JPS63172384A - Through-vision projection system - Google Patents

Through-vision projection system

Info

Publication number
JPS63172384A
JPS63172384A JP62003158A JP315887A JPS63172384A JP S63172384 A JPS63172384 A JP S63172384A JP 62003158 A JP62003158 A JP 62003158A JP 315887 A JP315887 A JP 315887A JP S63172384 A JPS63172384 A JP S63172384A
Authority
JP
Japan
Prior art keywords
perspective
reference point
projection plane
projection
viewpoint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62003158A
Other languages
Japanese (ja)
Inventor
Yasumasa Kawashima
泰正 川島
Yoshiaki Usami
芳明 宇佐美
Kenichi Anjo
安生 健一
Norihiro Nakajima
中島 憲宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62003158A priority Critical patent/JPS63172384A/en
Publication of JPS63172384A publication Critical patent/JPS63172384A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Generation (AREA)

Abstract

PURPOSE:To improve the operability and also to reduce an error with a through- vision projection system by realizing the through-vision projection control using a parameter accordant with the human sense. CONSTITUTION:A display area 107 is decided by a screen reference line 125 for a triangle 124 which is defined by a visual point 102 and the line 125 on a plane including said line 125 and a visual center line 126. Thus the size of the area 107 is kept constant as long as the length 130 of the line 125 is kept constant. The relationships among picture angles 123 and alpha, the visual distance 122lv and the screen standard line length L130 are shown in an equation I. Then equations II and III are obtained from the equation I. In this perspective sense control mechanism, the control of only the perspective sense is possible with the same principle as conventional one excepting a fact that the display area moves.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコンピュータによる図形表示に係り、特に遠近
感を操作し利用者の望む画像を得るのに好適な透視投影
制御法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to graphic display by a computer, and particularly to a perspective projection control method suitable for manipulating perspective and obtaining an image desired by a user.

〔従来の技術〕[Conventional technology]

従来の透視投影制御については、ニーシーエムシーグラ
フ(A CM Slggraph)  が1979年に
定めたグラフィック標準規格であるコア(CORE)あ
るいは国際標準化機構(ISO)が定めるジーケーエス
(GKS)で定められている。又透視投影機構を持つ図
形表示装置については1例えばセイコー電子工業GR3
000システム解説書の記載が挙げられる。
Conventional perspective projection control is defined by CORE, a graphic standard established by ACM Slggraph in 1979, or GKS by the International Organization for Standardization (ISO). . Regarding graphic display devices with a perspective projection mechanism, for example, Seiko Electronics Industry GR3
An example of this is the description in the 000 system manual.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、透視投影制御のために以下のパラメ
ータを指定する必要がある。
In the above conventional technology, it is necessary to specify the following parameters for perspective projection control.

(a)三次元空間中任意位置の参照点 (b)参照点を基準とした位置の視点 (Q)参照点から投影平面までの距離 (d)投影平面の方向 (e)上方向(投影結果が画面に対し、ある与えられた
方向、例えば上下方向となる様なベクトル) (f)投影平面上の表示領域(矩形)の位置、大きさ ここで、主なパラメータ操作時の表示画面の挙動を図に
より説明する。第2図は、図形定義座標系100で定義
される参照点101.参照点101からの相対位置で与
えられる視点1021図形定義座標系101で定義され
る投影面方向103゜上方向104参照点101からの
距離と投影面方向1o3.上方向104から定まる投影
平面105゜投影面座標系106.投影面座標系106
で定義される表示領域107の空間配置を示したもので
ある1本図より明らかな様に1表示領域107は。
(a) Reference point at an arbitrary position in three-dimensional space (b) Viewpoint at a position based on the reference point (Q) Distance from the reference point to the projection plane (d) Direction of the projection plane (e) Upward direction (projection result is in a given direction, for example, the vertical direction, with respect to the screen) (f) Position and size of the display area (rectangle) on the projection plane Here, the behavior of the display screen when operating the main parameters will be explained using figures. FIG. 2 shows a reference point 101 defined in a figure definition coordinate system 100. A viewpoint 1021 given as a relative position from the reference point 101; a projection plane direction 103° defined by the figure definition coordinate system 101; an upward direction 104; a distance from the reference point 101 and a projection plane direction 1o3. Projection plane 105° projection plane coordinate system 106 determined from the upper direction 104. Projection plane coordinate system 106
As is clear from this figure, which shows the spatial arrangement of the display area 107 defined by.

