JPS63171803A - Production of porous laminated and sintered body - Google Patents

Production of porous laminated and sintered body

Info

Publication number
JPS63171803A
JPS63171803A JP62002478A JP247887A JPS63171803A JP S63171803 A JPS63171803 A JP S63171803A JP 62002478 A JP62002478 A JP 62002478A JP 247887 A JP247887 A JP 247887A JP S63171803 A JPS63171803 A JP S63171803A
Authority
JP
Japan
Prior art keywords
fibers
metal
metal powder
sintered body
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62002478A
Other languages
Japanese (ja)
Inventor
Yuji Horii
堀井 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62002478A priority Critical patent/JPS63171803A/en
Publication of JPS63171803A publication Critical patent/JPS63171803A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To produce the titled sintered body consisting of double-layered structure having high strength and different pore characteristics by mixing metal powder with the fibers which are consumedly heating and having different sizes to form a sheet-shaped mixture, laminating the mixtures and subjecting the laminate to a heating treatment to consume the fibers and to sinter the metal powder. CONSTITUTION:The sheet-shaped mixture is formed by mixing the metal powder and/or metallic fibers with the consumable fibers (natural fibers, carbon fibers, etc.) which are consumed by heating. (1) The metal powder and/or metallic fibers having different physical properties or sizes are used, or (2) the consumable fibers or different sizes are used, or (3) the materials having different compounding ratios of the consumable fibers and the metal powder and/or metallic fibers are used at this time. Plural sheets of such sheet-shaped mixtures are laminated and are subjected to the heating treatment by which the consumable fibers are consumed and the metal powder and metallic fibers are sintered. The porous laminated and sintered body having the uniform quality, high porosity and excellent strength is thereby produced with high productivity at one time of the heating treatment.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、触媒、フィルター、燃料電池用電極等として
優れた性能を発揮する多孔質積層焼結体の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a porous laminated sintered body that exhibits excellent performance as a catalyst, a filter, an electrode for a fuel cell, and the like.

[従来の技術] 上記の様な用途に適用される多孔質焼結体は、金属微粉
末を原料とし無加圧焼結法、スラリー成形法、ロール成
形法等によって製造されている。
[Prior Art] Porous sintered bodies applied to the above-mentioned uses are manufactured using fine metal powder as a raw material by a pressureless sintering method, a slurry molding method, a roll molding method, or the like.

無加圧焼結法とは、金属微粉末を型内に充填して表面を
平滑にならした後焼結することにより、金属微粉末同士
を適当な隙間が残された状態で接合一体化させる方法で
あり、たとえばカルボニル法等によって得られるニッケ
ル粉や鉄粉などの微粉末を使用すると多孔度がO,aを
超える高多孔質の金属焼結体を容易に得ることができる
。この場合、酸化性雰囲気で焼結を行なうと金属微粉末
は酸化された後焼結され、多孔質金属酸化物焼結体が得
られる。ところがこの方法は各工程がバッチ方式である
ため生産性を高めることができず、しかも平板状以外の
形状(たとえば円筒状等)のものが得られ難く利用分野
も著しく制限されるという問題がある。
The pressureless sintering method involves filling a mold with fine metal powder, smoothing the surface, and then sintering it to join the fine metal powders together with appropriate gaps left. For example, if fine powder such as nickel powder or iron powder obtained by the carbonyl method is used, a highly porous metal sintered body with a porosity exceeding O, a can be easily obtained. In this case, when sintering is performed in an oxidizing atmosphere, the metal fine powder is oxidized and then sintered, resulting in a porous metal oxide sintered body. However, this method has the problem that productivity cannot be increased because each process is a batch method, and it is difficult to obtain shapes other than flat plates (for example, cylindrical shapes), which severely limits the field of use. .

