JPS6317254B2 - - Google Patents

Info

Publication number
JPS6317254B2
JPS6317254B2 JP9908781A JP9908781A JPS6317254B2 JP S6317254 B2 JPS6317254 B2 JP S6317254B2 JP 9908781 A JP9908781 A JP 9908781A JP 9908781 A JP9908781 A JP 9908781A JP S6317254 B2 JPS6317254 B2 JP S6317254B2
Authority
JP
Japan
Prior art keywords
satellite
frequency
attitude
area
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9908781A
Other languages
Japanese (ja)
Other versions
JPS581338A (en
Inventor
Hiroyuki Kumazawa
Makoto Ando
Kenji Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9908781A priority Critical patent/JPS581338A/en
Publication of JPS581338A publication Critical patent/JPS581338A/en
Publication of JPS6317254B2 publication Critical patent/JPS6317254B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/2041Spot beam multiple access

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Relay Systems (AREA)

Description

【発明の詳細な説明】 本発明はマルチビームアンテナを用いて衛星通
信を行なう場合のアンテナビームによるサービス
エリア領域を増加させうる通信方式に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a communication system that can increase the service area by antenna beams when performing satellite communication using a multi-beam antenna.

ここでは説明を簡単にするためにマルチビーム
アンテナを搭載した静止衛星を考え、マルチビー
ムアンテナから放射されるビームはほぼ円形と仮
定する。第1図はマルチビームアンテナから放射
されるビームのうちの1つを衛生からみた視角
(度)で示したものである。図中1はこのビーム
の中心方向を示し、3は視半径がθ度のビームの
形状を示す。これは今必要とするアンテナ利得
(ここではGodBと仮定する)を示す等レベル線
である。換言すれば3の範囲は利得Gp以上で照
射できるエリアとも言える。一方、衛星において
は、衛星自体の機械的アンバランスや太陽輻射圧
等の外乱によりその姿勢が変動し、それに従つて
アンテナのビーム方向も変動する。いま衛星の姿
勢すなわちアンテナのビーム方向がビームの中心
方向1に対してあらゆる方向にδ度だけ変動する
と仮定すると、常時Gpとなる照射エリアは2に
示すような狭い範囲となる。
To simplify the explanation, we will consider a geostationary satellite equipped with a multi-beam antenna, and assume that the beam radiated from the multi-beam antenna is approximately circular. FIG. 1 shows one of the beams radiated from a multi-beam antenna in terms of viewing angle (in degrees) as seen from the satellite. In the figure, 1 indicates the center direction of this beam, and 3 indicates the shape of the beam with a visual radius of θ degrees. This is an equal level line that shows the antenna gain we need now (assuming GodB). In other words, the range 3 can be said to be an area that can be irradiated with a gain G p or more. On the other hand, the attitude of a satellite changes due to disturbances such as mechanical imbalance of the satellite itself and solar radiation pressure, and the beam direction of the antenna changes accordingly. Assuming that the attitude of the satellite, that is, the beam direction of the antenna, varies by δ degrees in all directions with respect to the beam center direction 1, the irradiation area that is always G p will be a narrow range as shown in 2.

次に第2図の4で示すようなサービスエリアを
マルチビームで照射する場合を考える。図中1
a,2a,3aはそれぞれビームaの中心方向、
衛星の姿勢変動を考慮した場合の照射エリア、お
よび衛星の姿勢変動分を0とした場合の照射エリ
アを示す。1b,2b,3bはビームbにおける
同様のものを示す。図ではビームはaとbの2ビ
ームとし、2aと2bの領域が接するように配置
されている。このようにビーム間間隔が狭い場合
にはビーム間の干渉をさせるために各ビームの周
波数を変える必要がある。ここではビームaに
fa、ビームbにfbの周波数を用いるとする。する
と衛星よりの送信を考えた場合、4のサービスエ
リアのうちfaで常時照射される領域は2aで囲ま
れる部分fbで常時照射される領域は2bで囲まれ
る部分となり、5の斜線で囲まれる部分は不照射
領域となる。このような不照射領域を少なくする
1つの手段としては第2図のような場合、従来は
もう1つのビームcをaとbの中間に配置するア
ンテナが使用されることが多かつたがこの場合ビ
ーム数が増え衛星搭載用アンテナ系が複雑にな
る、周波数を増加する必要があるなどの欠点があ
つた。
Next, consider the case where a service area as shown by 4 in FIG. 2 is irradiated with multiple beams. 1 in the diagram
a, 2a, 3a are respectively in the center direction of beam a,
The irradiation area is shown when taking into account the attitude variation of the satellite, and the irradiation area when the attitude variation of the satellite is set to 0. 1b, 2b, 3b indicate the same in beam b. In the figure, there are two beams, a and b, which are arranged so that the regions 2a and 2b are in contact with each other. When the distance between the beams is narrow like this, it is necessary to change the frequency of each beam to cause interference between the beams. Here, beam a
Suppose f a and beam b use frequency f b . Then, when considering transmission from a satellite, the area constantly irradiated by f a in the service area 4 is the area surrounded by 2a f b , the area constantly irradiated is the area surrounded by 2b, and the diagonal line in 5 The surrounded area becomes a non-irradiation area. One way to reduce such non-irradiated areas is to use an antenna that places another beam c between beams a and b in the case shown in Figure 2. In this case, the number of beams increases, making the on-board antenna system complex, and the frequency needs to be increased.