参照点位!!101.投影面方向103.上方向104
の総てを決定した後、初めて決められるもので、その決
定は非常に困難である。
Reference point! ! 101. Projection plane direction 103. upward direction 104
This decision can only be made after all of the above have been determined, and it is extremely difficult to make a decision.

第3図は視点102と投影平面105相対位置関係、及
び表示領域107の大きさの変化による表示画面110
の挙動を模式的に示した図である。
FIG. 3 shows the display screen 110 due to changes in the relative positional relationship between the viewpoint 102 and the projection plane 105, and the size of the display area 107.
FIG. 2 is a diagram schematically showing the behavior of

同図においては、三次元図形Al 11.図形B112
は各々投影平面105に投影され、表示画面110内で
では表示図形Al 13.同114が得られる。
In the figure, a three-dimensional figure Al 11. Figure B112
are each projected onto the projection plane 105, and within the display screen 110, the display figures Al13. 114 is obtained.

表示画面110は同図(イ)、(ロ)と(ハ)で大きさ
が異って描かれているが、最終的には同一寸法の物理画
面に写像される。
Although the display screen 110 is drawn with different sizes in FIGS. 1A, 2B, and 3C, it is ultimately mapped onto a physical screen of the same size.

同図(ロ)は(イ)に対して、視点102を投影平面1
05に近づけた場合であり、人間の動作で言えばr物に
近づいて見る」ことに相等し、感覚的に言えば、「近い
図形はより大きく見え、遠いものも少し大きく見える」
ことが期待される。
In the same figure (b), the viewpoint 102 is set to the projection plane 1 with respect to (a).
05, and in terms of human motion, this is equivalent to ``looking closer to an object.''Intuitively speaking, ``closer figures appear larger, and distant objects also appear slightly larger.''
It is expected.

すなわち1図形の拡大と遠近感の強調が同時に行る必要
がある。しかし、(ロ)では表示図形A113゜同B1
14の間の奥行きの差は強強され、遠近感については期
待を満すが、表示図形B113はむしろ小さくなり、人
間の感覚と異る結果になっている。
In other words, it is necessary to simultaneously enlarge one figure and emphasize perspective. However, in (b), the displayed figure A113゜same B1
Although the difference in depth between B14 and B14 is enhanced and the perspective meets expectations, the displayed figure B113 is rather small, resulting in a result that differs from human perception.

一方同図(ハ)は、(イ)に対し表示領域を縮少した場
合で1人間の動作で言えば、「望遠鏡で見る」ことに相
等し、「図形が大きく見える」ことが期待される。(ハ
)の場合は、図の通り人間の感覚とのずれはないが、先
に述べた様に1本来仮想的に設けられた投影平面上で表
示領域106を定義することは物理的意味が曖昧であり
、結局人間の感覚とは離れている。
On the other hand, in the same figure (c), when the display area is reduced compared to (a), in terms of one person's action, it is equivalent to ``looking through a telescope'', and it is expected that ``the figure will appear larger''. . In the case of (c), there is no deviation from the human sense as shown in the figure, but as mentioned earlier, it makes no physical sense to define the display area 106 on a projection plane that is originally virtually provided. It is vague and ultimately distant from human senses.

以上の二側で示した様に、従来の透視投影制御パラメー
タは1人間の感覚とずれており、そのためパラメータの
設定が難しく、又誤操作の原因となっていた。
As shown in the above two points, the conventional perspective projection control parameters are out of touch with the senses of a single human being, which makes it difficult to set the parameters and causes erroneous operations.