次にスラリー成形法とは、金属微粉末に少量のバインダ
(ポリビニルアルコールやメチルセルロース等)を配合
し、更に必要により消泡剤等の助剤を加えた復水その他
の溶媒を加えてスラリー状とし、ドクターブレード等で
テープ状に成形した後溶媒の揮発除去、予備焼成による
バインダ等の消失除去、及び本焼成による金属微粉末同
士あるいは酸化物同士の部分融着な順次行なう方法であ
り、連続生産システムの採用が可能であるため生産性が
高く、しかも安定した品質のものが得られるといった利
点を有している。ところがこの方法では、成形工程の段
階で早くも金属微粉末同士の密着が始まるため多孔度が
低下するという難点があり、焼結状態でせいぜい0.6
程一度の多孔度が得られるにすぎない、多孔度不足を補
うため、焼結時の熱処理によって消失する微粉末(カー
ボン、プラスチックス、セルロース等)や繊維などを原
料スラリー中へ混入しておく方法も提案されているが、
この方法を採用したとしても前記無加圧焼結性差みの高
多孔度が得られる訳ではなく、むしろ過剰添加による焼
結体の強度劣化が著しくなって割れ等の問題が生じてく
る。
Next, the slurry molding method involves blending fine metal powder with a small amount of binder (polyvinyl alcohol, methyl cellulose, etc.), and then adding condensate or other solvents with auxiliary agents such as antifoaming agents as necessary to form a slurry. This is a method in which the solvent is volatilized and removed after forming into a tape shape with a doctor blade, the binder etc. is removed by pre-firing, and the partial fusion of fine metal powders or oxides is partially fused together by main baking, and continuous production is possible. Since the system can be adopted, productivity is high and products of stable quality can be obtained. However, this method has the disadvantage that the metal fine powders begin to adhere to each other as early as the forming process, resulting in a decrease in porosity, which is at most 0.6 in the sintered state.
In order to compensate for the lack of porosity, which is only a moderate degree of porosity, fine powders (carbon, plastics, cellulose, etc.) and fibers that disappear during heat treatment during sintering are mixed into the raw material slurry. Although methods have also been proposed,
Even if this method is adopted, it is not possible to obtain the high porosity that is the difference in pressureless sintering properties, but rather, the strength of the sintered body deteriorates significantly due to excessive addition, leading to problems such as cracking.

ロール成形法も基本的には上記スラリー成形法と同様で
あり、連続生産が可能であるという利点は有しているも
のの、金属微粉末あるいはその酸化物同士の密着はスラ
リー成形法の場合よりも更に進み易く、多孔度を十分に
高めることができない。
The roll forming method is basically the same as the slurry forming method mentioned above, and although it has the advantage of being able to perform continuous production, the adhesion between fine metal powders or their oxides is more difficult than in the slurry forming method. Further, the porosity cannot be sufficiently increased.

ところで上記の様な多孔質焼結体は断面方向に見てほぼ
一様な細孔特性を有しているが、下記の様な理由から、
細孔特性の異なる複数の多孔質層が重なりあった構造の
焼結体が要求されることもある。
By the way, the above porous sintered body has almost uniform pore characteristics when viewed in the cross-sectional direction, but for the following reasons,
A sintered body having a structure in which a plurality of porous layers having different pore characteristics are stacked is sometimes required.

たとえば触媒やその担体あるいはフィルターとして使用
する場合、多孔度が高いために強度が比較的低い焼結層
と多孔度が低いために強度が比較的高い焼結層を組合せ
るという考え方、即ち両者を積層するという構成を採用
すると、後者の焼結層が前者の焼結層を強化する役割り
を果たし、全体として見れば実用上十分な強度を発揮す
ることができる。また溶融炭酸塩型燃料電池用電極とし
て使用されるニッケル系多孔質焼結体の場合は、ガス拡
散及び溶融炭酸塩の浸透を適度にバランスさせて気液間
の接触を十分に進行させる必要があるが、ガス拡散を十
分ならしめる為には細孔と言っても比較的径の大きいも
のの方が好ましく、一方溶融炭酸塩の浸透の為には毛細
管の原理によって小径細孔の方が有利であり、これら双
方の要求を満たすうえでも細孔特性の異なるものを組合
せた積層構造の焼結体が有利となる。
For example, when used as a catalyst, its carrier, or a filter, the idea is to combine a sintered layer with relatively low strength due to high porosity and a sintered layer with relatively high strength due to low porosity. When a laminated structure is adopted, the latter sintered layer serves to strengthen the former sintered layer, and as a whole, it is possible to exhibit sufficient strength for practical use. In addition, in the case of nickel-based porous sintered bodies used as electrodes for molten carbonate fuel cells, it is necessary to appropriately balance gas diffusion and molten carbonate penetration to ensure sufficient contact between gas and liquid. However, in order to ensure sufficient gas diffusion, pores with relatively large diameters are preferable, while pores with small diameters are advantageous for the penetration of molten carbonate due to the capillary principle. In order to satisfy both of these requirements, a sintered body with a laminated structure combining materials with different pore characteristics is advantageous.

