zirconium nitride, vanadium nitride. , niobium nitride, tantalum nitride, boron nitride, silicon aluminum nitride,
Nitride ceramics such as hafnium nitride; alumina,
Examples include oxide ceramics such as magnesia, mullite, and cordierite.

プラスチック又はセラミック複合体はそれ自体公知の方
法に従って製造することができる。複合体中の電磁波吸
収材の割合は、複合体の強度及び電磁波吸収特性の面か
ら、10〜70体稍%であることが好ましい。
Plastic or ceramic composites can be manufactured according to methods known per se. The proportion of the electromagnetic wave absorbing material in the composite is preferably 10 to 70% by weight in terms of the strength and electromagnetic wave absorption characteristics of the composite.

本発明により提供される電磁波吸収材及び複合体の電磁
波遮蔽効果は下記式で示される全損失(db)から求め
ることができる。
The electromagnetic wave shielding effect of the electromagnetic wave absorbing material and composite body provided by the present invention can be determined from the total loss (db) expressed by the following formula.

f:周波数(MHz)  μg:遮蔽導体の透磁率σr
:遮蔽導体の比導電率 S:遮蔽導体の厚さく顛) (実施例) 以下に実施例を示す。
f: Frequency (MHz) μg: Magnetic permeability σr of shielding conductor
:Specific conductivity S of the shielding conductor:Thickness of the shielding conductor) (Example) Examples are shown below.

参考例1 51の三フロフラスコに無水キシレン2.51及びナト
リウム400gを入れ、窒素ガス気流下でキシレンの沸
点まで加熱し、ジメチルジクロロシラン11を1時間で
滴下した。滴下終了後、10時間加熱還流し、沈澱物を
生成させた。沈澱を濾過し、メタノールついで水で洗浄
して白色粉末のポリジメチルシラン420gを得た。
Reference Example 1 2.51 g of anhydrous xylene and 400 g of sodium were placed in a 51-sized three flask and heated to the boiling point of xylene under a nitrogen gas stream, and 11 dimethyldichlorosilane was added dropwise over 1 hour. After the addition was completed, the mixture was heated under reflux for 10 hours to form a precipitate. The precipitate was filtered and washed with methanol and then water to obtain 420 g of white powder polydimethylsilane.

このポリジメチルシラン400gを、ガス導入管、攪拌
機、冷却器及び留出管を備えた三ツロフラスコに仕込み
、攪拌しながら窒素ガス気流下420°Cで加熱処理し
て、留出受器に350gの無色透明な少し粘性のある液
体を得た。この液体の数平均分子量は蒸気圧浸透性測定
したところ470であった。この物質はIRスペクトル
測定の結果、(Si  CH2)結合単位の全数対(S
i−3i)結合単位の全数の比率が約1:3の有機珪素
ポリマーであることが判明した。
400 g of this polydimethylsilane was charged into a Mitsuro flask equipped with a gas inlet tube, a stirrer, a cooler, and a distillation tube, and heated at 420°C under a nitrogen gas stream while stirring, and 350 g was placed in a distillation receiver. A colorless and transparent slightly viscous liquid was obtained. The number average molecular weight of this liquid was 470 when vapor pressure permeability was measured. As a result of IR spectroscopy, this material has a total number of (Si CH2) bond units versus (S
i-3i) It was found to be an organosilicon polymer in which the ratio of the total number of bonding units was approximately 1:3.

実施例1 参考例1で得られた有機珪素ポリマー300gをエタノ
ール処理して低分子量物を除去して、数平均分子量12
00のポリマー40gを得た。この物質はIRスペクト
ル測定の結果、(Si−CH2)結合単位の全数対(S
i−3i)結合単位の全数の比率が約1:2の有機珪素
ポリマーであることが判明した。
Example 1 300 g of the organosilicon polymer obtained in Reference Example 1 was treated with ethanol to remove low molecular weight substances, resulting in a number average molecular weight of 12
00 polymer was obtained. As a result of IR spectroscopy, this material was found to have a total number of (Si-CH2) bond units versus (S
i-3i) It was found to be an organosilicon polymer in which the ratio of the total number of bonding units was approximately 1:2.

このポリマー40gとピンチ中の多環芳香族化合物(キ
シレン化熔分)10gとの混合物にキシレン50ccを
加えて均一相からなる混合溶液とし、窒素ガス雰囲気中
1時間攪拌しながら還流下に反応させた。この後さらに
温度を上昇させて溶媒のキシレンを留出させ、400°
Cで5時間重合させて、多環芳香族化有機珪素ポリマー
を得た。この反応で有機珪素ポリマー中に存在する5i
−H結合は約7%減少し、新たにS i−Q結合の生成
が認められた。
50 cc of xylene was added to a mixture of 40 g of this polymer and 10 g of the polycyclic aromatic compound (xylenated melt) in a pinch to form a mixed solution consisting of a homogeneous phase, and the mixture was reacted under reflux with stirring in a nitrogen gas atmosphere for 1 hour. Ta. After this, the temperature was further increased to distill out the solvent xylene, and the temperature was increased to 400°C.
C for 5 hours to obtain a polycyclic aromatic organosilicon polymer. In this reaction, 5i present in the organosilicon polymer
-H bonds decreased by about 7%, and new generation of Si-Q bonds was observed.