本発明の目的は1人間の感覚に即したパラメータによる
透視投影制御を可能にすることにある。
An object of the present invention is to enable perspective projection control using parameters that match human senses.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、前述の従来技術による投影制御パラメータ
を、 (A)表示目標物を基準とした参照点位置(B)参照点
から視点までの距離(視距M)と方向(#!力方向 EC)投影平面の方向(従来の(d)と同様)(D)上
方向(従来の(e)と同様) (E)視点と参照点を結a(以後視中心線と称する)を
含み、上方向と視中心線とから定まる方向の平面上で、
視点を頂点とし視中心線を二等分線とする画角 とすることにより、達成できる。又(A)〜(E)を単
独に操作をすると、従来例第3図(ロ)に示す遠近感の
みの制御は困難であるが、表示領域の大きさを一定に保
ちつつ、視距1llIi122と画角123を連動操作
する、遠近感制御機構を備えることにより、同制御が可
能になる。
The above purpose is to set the projection control parameters according to the prior art as follows: (A) Reference point position with reference to the display target (B) Distance (sight distance M) and direction (#! Force direction EC) from the reference point to the viewpoint ) Direction of the projection plane (same as conventional (d)) (D) Up direction (same as conventional (e)) (E) Direction of the projection plane (same as conventional (e)) On the plane in the direction determined by the direction and the visual center line,
This can be achieved by setting the angle of view to have the viewpoint as the apex and the visual center line as the bisector. Furthermore, if (A) to (E) are operated individually, it is difficult to control only the perspective as shown in the conventional example shown in FIG. This control becomes possible by providing a perspective control mechanism that operates the angle of view 123 in conjunction with the angle of view 123.

〔作用〕[Effect]

パラメータ(A)〜(F)及び遠近感制御機構の作用を
、図により説明する。第4図において。
The parameters (A) to (F) and the effects of the perspective control mechanism will be explained using figures. In Fig. 4.

参照点101は表示対象図形120を基準に(例えば重
心点位置、頂点位置等)定められており。
The reference point 101 is determined based on the display target figure 120 (for example, the position of the center of gravity, the position of the vertex, etc.).

視方向121、視距離122を与えることにより。By giving viewing direction 121 and viewing distance 122.

視点10−2が定まる。投影平面107は、参照点10
1を含み一1投影面方向103に垂直な面である。ここ
で上方向104及び画角123を与えると、上方向の投
影像127に対して予め与えられた角(例えば直角)を
持つ直線128.視点102゜視中心線126から三角
形124が定まる。但し。
A viewpoint 10-2 is determined. The projection plane 107 is the reference point 10
1 and is perpendicular to the projection plane direction 103. Here, when the upward direction 104 and the angle of view 123 are given, a straight line 128. A triangle 124 is determined from the viewpoint 102° and the viewing center line 126. however.

視点102における頂角(画角123)は視中心線12
6を二等分線とするものとする。三角形124から画面
基準線125が決定され、画面基準線より表示領域10
7が、例えば画面基準線を中心線とする矩形領域として
、決められる0本発明では、従来技術で最も設定が戴か
しかった表示領域107が、画角123により設定可能
であり、透視投影制御の操作性が大きく向上する。
The apex angle (angle of view 123) at the viewpoint 102 is the visual center line 12
Let 6 be the bisector. A screen reference line 125 is determined from the triangle 124, and the display area 10 is determined from the screen reference line.
In the present invention, the display area 107, which was the most difficult to set in the prior art, can be set by the angle of view 123, and perspective projection control is possible. The operability is greatly improved.

第5図は、視距離122と画角123の操作による表示
画面の挙動を示している。(ロ)は(イ)に対し、視距
離122を小さくした場合であり。
FIG. 5 shows the behavior of the display screen depending on the manipulation of the viewing distance 122 and the angle of view 123. (b) is a case where the viewing distance 122 is made smaller than (a).