ところがこの様な積層構造の多孔質焼結体を従来法によ
って製造しようとした場合、前記何れの方法にしても■
まず細孔特性の異なる複数の多孔質焼結体を夫々別々に
製造した後、これらの焼結体を積層し再度焼結して接合
一体化するか、あるいは■ある細孔特性の多孔質焼結体
を製造した後、該焼結体の上に前記の方法で焼結原料を
積層して焼結する方法、のいずれかを採用しなければな
らず、焼結を少なくとも2回以上に分けて行なわなけれ
ばならないところから、生産性を更に低いものにしてし
まう。
However, when trying to manufacture a porous sintered body with such a laminated structure using conventional methods, no matter which method is used, ■
First, a plurality of porous sintered bodies with different pore characteristics are manufactured separately, and then these sintered bodies are stacked and sintered again to join them together, or After producing the sintered body, one of the methods of laminating the sintering raw materials on the sintered body using the method described above and sintering must be adopted, and the sintering process must be divided into at least two stages. It makes productivity even lower because it has to be done.

[発明が解決しようとする問題点] 本発明は上記の様な事情に着目してなされたものであっ
て、その目的は、高強度で多孔度が高くしかも細孔特性
の異なる複層構造の多孔質積層焼結体を生産性よく製造
することのできる方法を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a multilayer structure with high strength and high porosity, and different pore characteristics. The present invention aims to provide a method capable of manufacturing porous laminated sintered bodies with good productivity.

[問題点を解決するための手段] 上記の目的を達成することのできた本発明方法の構成は
、加熱消失可能な消失性繊維に金属粉および/または金
属繊維を抄き込んで得られる薄板状混抄体であって、 ■物理的性質あるいは大きさの異なる金属粉および/ま
たは金属繊維を用いるか、 ■大きさの異なる消失性繊維を用いるか、■消失性繊維
と金属粉および/または金属繊維の配合比の異なる材料
を用いるか、 のいずれかによって得られる複数枚の前記薄板状   
゛混抄体を積層し、次いで該積層体を加熱処理して消失
性繊維を消失させ、更に金属粉および/または金属繊維
同士あるいはそれらの酸化物同士の焼結を行なうところ
に要旨を有するものである。
[Means for Solving the Problems] The structure of the method of the present invention that has achieved the above-mentioned object is that a thin plate-like material obtained by inserting metal powder and/or metal fibers into fugitive fibers that can be dissipated by heating. It is a mixed material, and ■ using metal powder and/or metal fibers with different physical properties or sizes, ■ using fugitive fibers with different sizes, or ■ fugitive fibers and metal powder and/or metal fibers. A plurality of sheets of the thin plate shape obtained by either using materials with different blending ratios of
``The gist is that the mixed paper sheets are laminated, the laminated body is then heat-treated to eliminate the fugitive fibers, and the metal powder and/or metal fibers or their oxides are sintered with each other. be.