多環芳香族化有機珪素ポリマーを熔融紡糸し、空気中1
90℃で不融化処理し、引き続いて窒素ガス雰囲気下に
1300℃で焼成して、繊維径12.5μ、引張強度2
80kg/112、引張弾性率1工0 5、8 t /*w2の主として珪素、炭素及び酸素か
らなる無機繊維を得た。この繊維の比抵抗は2.3Ω・
cmであり、4〜50 G)Izのマイクロ波を良好に
吸収した。
A polycyclic aromatic organosilicon polymer is melt-spun and spun in air.
Infusibility treatment was performed at 90°C, followed by firing at 1300°C in a nitrogen gas atmosphere, resulting in a fiber diameter of 12.5μ and a tensile strength of 2.
An inorganic fiber mainly consisting of silicon, carbon and oxygen was obtained, having a weight of 80 kg/112 and a tensile modulus of 1/05.8 t/*w2. The specific resistance of this fiber is 2.3Ω・
cm, and well absorbed microwaves of 4 to 50 G) Iz.

比較例1 参考例1で得られた有機珪素重合体100gにポリポロ
ジフェニルシロキサン3gを添加し、窒素ガス雰囲気下
に350°Cで熱縮合して、式(S i −CH2)の
カルボシラン単位から主としてなる主鎖骨格を有し、カ
ルボシラン単位の珪素原子に水素原子及びメチル基を有
するポリカルボシランを得た。この重合体を熔融紡糸し
、空気中190°Cで不融化処理し、引続きアルゴンガ
ス雰囲気下に1600℃で焼成して、繊維径12.3μ
m、引張強度30kg/++m2、引張弾性率4t/1
薦2の主として珪素、炭素及び酸素からなる炭化珪素繊
維を得た。
Comparative Example 1 3 g of polyporodiphenylsiloxane was added to 100 g of the organosilicon polymer obtained in Reference Example 1, and the mixture was thermally condensed at 350°C in a nitrogen gas atmosphere to form carbosilane units of formula (S i -CH2). A polycarbosilane having a main main chain skeleton and a hydrogen atom and a methyl group in the silicon atom of the carbosilane unit was obtained. This polymer was melt-spun, treated to make it infusible at 190°C in air, and then fired at 1600°C in an argon gas atmosphere, resulting in a fiber diameter of 12.3 μm.
m, tensile strength 30kg/++m2, tensile modulus 4t/1
Recommendation 2, silicon carbide fibers mainly consisting of silicon, carbon and oxygen, was obtained.

この繊維は4.6Ω・Cmの比抵抗を有しており、良好
なマイクロ波吸収性能を示すが、脆弱であり複合体用の
強化繊維としては使用できないものであった・ 実施例2 実施例1で得られた無機繊維を表面処理することなく一
軸方向に揃え、これに市販ビスフェノールA型エポキシ
樹脂を含浸させ予備効果させて、厚さ0.15璽真のプ
リプレグシートを得た。このシートを積層した後に、1
70℃、7 kg / cMで4時間ホットプレスして
、厚さ2 NTaの主としてシリコン、チタン、炭素及
び酸素からなる無機繊維強化エポキシ複合体を製造した
。この複合体の繊維含有量は60体積%であった。
Although this fiber has a specific resistance of 4.6Ω・Cm and exhibits good microwave absorption performance, it is brittle and cannot be used as a reinforcing fiber for composites. Example 2 Example The inorganic fibers obtained in step 1 were uniaxially aligned without surface treatment, and impregnated with a commercially available bisphenol A type epoxy resin to give a preliminary effect, to obtain a prepreg sheet with a thickness of 0.15 mm. After laminating these sheets, 1
An inorganic fiber-reinforced epoxy composite mainly consisting of silicon, titanium, carbon and oxygen with a thickness of 2 NTa was produced by hot pressing at 70 °C and 7 kg/cM for 4 hours. The fiber content of this composite was 60% by volume.

得られた複合体の引張強度は150 kg/mm2、引
張弾性率は13t/1A1A2、曲げ強度は203 k
g/ ml 2、曲げ弾性率は12.6 t /**2
と優れており、さらに良好なマイクロ波吸収性能を示し
た。
The resulting composite had a tensile strength of 150 kg/mm2, a tensile modulus of 13t/1A1A2, and a bending strength of 203 k.
g/ml 2, flexural modulus is 12.6 t/**2
It showed even better microwave absorption performance.