表示図形A113.同114共に大き(なり、且つ奥行
きは強調され、第3図(ロ)の場合と異り、人間の感覚
に合致した結果が得られる。(ハ)は画角123を小さ
くした場合であり、得られる効果は第3図(ハ)と同様
であるが、投影平面105を意識せずに制御できること
が優れている。
Display figure A113. Both 114 and 114 are large (and the depth is emphasized, and unlike the case in Fig. 3 (b), a result that matches the human sense is obtained. (c) is the case where the angle of view 123 is made small, The effect obtained is the same as that shown in FIG. 3(C), but the advantage is that the projection plane 105 can be controlled without being conscious of it.

次に遠近感制御機構の作用について図により説明する。Next, the operation of the perspective control mechanism will be explained using diagrams.

第6図は視中心線126と画面基準線125とを含む平
面上で、視点102と画面基準線125とにより定義さ
れる三角形124を示している。表示領域107は、画
面基準線125に基づき定められるので、画面基準線1
25の長さ130を一定に保てば、表示領域107の大
きさも一定にできる0画角123.α、視距離122Q
v、画面基準線長し130の関係は。
FIG. 6 shows a triangle 124 defined by the viewpoint 102 and the screen reference line 125 on a plane including the viewing center line 126 and the screen reference line 125. Since the display area 107 is determined based on the screen reference line 125, the display area 107 is determined based on the screen reference line 125.
If the length 130 of 25 is kept constant, the size of the display area 107 can also be kept constant. α, viewing distance 122Q
What is the relationship between v and screen reference line length 130?

但し。however.

Ql二画面基準線125の参照点操作部131Ω念:同
右側長132 β :画面基準[125と視中心線126の成す角 から、 及び。
Reference point operation unit 131Ω of Ql two-screen reference line 125: Right side length 132 β: Screen reference [From the angle formed by 125 and visual center line 126, and.

(第3式) となる、第6図(イ)は画角123=45″、視距離1
22=50の状態で、(ロ)において、遠近感操作とし
て画角123を60@とすると1画面基準線長130は
一定のまま、第2式より視距1Ii122は38.8に
変り、底辺全体が2.4左にずれる。rj!Iに示され
る如く、本遠近感制御機構の作用は、従来例第311(
ロ)と、表示領域107が移動することを除いて、同・
−であり、遠近感のみの制御が可能である。
(Equation 3), Fig. 6 (a) shows angle of view 123 = 45'', viewing distance 1
22 = 50, and in (b), if the angle of view 123 is set to 60 @ as a perspective operation, the 1-screen reference line length 130 remains constant, and the viewing distance 1Ii122 changes to 38.8 from the second equation, and the base The whole thing shifts to the left by 2.4. rj! As shown in I, the action of this perspective control mechanism is similar to that of conventional example No. 311 (
b) and the same except that the display area 107 moves.
-, and only perspective can be controlled.

(A)〜(E)のパラメータ及び遠近感制御機構の作用
により、操作者は、操作と表示画面の挙動の関係が明確
に把握でき、操作性の向上、並びに誤操作の抑止が達成
される。
Due to the parameters (A) to (E) and the effects of the perspective control mechanism, the operator can clearly understand the relationship between the operation and the behavior of the display screen, improving operability and preventing erroneous operations.