本発明は不照射領域を極力少なくするマルチビ
ーム通信方式を提供することを目的とし、5の領
域の一部の領域に属する地球局において複数の周
波数を送信又は受信できるようにし、適宜時間的
に周波数を切り替えられるようにしたもので、そ
の特徴は、マルチビームアンテナを搭載し、姿勢
が時間的に変動する衛星よりビーム毎に異なる周
波数で単一のサービスエリアを各ビームで分担し
て照射し通信するマルチビーム通信方式におい
て、各ビームが所定の利得以上で照射する領域の
外で、かつ、衛星の姿勢変動による照射ビームの
時間的変動にもかかわらず常時いずれかのビーム
により照射される領域に設置される地球局は複数
の周波数を送受信出来る送受信機を有し、衛星の
姿勢変動による照射ビームの変動に応じて周波数
をより強いビームの周波数に切換えて通信するご
ときマルチビーム通信方式にある。
The purpose of the present invention is to provide a multi-beam communication system that minimizes non-irradiated areas, and enables earth stations belonging to some of the areas in 5 to transmit or receive multiple frequencies, and to The system is equipped with a multi-beam antenna, and unlike satellites whose attitude changes over time, each beam can illuminate a single service area with a different frequency. In a multi-beam communication method, an area that is outside the area irradiated by each beam with a predetermined gain or higher and that is constantly irradiated by one of the beams despite temporal fluctuations in the irradiation beam due to changes in the attitude of the satellite. The earth station installed in the satellite has a transmitter/receiver that can transmit and receive multiple frequencies, and uses a multi-beam communication method in which the frequency is switched to a stronger beam frequency in response to fluctuations in the irradiation beam due to changes in the satellite's attitude. .

以下図面により実施例を説明する。 Examples will be described below with reference to the drawings.

第3図は本発明の実施例を説明する図面であ
る。ここで第2図の5で示した不照射領域をさら
に分類すると、6に示すように衛星の姿勢が変動
している場合でも常にfa又はfbのいずれかの周波
数で照射されている領域と、斜線で示したような
それ以外の領域5′にわけられる。領域6は衛星
の姿勢変動にもかかわらず、2本のビームの関係
が一定であることにより存在するものである。
5′は衛星の姿勢変動によりfa、fbのいずれの周
波数でも照射されない時間がある領域である。こ
こで先に説明したようにビームaにfa、ビームb
にfbの周波数を用いるとする。するとサービスエ
リア4のうち2aで囲まれる領域内の地球局では
faの周波数帯を送受信できる装置を有しておけば
常に衛星との通信が可能であり、同様に2bで囲
まれる領域内の地求局ではfbの周波数帯を送受信
できる装置を有しておけばよい。一方、6に示す
領域では隣接する2つのビームに用いられる周波
数fa、fbの両方を送受信でる装置を設置する。こ
こで時間的にfa、又はfbのうちどちらか通信が可
能な方の周波数を選択して使用すれば衛星の姿勢
変動があつても常時衛星との通信回線が確保でき
ることになる。
FIG. 3 is a drawing explaining an embodiment of the present invention. If we further classify the non-irradiated area shown in 5 in Figure 2, as shown in 6, the area is always irradiated with either frequency f a or f b even when the attitude of the satellite changes. and the other area 5' as indicated by diagonal lines. Region 6 exists because the relationship between the two beams remains constant despite changes in the attitude of the satellite.
5' is an area where there is a time when neither frequency f a nor f b is irradiated due to attitude fluctuations of the satellite. Here, as explained earlier, beam a has f a and beam b
Suppose we use the frequency of f b for . Then, at the earth station within the area surrounded by 2a of service area 4,
If you have a device that can transmit and receive the f a frequency band, you can always communicate with the satellite, and similarly, the geostation in the area surrounded by 2b has a device that can transmit and receive the f b frequency band. Just leave it there. On the other hand, in the area shown in 6, a device that can transmit and receive both frequencies fa and fb used for two adjacent beams is installed. If the frequency at which communication is possible is selected from fa or f b in terms of time, it is possible to always secure a communication line with the satellite even if the attitude of the satellite changes.