Claims (3)

【特許請求の範囲】[Claims] (1)珪素30〜62重量%、炭素24〜61重量%及
び酸素2〜30重量%から実質的になる、非晶質無機繊
維及び/又は粒径500Å以下のβ−SiCの超微細結
晶、結晶質の炭素及び非晶質SiO_2の集合体からな
る無機繊維で構成され、10^−^2〜10^2Ω・c
mの比抵抗を有し、500MHz〜3000GHzの範
囲のマイクロ波を選択的に吸収することを特徴とする電
磁波吸収材。
(1) Amorphous inorganic fibers and/or ultrafine crystals of β-SiC with a particle size of 500 Å or less, consisting essentially of 30 to 62% by weight of silicon, 24 to 61% by weight of carbon, and 2 to 30% by weight of oxygen; It is composed of inorganic fibers consisting of an aggregate of crystalline carbon and amorphous SiO_2, and has a resistance of 10^-^2 to 10^2 Ω・c
An electromagnetic wave absorbing material having a specific resistance of m and selectively absorbing microwaves in the range of 500 MHz to 3000 GHz.
(2)珪素30〜62重量%、炭素24〜61重量%及
び酸素2〜30重量%から実質的になる、非晶質無機繊
維及び/又は粒径500Å以下のβ−SiCの超微細結
晶、結晶質の炭素及び非晶質SiO_2の集合体からな
る無機繊維で構成され、10^−^2〜10^2Ω・c
mの比抵抗を有し、500MHz〜3000GHzの範
囲のマイクロ波を選択的に吸収する電磁波吸収材でマト
リックスが強化されていることを特徴とする複合体。
(2) Amorphous inorganic fibers and/or ultrafine crystals of β-SiC with a particle size of 500 Å or less, consisting essentially of 30 to 62% by weight of silicon, 24 to 61% by weight of carbon, and 2 to 30% by weight of oxygen; It is composed of inorganic fibers consisting of an aggregate of crystalline carbon and amorphous SiO_2, and has a resistance of 10^-^2 to 10^2 Ω・c
A composite body characterized in that the matrix is reinforced with an electromagnetic wave absorbing material having a specific resistance of m and selectively absorbing microwaves in the range of 500 MHz to 3000 GHz.
(3)マトリックスがプラスチック又はセラミックであ
ることを特徴とする特許請求の範囲第2項記載の複合体
(3) The composite according to claim 2, wherein the matrix is plastic or ceramic.
JP405087A 1987-01-13 1987-01-13 Electromagnetic wave absorbing material and its composite unit Pending JPS63173394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP405087A JPS63173394A (en) 1987-01-13 1987-01-13 Electromagnetic wave absorbing material and its composite unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP405087A JPS63173394A (en) 1987-01-13 1987-01-13 Electromagnetic wave absorbing material and its composite unit

Publications (1)

Publication Number Publication Date
JPS63173394A true JPS63173394A (en) 1988-07-16

Family

ID=11574073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP405087A Pending JPS63173394A (en) 1987-01-13 1987-01-13 Electromagnetic wave absorbing material and its composite unit

Country Status (1)

Country Link
JP (1) JPS63173394A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232581A (en) * 1993-02-01 1994-08-19 Yokohama Rubber Co Ltd:The Absorber for millimeter radiowave
USRE36896E (en) * 1993-03-05 2000-10-03 Trojan Technologies Inc. Fluid treatment system and process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232581A (en) * 1993-02-01 1994-08-19 Yokohama Rubber Co Ltd:The Absorber for millimeter radiowave
USRE36896E (en) * 1993-03-05 2000-10-03 Trojan Technologies Inc. Fluid treatment system and process

Similar Documents

Publication Publication Date Title
US5094907A (en) Electromagnetic wave absorbing material
US5231059A (en) Process for preparing black glass using cyclosiloxane precursors
CA2133979A1 (en) Silicon oxycarbonitride by pyrolysis of polycylosiloxanes in ammonia
EP0688306B1 (en) A fiber-reinforced glass composite for protecting polymeric substrates
JPH11505567A (en) Curable resin sol
US5318930A (en) Ceramic Fiber reinforced silicon carboxide composite with adjustable dielectric properties
JPS61111974A (en) Inorganic fiber reinforced heat-resistant ceramic composite material
Cheng et al. Structure and properties of polycarbosilane synthesized from polydimethylsilane under high pressure
JPS63173394A (en) Electromagnetic wave absorbing material and its composite unit
EP0038467A2 (en) Shaped structure made by molding a calcined polyhydroxysilicate polymer reaction product
JPS63173403A (en) Electromagnetic wave transmitting member and composite body
JPS606722A (en) Epoxy resin composition for carbon fiber prepreg
JP2003133782A (en) Electromagnetic wave absorber and its manufacturing method
JP2003040685A (en) Oxide fiber composite material and method of manufacturing the same
US5084507A (en) Thermosetting resin composition
JPH0471359B2 (en)
JP3112677B2 (en) Carbon / ceramic composite material and method for producing the same
Kang et al. Preparation of SiC/C composite sheet from polycarbosilane/carbon-based resin mixture
JPH01207474A (en) Reinforcing fiber for composite material and production thereof
Li et al. Ozone infusiblization and curing mechanism of polysilazane ceramic precursor fibers
JPH02259163A (en) Reinforcing fiber for composite material
Mathur et al. SYNTHESIS OF CERAMER MATRIX FOR DEVELOPMENT OF CARBON-CARBON COMPOSITES
JP2547109B2 (en) Fiber-reinforced carbon composite material
Dhakate et al. Strengthening of C/C Composites through Ceramer Matrix
JPH0578174A (en) Inorganic fiber sintered compact and its production