〔実施例〕〔Example〕

以下、本発明の実施例を図により説明する。第1図は1
本発明の透視投影方式を実装した、三次元図形表示装置
の構成図である1水袋fi2はホストコンピュータ1に
接続され、内部は図形データ蓄積部3、透視投影処理部
41表示制御部5、表示部6.参照点操作部7.投影面
方向操作部8゜上方向操作部9、視方向操作部10.視
距離操作部11、画角操作部12.遠近感操作部13、
遠近感制御部14から構成される。ここで7〜13を透
視投影操作部と総称する。
Embodiments of the present invention will be described below with reference to the drawings. Figure 1 is 1
1 Water bag fi2, which is a block diagram of a three-dimensional graphic display device implementing the perspective projection method of the present invention, is connected to a host computer 1, and inside includes a graphic data storage section 3, a perspective projection processing section 41, a display control section 5, Display section 6. Reference point operation section 7. Projection plane direction operation section 8° upward direction operation section 9, viewing direction operation section 10. Viewing distance operation section 11, viewing angle operation section 12. Perspective operation section 13,
It is composed of a perspective control section 14. Here, 7 to 13 are collectively referred to as a perspective projection operation section.

三次元図形データの表示処理は、以下の手順で行われる
Display processing of three-dimensional graphic data is performed in the following steps.

(a)図形データがホストコンピュータ1より図形デー
タ1llf部3に転送される。
(a) Graphic data is transferred from the host computer 1 to the graphic data 1llf section 3.

(b)透視投影処理部4は1図形データ蓄積部5から図
形データを取り出し、ホストコンピュータ1又は透視投
影7〜13遠近感制御部から送られる投影パラメータに
従い投影図形データを生成し、表示制御部5に送る。
(b) The perspective projection processing unit 4 takes out figure data from the figure data storage unit 5, generates projected figure data according to the projection parameters sent from the host computer 1 or the perspective control units 7 to 13, and displays the figure data to the display control unit. Send to 5.

(c)表示制御部5は、投影図形データを表示部6で表
示する。
(c) The display control section 5 displays the projected figure data on the display section 6.

(d)以下の処理は、ホストコンピュータ1からの指令
、操作者からの再表示指令、及び後述する視方向操作部
7〜13の操作による透視投影パラメータの変更指令の
いずれかにより起動される。
(d) The following processing is activated by any one of a command from the host computer 1, a redisplay command from the operator, and a command to change perspective projection parameters by operating the viewing direction manipulation units 7 to 13, which will be described later.

次に透視投影操作部7〜12各々による。透視パラメー
タの指定について説明する。
Next, each of the perspective projection operation units 7 to 12 operates. The specification of perspective parameters will be explained.

参照点操作部7では、図形要素ビックによる頂点重心位
置等、任意空間位置あるいは、空間移動量入力等により
参照点位置を指定する。第7図(イ)はカーソル位置1
40より図形頂点141がピックされ、参照点101が
図形頂点と一致した様子、(ロ)は二次元カーソル位置
140が示めす空間座標に参照点が一致した様子を示し
た図である。
In the reference point operation section 7, a reference point position is specified by an arbitrary spatial position such as a vertex center of gravity position based on a graphic element Bic, or by inputting a spatial movement amount. Figure 7 (a) shows cursor position 1
40 shows the figure vertex 141 being picked and the reference point 101 coincides with the figure vertex, and (b) shows how the reference point coincides with the spatial coordinates indicated by the two-dimensional cursor position 140.

投影面方向操作部8では、三点透視、二点透視法等の選
択、あるいは任意の投影面方向入力等を行う、透視透影
は、多くの場合、三点、二点透視法が用いられるため、
消失点数の選択により自動的に投影面方向が決まること
は操作性向上に効果がある。第8図は消失点数による投
影面方向の決定法を示す図である(但し図形の多くは図
形定義座標系100の軸と平行、垂直な面を持つと仮定
している)、(イ)は投影面方向103が視中心線12
6と同方向であり、一般的には三点透視となる。(ロ)
は図形定義座標系100の一軸と、視中心lllA12
7の投影平面105上での垂直影線150とが平行で、
二点透視用の投影面方向103となる。(ハ)は、投影
面方向103が図形定義4!標100の一軸と同方向で
、一点透視用である。
The projection plane direction operation unit 8 selects three-point perspective, two-point perspective, etc., or inputs an arbitrary projection plane direction. In most cases, three-point or two-point perspective is used for perspective projection. For,
Automatically determining the direction of the projection plane by selecting the number of vanishing points is effective in improving operability. Figure 8 is a diagram showing the method of determining the projection plane direction using the number of vanishing points (however, it is assumed that most of the figures have surfaces parallel to and perpendicular to the axis of the figure definition coordinate system 100). The projection plane direction 103 is the visual center line 12
It is in the same direction as 6, and is generally a three-point perspective. (B)
is one axis of the figure definition coordinate system 100 and the visual center lllA12
7 is parallel to the vertical shadow line 150 on the projection plane 105,
This becomes the projection plane direction 103 for two-point perspective. In (c), the projection plane direction 103 is figure definition 4! It is in the same direction as one axis of the marker 100 and is for single point perspective.