第4図には、前述した周波数の切り替え法の具
体的な実施例を示す。図中7はマルチビームアン
テナを搭載した衛星、8,9はそれぞれfa、fb
周波数の放射ビーム、10は衛星姿勢変動検出装
置、11はその検出信号を地球局に伝送する回
線、12は領域6内の地球局、13は切替器、1
4a,14bは各々fa、fbの周波数の送受信機で
ある。いま衛星7が変動した時、10によりその
変動方向と変動量が検出され、11の回線により
その情報が12の地球局に送られる。この11の
回線の例としては以下に示すようなものが可能で
ある。
FIG. 4 shows a specific example of the frequency switching method described above. In the figure, 7 is a satellite equipped with a multi-beam antenna, 8 and 9 are radiation beams with frequencies fa and f b , respectively, 10 is a satellite attitude change detection device, 11 is a line that transmits the detection signal to the earth station, and 12 is the earth station in area 6, 13 is the switch, 1
4a and 14b are transceivers for frequencies fa and fb, respectively. Now, when the satellite 7 moves, the direction and amount of the movement is detected by 10, and the information is sent to 12 earth stations via a line 11. As an example of these 11 lines, the following are possible.

(i) 衛星に搭載してあるマルチビームアンテナか
らの放射ビームすべてに同じ内容の衛星姿勢変
動検出情報を入れ、同報的に地球局に伝送す
る。第4図の例では8,9に示すビームに同じ
検出情報を含めて送信することになる。
(i) The same content of satellite attitude change detection information is included in all radiation beams from the multi-beam antenna mounted on the satellite, and the information is broadcast to the earth station in a broadcast manner. In the example of FIG. 4, the beams shown at 8 and 9 contain the same detection information and are transmitted.

(ii) 衛星からのビーコン信号等に前記検出情報を
含めて地上の監視制御局に伝送し、この局より
地上回線を通して各地球局に検出情報を伝送す
る。
(ii) The detection information is included in a beacon signal etc. from the satellite and transmitted to a monitoring and control station on the ground, and from this station the detection information is transmitted to each earth station via a terrestrial line.

(iii) 衛星からのビーコン信号等に検出情報を含
め、各地球局に直接伝送する。
(iii) Include detection information in the beacon signal etc. from the satellite and transmit it directly to each earth station.

このようにして伝送された情報により、12の
地球局に向いているビームが9と判断された場合
には切替器13により14bのfbの送受信機の方
に切替えられる。
Based on the information transmitted in this manner, if it is determined that beam 9 is directed toward the earth station 12, the switch 13 switches the beam to the f b transmitter/receiver 14b.

ここでたとえば12の地球局に8のビームが向
いておりfaで通信しており、その後衛星の姿勢変
動により9のビームが向いたとする。このとき前
述したように地球局の送受信機は衛星よりの姿勢
の情報により切り替えられる。この時には衛星か
ら12の地球局への信号は当然ビーム8からビー
ム9にのせ替えられなければならないが、この場
合には衛星自体で12の地球局方向にその時点で
向いているビームが判別できているためのせかえ
ることが可能である。
For example, assume that beam number 8 is directed to 12 earth stations and they are communicating via f a , and then beam number 9 is directed to 12 earth stations due to a change in the attitude of the satellite. At this time, as described above, the earth station's transmitter and receiver are switched based on attitude information from the satellite. At this time, the signals from the satellite to the 12 earth stations must naturally be transferred from beam 8 to beam 9, but in this case, the satellite itself cannot determine which beam is currently pointing in the direction of the 12 earth stations. It is possible to make a change for the purpose of