[作用] 本発明では、加熱により消失可能な消失性繊維、たとえ
ばバルブ、天然繊維、合成繊維等の有機繊維あるいは炭
素繊維等の水分散液中に、ポリアクリルアミドの如き凝
集定着剤と共に金属粉を加え、該金属粉を消失性繊維に
吸着させた状態で抄紙することによって混抄体を得るか
、あるいは金属繊維と消失性繊維を混抄して混抄体を得
、これらの混抄体を積層して加熱処理することにより消
失性繊維を消失させると共に、該消失性繊維と共に混抄
された金属粉および/または金属繊維を焼結一体化せし
め、あるいは金属粉および/または金属繊維を酸化する
と共に焼結一体化せしめ、同時に積層界面についても焼
結接合させて一体化し、消失性繊維の存在していた部分
を空隙として残すことにより多孔質の金属(または金属
酸化物)積層焼結体を得るものである。
[Function] In the present invention, metal powder is added together with a coagulating fixing agent such as polyacrylamide into an aqueous dispersion of fugitive fibers that can be dissipated by heating, such as organic fibers such as bulbs, natural fibers, and synthetic fibers, or carbon fibers. In addition, paper is made with the metal powder adsorbed to fugitive fibers to obtain a mixed paper, or metal fibers and fugitive fibers are mixed to obtain a mixed paper, and these mixed paper is laminated and heated. By processing, the fugitive fibers are eliminated and the metal powder and/or metal fibers mixed with the fugitive fibers are sintered and integrated, or the metal powder and/or metal fibers are oxidized and sintered and integrated. At the same time, the laminated interfaces are also sintered and joined to integrate, leaving the portion where the fugitive fibers were present as voids, thereby obtaining a porous metal (or metal oxide) laminated sintered body.

この場合、積層成形される各焼結体層の多孔度や細孔特
性は、上記混抄体製造時において、■金属粉および/ま
たは金属繊維の物理的性買(特に融点や比表面積等)や
大きさく直径や長さ)、■消失性繊維の大きさ、あるい
は■消失性繊維と金属粉および/または金属繊維の配合
比、を変えることにより自由に調整することができる。
In this case, the porosity and pore characteristics of each layer of the sintered body to be laminated and formed are determined by the physical properties of the metal powder and/or metal fibers (especially melting point, specific surface area, etc.) It can be freely adjusted by changing the size (diameter and length), (1) the size of the fugitive fiber, or (2) the blending ratio of the fugitive fiber and the metal powder and/or metal fiber.

従って混抄工程で上記■〜■の条件を調整することによ
って目的に応じた多孔度と細孔特性を与える混抄体を製
造し、これらを積層して熱処理を行なえば、「多孔度お
よび細孔特性の異なる2以上の多孔質層が積層一体化さ
れた多孔質金属(または金属酸化物)積層焼結体」を1
回の加熱処理によりて得ることができる。しかも各多孔
質層は、均一な混抄状態にある夫々の混抄体から消失性
繊維を消失せしめたものであるから、各層毎に均一な多
孔度と細孔特性を有するものとなり、且つ金属粉および
/または金属繊維は焼結により相互に3次元的に接合し
あって強度的にも非常にすぐれたものとなる。尚焼結を
還元性雰囲気中で行なえば多孔質金属積層焼結体が得ら
れ、また酸化性雰囲気中で行なえば多孔質金属酸化物積
層焼結体を得ることができる。
Therefore, by adjusting the conditions ① to ② above in the paper mixing process, a mixed paper material that provides porosity and pore characteristics according to the purpose is produced, and if these are laminated and heat treated, the porosity and pore characteristics A porous metal (or metal oxide) laminated sintered body in which two or more porous layers with different
It can be obtained by multiple heat treatments. Moreover, since each porous layer is obtained by eliminating fugitive fibers from the respective mixed paper sheets in a uniform mixed paper state, each layer has uniform porosity and pore characteristics, and metal powder and Or the metal fibers are bonded to each other three-dimensionally by sintering, resulting in extremely high strength. If the sintering is performed in a reducing atmosphere, a porous metal laminate sintered body can be obtained, and if the sintering is performed in an oxidizing atmosphere, a porous metal oxide laminated sintered body can be obtained.