(ニ)は、図形が図形定義座標系100に対し斜いてい
る場合等の、任意方向指定による投影面方向127であ
り、基準となる図形要素ピック、又は投影面方向変化量
入力等によって指定する。
(D) is a projection plane direction 127 that can be specified by arbitrary direction when the figure is oblique with respect to the figure definition coordinate system 100, and is specified by picking a figure element as a reference or inputting the amount of change in the projection plane direction. .

上方向操作部9.視方向操作部10.視距離操作部11
1画角操作部では、各々のパラメータの値又はその変化
量を入力する。第9図は、画面基準線125から表示領
域107を決定する例と、上方向104の関係を示した
図である。(イ)は、表示領域107を画面基準線12
5を横中心線とする。予め定められた縦横比を持つ矩形
とする例である。この場合画面基準線125は、上方向
107の投影151と垂直になる様に決定される。
Upward operation section 9. Viewing direction operation unit 10. Viewing distance operation section 11
In the 1-view angle operation section, the value of each parameter or the amount of change thereof is input. FIG. 9 is a diagram showing an example of determining the display area 107 from the screen reference line 125 and the relationship between the upward direction 104. In (a), the display area 107 is connected to the screen reference line 12.
5 is the horizontal center line. This is an example of a rectangle having a predetermined aspect ratio. In this case, the screen reference line 125 is determined to be perpendicular to the projection 151 in the upward direction 107.

(ロ)は1画面基準線125を(イ)と同様の表示領域
107の対角線とする例で1画面基準線125は、上方
向投影151を投影平角105上で、表示領域107の
対角線と横軸が成す角153だけ回転した方向152に
垂直になる様に決定される。
(b) is an example in which the one-screen reference line 125 is the diagonal line of the display area 107 similar to (a). It is determined to be perpendicular to a direction 152 rotated by an angle 153 formed by the axis.

遠近感操作部13よりの入力は、遠近感制御部14にお
いて画角の変化量と解釈される。遠近感制御部14は、
透視投影処理部4より得られる画面基中線長と新らたな
画角から、第2式に従って視距離を求め、透視投影処理
部4へ送る。
The input from the perspective operation section 13 is interpreted by the perspective control section 14 as the amount of change in the angle of view. The perspective control section 14 is
From the screen base line length and the new angle of view obtained from the perspective projection processing section 4, the viewing distance is determined according to the second equation and sent to the perspective projection processing section 4.

本実施例によれば、透視パラメータの変更による画面の
変化を即時確認できる。消点数の、選択が容易等の効果
がある。
According to this embodiment, changes in the screen due to changes in perspective parameters can be immediately confirmed. This has the effect of making it easier to select the number of vanishing points.