第5図には周波数切替え法の具体的な他の実施
例を示す。図中15は受信信号分岐回路、16は
受信レベル比較回路である。いま衛星アンテナよ
り第4図と同様にfa、fbのビームが放射されてい
るとした場合、地球局12では常時fa、fbを受信
可能にしておく。つまり受信信号の一部が15の
分岐回路に分岐され、16でどの周波数の電力が
最も大きいかを判断する。これによりもしfaの方
がfbより大きい場合には切替器13により14a
のfaの送受信機の方に切替えられる。衛星での信
号ののせかえは、前述したように衛星自体でアン
テナからのビームの向いている方向が判別できる
ため簡単に実施できる。
FIG. 5 shows another specific embodiment of the frequency switching method. In the figure, 15 is a received signal branching circuit, and 16 is a received level comparison circuit. Assuming that beams fa and fb are being radiated from the satellite antenna as shown in FIG. 4, the earth station 12 is always enabled to receive beams fa and fb . That is, part of the received signal is branched to 15 branch circuits, and 16 judges which frequency has the largest power. As a result, if f a is larger than f b , the switch 13
F A is switched towards the transceiver. As mentioned above, replacing signals on a satellite is easy because the satellite itself can determine the direction in which the beam from the antenna is pointing.

以上説明したようにマルチビームアンテナを用
いる通信方式において、衛星の姿勢変動により照
射されるビームが変化する領域にある地球局の送
信又は受信周波数を適宜その時点で照射されてい
るビームの周波数にあわせて切り替えて通信する
ため、マルチビームにより通信可能なサービスエ
リアを増加できる利点がある。このような利点が
あるため衛星通信のみならず、マルチビームアン
テナを用いるような方式で、しかもマルチビーム
アンテナ側のビーム方向が時間的に変動するよう
な場合にはいずれも応用可能である。
As explained above, in a communication system using a multi-beam antenna, the transmitting or receiving frequency of an earth station located in an area where the irradiated beam changes due to attitude changes of the satellite is adjusted appropriately to the frequency of the irradiated beam at that time. Since communication is performed by switching between multiple beams, there is an advantage that the service area in which communication can be performed can be increased by using multiple beams. Because of these advantages, it can be applied not only to satellite communications but also to any system that uses a multi-beam antenna, and where the beam direction on the multi-beam antenna side changes over time.

ここでは説明を簡単にするためビームの数、周
波数を2つに限定したが、これは2つ以上いくつ
でもよい。またビームの形状も円形として説明し
たがこれも円形に限定されない。
Here, in order to simplify the explanation, the number of beams and the frequency are limited to two, but the number may be two or more. Furthermore, although the shape of the beam has been described as circular, it is not limited to a circular shape either.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はマルチビームのうちの1つのビームを
示す図、第2図はマルチビームでサービスエリア
を照射する場合の説明図、第3図は本発明の実施
例を説明する図、第4図と第5図は周波数の切替
え法の具体的な実施例を示す図である。 1……ビームの中心方向、2……姿勢変動があ
る時の照射エリア、3……姿勢変動がない場合の
照射エリア(視半径θ度のビーム形状)、4……
サービスエリア、5,5′……不照射領域、6…
…姿勢変動がある場合にいずれかの周波数で照射
される領域、7……衛星、8,9……放射ビー
ム、10……衛星姿勢変動検出装置、11……伝
送回線、12……地球局、13……切替器、14
……送受信機、15……受信信号分岐回路、16
……受信レベル比較回路。
Fig. 1 is a diagram showing one of the multiple beams, Fig. 2 is an explanatory diagram when a service area is irradiated with multiple beams, Fig. 3 is a diagram illustrating an embodiment of the present invention, and Fig. 4 and FIG. 5 are diagrams showing a specific example of a frequency switching method. 1... Beam center direction, 2... Irradiation area when there is attitude change, 3... Irradiation area when there is no attitude change (beam shape with visual radius θ degrees), 4...
Service area, 5, 5'... Non-irradiation area, 6...
... Area irradiated with any frequency when there is an attitude change, 7 ... Satellite, 8, 9 ... Radiation beam, 10 ... Satellite attitude change detection device, 11 ... Transmission line, 12 ... Earth station , 13... switching device, 14
... Transmitter/receiver, 15 ... Reception signal branch circuit, 16
...Reception level comparison circuit.