本発明で使用される消失性繊維は、前述の如く加熱処理
によって消失し得るものであれば種類の如何を問うもの
ではなく、木綿、麻、羊毛等の各種天然繊維、再生セル
ロース繊維、ナイロン、ポリエステル等の各種合成繊維
、あるいは炭素繊維、更にはバルブ等のすべてを使用す
ることができるが、金属粉や金属繊維を効率良く定着さ
せるうえで最も好ましいのは植物性天然繊維及びバルブ
である。
The fugitive fibers used in the present invention are not limited to any type as long as they can be burnt out by heat treatment as described above, including various natural fibers such as cotton, linen, and wool, regenerated cellulose fibers, nylon, Various synthetic fibers such as polyester, carbon fibers, and even bulbs can all be used, but vegetable natural fibers and bulbs are most preferred for efficiently fixing metal powder and metal fibers.

混抄体の製造には格別特殊な技術が要求される訳ではな
く、従来から一般に採用されている紙や繊維質ボード等
の製法に準じて実施すればよく、この場合原料として金
属粉を使用するときは消失性繊維への定着率を高めるた
めポリアクリルアミドの様な高分子定着剤を併用するこ
とが望まれる。
The production of mixed paper does not require any particularly special technology, and can be carried out in accordance with conventionally commonly used manufacturing methods for paper, fiber boards, etc. In this case, metal powder is used as the raw material. In some cases, it is desirable to use a polymer fixing agent such as polyacrylamide in combination to increase the fixation rate on fugitive fibers.

本発明ではこの様にして得られる2種あるいは311以
上の混抄体を夫々乾燥して水分を除去した後積ね合わせ
、あるいは重ね合わせた状態で同時に乾燥し、次いで加
熱処理することによつて消失性繊維の消失と金属粉およ
び/または金属繊維(もしくはそれらの酸化物)の焼結
を行なうものであり、加熱処理の方法は本発明を限定す
る性質のものではないが、最も一般的な方法を例示する
と次の通りである。
In the present invention, the two types or 311 or more mixed paper sheets obtained in this way are individually dried to remove moisture, and then stacked or piled up and dried simultaneously, and then heat-treated to eliminate the The method of heat treatment is the most common method, although it does not limit the present invention. An example is as follows.

■混抄体積履物を酸化性ガス雰囲気中で加熱して消失性
繊維を燃焼消失せしめ、次いで処理雰囲気を還元性ガス
に切換え、燃焼工程で生じた金属酸化物を還元すると共
に焼結させる方法。
■ A method in which the mixed volume footwear is heated in an oxidizing gas atmosphere to burn and eliminate fugitive fibers, and then the treatment atmosphere is switched to a reducing gas to reduce and sinter the metal oxides produced in the combustion process.

この方法は、酸化物が水素等の還元性ガスによって容易
に還元される金属にッケル等)を用いて多孔質金属積層
焼結体を製造する場合に特に効果的である。
This method is particularly effective when producing a porous metal laminate sintered body using a metal whose oxide is easily reduced by a reducing gas such as hydrogen (e.g., nickel).

この場合、焼結のための熱処理雰囲気を酸化性のままと
しておけば多孔質金属酸化物積層焼結体が得られる。
In this case, if the heat treatment atmosphere for sintering is kept oxidizing, a porous metal oxide laminated sintered body can be obtained.

■混抄体積贋物をCO,ガス雰囲気中またはCO,を含
むガス雰囲気中で加熱し、消失性繊維を熱分解させると
共に残留する炭素は(C+ CO2→2CO)の反応に
よって除去し、次いで雰囲気ガスを還元性ガス(主とし
て水素)に切換え、消失性繊維の消失過程で生成した微
量の金属酸化物を還元しつつ焼結させる方法。
■The mixed paper counterfeit is heated in a CO gas atmosphere or in a gas atmosphere containing CO to thermally decompose the fugitive fibers and remove the remaining carbon by the reaction (C+ CO2→2CO), and then remove the atmospheric gas. A method of switching to a reducing gas (mainly hydrogen) and sintering while reducing trace amounts of metal oxides generated during the disappearance process of fugitive fibers.