第10図に本発明の透視投影方式による出力図を示す0
表示画面110は正方形、画面基準線125は画面中央
横軸、投影面方向は視中心線と平行(三点透視)である
、(イ)を標準状態とすると、(ロ)は表示対象物12
0に「近づいて見た」すなわち視距離を小さくした図、
(ハ)は(ロ)の状態を基準に遠近感を強めた図、(ニ
)は同じく遠近感を弱めた図、(ホ)は(イ)に対し「
遠くから見た」すなわち視距離を大きくした図、(へ)
は「望遠鏡で見た」すなわち画角を小さくした図、(ト
)は「広角レンズで見た」すなおち画角を大きくした図
、(チ)は参照点101を変更した図、(す)は視方向
を変更した図である。いずれも1人間の感覚に合致した
画面が得られている。
FIG. 10 shows an output diagram using the perspective projection method of the present invention.
The display screen 110 is square, the screen reference line 125 is the central horizontal axis of the screen, and the projection plane direction is parallel to the viewing center line (three-point perspective).If (a) is the standard state, (b) is the display target 12.
A diagram viewed “closer” to 0, that is, with a reduced viewing distance,
(C) is a diagram with a stronger sense of perspective based on the state of (B), (D) is a diagram with a weakened sense of perspective as well, and (E) is a diagram with a contrast to (B).
"Viewed from a distance", that is, a diagram with a larger viewing distance, (to)
(G) is a view "as seen through a telescope," that is, with a smaller angle of view, (G) is a view "as seen through a wide-angle lens," that is, with a larger angle of view, (C) is a view with the reference point 101 changed, (S) is a diagram in which the viewing direction has been changed. In both cases, a screen that matches the senses of a single person is obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば1人間の感覚に合い、且つ従来技術に比
べ少いパラメータで透視投影制御ができるので、操作性
向上、特に誤差の抑止の効果がある。
According to the present invention, perspective projection control can be performed with fewer parameters than in the prior art, and is suitable for one person's senses, so that it is effective in improving operability and, in particular, suppressing errors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図は従来技術
による透視投影制御パラメータの空間配置図、第3図は
従来技術による透視投影制御例の説明図、第4@は本発
明の透視投影制御パラメータの空間配置図、第5図は本
発明による透視投影制御例の説明図、第6図は遠近感制
御の原理図。 第7図は参照点位置指定例の説明図、第8図は投る。 100・・・図形定義座標系、101・・・参照点。 102・・・視点、103・・・投影面方向、104・
・・上方向、105・・・投影平面、107・・・表示
領域。 110・・・表示画面、121・・・視力向、122・
・・視距離、123・・・画角、125・・・画面基準
線、126・・・視中心線。
FIG. 1 is a configuration diagram of an embodiment of the present invention, FIG. 2 is a spatial layout diagram of perspective projection control parameters according to the prior art, FIG. 3 is an explanatory diagram of an example of perspective projection control according to the prior art, and the fourth @ is a book FIG. 5 is an explanatory diagram of an example of perspective projection control according to the present invention, and FIG. 6 is a diagram showing the principle of perspective control. FIG. 7 is an explanatory diagram of an example of specifying the reference point position, and FIG. 8 is an illustration of a reference point position specification example. 100... Figure definition coordinate system, 101... Reference point. 102... Viewpoint, 103... Projection plane direction, 104...
...Upward direction, 105... Projection plane, 107... Display area. 110... Display screen, 121... Vision direction, 122...
... Viewing distance, 123... Angle of view, 125... Screen reference line, 126... Viewing center line.

Claims (1)