Claims (1)

【特許請求の範囲】 1 マルチビームアンテナを搭載し、姿勢が時間
的に変動する衛星よりビーム毎に異なる周波数で
単一のサービスエリアを各ビームで分担して照射
し通信するマルチビーム通信方式において、各ビ
ームが所定の利得以上で照射する領域の外で、か
つ、衛星の姿勢変動による照射ビームの時間的変
動にもかかわらず常時いずれかのビームにより照
射される領域に設置される地球局は複数の周波数
を送受信出来る送受信機を有し、衛星の姿勢変動
による照射ビームの変動に応じて周波数をより強
いビームの周波数に切換えて通信することを特徴
とするマルチビーム通信方式。 2 衛星に搭載された衛星姿勢変動検出装置によ
り衛星の姿勢変動量及び方向を検出し、その結果
に従つて地球局の送受信周波数を切換えるごとき
特許請求の範囲第1項のマルチビーム通信方式。 3 地球局で各受信ビーム毎の受信レベルを比較
し、最大受信レベルをもつビームの周波数に送受
信周波数を切換えるごとき特許請求の範囲第1項
のマルチビーム通信方式。
[Claims] 1. In a multi-beam communication system in which a satellite carrying a multi-beam antenna and whose attitude fluctuates over time beams and communicates by beaming a single service area at a different frequency for each beam. , an earth station installed outside the area irradiated by each beam with a predetermined gain or higher and in an area that is always irradiated by one of the beams despite temporal fluctuations in the irradiation beam due to attitude changes of the satellite. A multi-beam communication system that includes a transceiver that can transmit and receive multiple frequencies, and that communicates by switching the frequency to a stronger beam frequency in response to changes in the irradiation beam due to changes in the attitude of the satellite. 2. The multi-beam communication system according to claim 1, in which the amount and direction of the attitude change of the satellite is detected by a satellite attitude change detection device mounted on the satellite, and the transmitting and receiving frequency of the earth station is switched according to the results. 3. The multi-beam communication system according to claim 1, in which the earth station compares the reception levels of each reception beam and switches the transmitting and receiving frequency to the frequency of the beam with the maximum reception level.
JP9908781A 1981-06-27 1981-06-27 Multibeam communication system Granted JPS581338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9908781A JPS581338A (en) 1981-06-27 1981-06-27 Multibeam communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9908781A JPS581338A (en) 1981-06-27 1981-06-27 Multibeam communication system

Publications (2)

Publication Number Publication Date
JPS581338A JPS581338A (en) 1983-01-06
JPS6317254B2 true JPS6317254B2 (en) 1988-04-13

Family

ID=14238113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9908781A Granted JPS581338A (en) 1981-06-27 1981-06-27 Multibeam communication system

Country Status (1)

Country Link
JP (1) JPS581338A (en)

Also Published As

Publication number Publication date
JPS581338A (en) 1983-01-06

Similar Documents

Publication Publication Date Title
US6449461B1 (en) System for mobile communications in coexistence with communication systems having priority
US6169910B1 (en) Focused narrow beam communication system
US4985706A (en) Process for data transmission by means of a geo-stationary satellite and at least one sub-satellite
CN110519695B (en) Database-assisted satellite system and ground cellular network spectrum sharing method
US4145658A (en) Method and apparatus for cancelling interference between area coverage and spot coverage antenna beams
US3151295A (en) Communication system employing means for adjusting the power between control and relay stations
EP0732814A3 (en) Bidirectional satellite communication system with sharing of a same frequency band through superposition of signal frequencies
EP0952747A3 (en) Dual mode base station antenna with wide and narrow beams
US6205320B1 (en) System for satellite to airship to gateway/customer premise equipment, and airship to airship, high data rate relay
US6075483A (en) Method and system for antenna beam steering to a satellite through broadcast of satellite position
US5995804A (en) Repeater station for augmenting the coverage area of a paging system
JP2001230722A (en) Automatic mobile radio communication relay method and system
US3378845A (en) Generation of beacon signals for communication satellite
US6487476B1 (en) Redundant satellite system
GB1145194A (en) A directional radio link
JPS6317254B2 (en)
CA2314960A1 (en) Apparatus and method for reusing satellite broadcast spectrum for terrestrially broadcast signals
US6643509B1 (en) Civil aviation communication system
CA2260200C (en) Focused narrow beam communication system
US5699069A (en) Plural beam reduction of multipath reflections
JP2541120B2 (en) Geostationary satellite control system
US20210336692A1 (en) Wireless LAN Access Point from Space and Wireless LAN System Using the Same
JPS6321369B2 (en)
US20230010606A1 (en) Satellite Communication Terminal for IOT Applications
US7006788B1 (en) Method and system for preventing sun transit outages in point-to-multipoint satellite systems