【特許請求の範囲】 1、三次元空間で定義された図形データを二次元画面に
投影し表示する図形処理システムにおいて、前記図形デ
ータを、前記三次元空間中の視点を中心に、同じく三次
元空間中の投影平面に投影し、該投影平面上の予め定め
られた形を持つ閉領域内の投影図形を前記二次元画面に
表示する際、前記三次元空間で、前記図形データの一部
又は全部に基準として定められる一点を参照点とし、前
記視点を該参照点からの距離と方向により定め、前記投
影平面を、参照点を含み予め定められた方法により設定
される法線を持つ面として定め、 該投影平面上での前記表示領域を、該投影平面上にあっ
て参照点を含み、且つ三次元空間で与えられるベクトル
の透視投影像と予め定められた角を成す直線、前記視点
、及び該視点・参照点間を結ぶ直線を二等分線とする該
視点における頂角により定まる三角形の、前記視点に対
する辺を基準に定めるとき、前記参照点、視距離、視方
向、投影面方向、上方向、及び画角により投影制御を行
うことを特徴とする透視投影方式。
[Scope of Claims] 1. In a graphics processing system that projects and displays graphic data defined in a three-dimensional space on a two-dimensional screen, the graphic data is projected and displayed in the same three-dimensional space around a viewpoint in the three-dimensional space. When projecting onto a projection plane in space and displaying a projected figure in a closed area having a predetermined shape on the projection plane on the two-dimensional screen, a part or part of the figure data is displayed in the three-dimensional space. One point defined as a reference point for all is a reference point, the viewpoint is determined by the distance and direction from the reference point, and the projection plane is a plane including the reference point and having a normal line set by a predetermined method. defining the display area on the projection plane as a straight line that is on the projection plane, includes a reference point, and forms a predetermined angle with a perspective projection image of a vector given in three-dimensional space; and the reference point, the viewing distance, the viewing direction, and the direction of the projection plane when determining the side of the triangle defined by the apex angle at the viewpoint, with the straight line connecting the viewpoint and the reference point as a bisector, with respect to the viewpoint. A perspective projection method characterized by performing projection control based on , upward direction, and angle of view.
JP62003158A 1987-01-12 1987-01-12 Through-vision projection system Pending JPS63172384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62003158A JPS63172384A (en) 1987-01-12 1987-01-12 Through-vision projection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62003158A JPS63172384A (en) 1987-01-12 1987-01-12 Through-vision projection system

Publications (1)

Publication Number Publication Date
JPS63172384A true JPS63172384A (en) 1988-07-16

Family

ID=11549541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62003158A Pending JPS63172384A (en) 1987-01-12 1987-01-12 Through-vision projection system

Country Status (1)

Country Link
JP (1) JPS63172384A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110262176A (en) * 2019-06-27 2019-09-20 成都菲斯特科技有限公司 A kind of projection screen installation system and installation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110262176A (en) * 2019-06-27 2019-09-20 成都菲斯特科技有限公司 A kind of projection screen installation system and installation method

Similar Documents

Publication Publication Date Title
US10290155B2 (en) 3D virtual environment interaction system
US10521028B2 (en) System and method for facilitating virtual interactions with a three-dimensional virtual environment in response to sensor input into a control device having sensors
US11430192B2 (en) Placement and manipulation of objects in augmented reality environment
US20160313800A1 (en) Information processing device, information processing method, and program
JPH0785312A (en) Three-dimensional time-varying picture generation device
US20040210852A1 (en) System for dynamically mapping input device movement as a user's viewpoint changes
US20140002449A1 (en) System and method for performing three-dimensional motion by two-dimensional character
US10318101B2 (en) Gesture-based user interface and method for navigating in three-dimensional space
US10438419B2 (en) System and method for modifying virtual objects in a virtual environment in response to user interactions
JP6110893B2 (en) Virtual space location designation method, program, recording medium recording program, and apparatus
JPH04233666A (en) Moving viewpoint for target in three-dimensional working region
US6714198B2 (en) Program and apparatus for displaying graphical objects
EP1821258B1 (en) Method and apparatus for automated dynamics of three-dimensional graphics scenes for enhanced 3D visualization
JP6121496B2 (en) Program to control the head mounted display system
JPS63172384A (en) Through-vision projection system
JP5247398B2 (en) Display adjustment device, display adjustment method, and computer program
JPH02150975A (en) Drawing display system
JPH07114655A (en) Graphic processor
JPH0816826A (en) Solid graphic arrangement input method and graphic system
JPH11175758A (en) Method and device for stereoscopic display
JP2017004539A (en) Method of specifying position in virtual space, program, recording medium with program recorded therein, and device
JPH09259301A (en) Visual range moving method in three-dimensional space
JP2616132B2 (en) Image display device
JPH07225859A (en) Object display device
JP4310909B2 (en) Image processing device