この方法は、前記■の方法に比べて消失性繊維の消失工
程で金属の酸化が進みにくいので、酸化され易い金属粉
や金属繊維を用いて金属質の多孔質積層焼結体を得る場
合に適した方法である。
Compared to method (2) above, this method is less likely to cause oxidation of the metal during the process of disappearance of the fugitive fibers, so it is suitable for obtaining a metallic porous laminated sintered body using easily oxidized metal powder or metal fibers. This is a suitable method.

上記■の方法を実施するに当たり、加熱処理を水素雰囲
気中で行ない、消失性繊維の熱分解と[C+ 2 Hz
−C)I4]の反応を利用した残留炭素の除去を併行し
て進めることも可能であると思われるが、この方法では
熱分解ピより生成した炭素がスケルトン状となって残留
し金属粉および/または金属繊維の焼結を阻害するので
、焼結体が非常に脆弱となって実用性を欠くものとなる
In carrying out the method (2) above, heat treatment is performed in a hydrogen atmosphere to thermally decompose the fugitive fibers and [C+ 2 Hz
It seems possible to proceed with the removal of residual carbon using the reaction [-C)I4], but in this method, the carbon generated from the thermal decomposition remains in a skeleton shape, resulting in metal powder and Or, since the sintering of the metal fibers is inhibited, the sintered body becomes extremely brittle and becomes impractical.

また加熱雰囲気中に水蒸気を供給して[C+H20= 
CO+ H2]の反応を生じさせることにより、残留炭
素の除去と金属酸化物の還元を同時に行なうことも考え
られるが、実際に行なってみると残留炭素の除去が不十
分となりやはり焼結体が脆弱となる。同様の趣旨で加熱
雰囲気を[CO2+H2](7)混合ガスとし、CO2
にょる脱炭作用とH2による還元作用を同時に発揮させ
る方法も試みたが、やはり残留炭素の除去が不十分とな
って焼結が困難となり、強度上の要求を満たすことがで
きなかった。
Also, by supplying water vapor into the heating atmosphere [C+H20=
It is possible to remove residual carbon and reduce metal oxides at the same time by causing a reaction of [CO + H2], but in reality, the removal of residual carbon is insufficient and the sintered body becomes brittle. becomes. For the same purpose, the heating atmosphere is [CO2 + H2] (7) mixed gas, and CO2
A method of simultaneously exerting the decarburization effect and the reduction effect by H2 was also attempted, but the residual carbon was still insufficiently removed, making sintering difficult, and the strength requirements could not be met.

この理由は、水蒸気を利用する場合[C+H20=CO
+H2] 、CO2とH2(7)混合ガスを用いた場合
[C02+ H2−4CO+ H20] 17)各反応
によって生成するCOがC02による脱炭反応[C+C
O2,−2CO]の進行を阻害するためと考えている。
The reason for this is that when using water vapor [C+H20=CO
+H2], when using a mixed gas of CO2 and H2 (7) [C02+ H2-4CO+ H20] 17) The CO produced by each reaction is decarburized by CO2 [C+C
It is thought that this is because it inhibits the progress of [O2, -2CO].

但しCO3と共に少量の水蒸気を含む混合ガスを用いた
場合は、脱炭反応は効率良く進行し優れた強度の焼結体
を得ることができる。
However, when a mixed gas containing CO3 and a small amount of water vapor is used, the decarburization reaction proceeds efficiently and a sintered body with excellent strength can be obtained.

尚金属酸化物系の多孔質積層焼結体を製造する場合にあ
っては、消失性繊維の消失工程で金属の酸化を抑制する
必要がないので、雰囲気ガスに特別の考慮を払う必要は
なく、消失から焼結の全工程を通して酸化性ガス(通常
は空気)を供給しておけばよい。
In the case of manufacturing a metal oxide-based porous laminated sintered body, there is no need to suppress metal oxidation in the process of eliminating fugitive fibers, so there is no need to pay special consideration to the atmospheric gas. , it is sufficient to supply an oxidizing gas (usually air) throughout the entire process from dissipation to sintering.

消失及び焼結のための温度は金属粉および/または金属
繊維の種類(殊に融点等)、あるいは目的とする焼結体
が金属質であるか金属酸化物であるか等によって変わっ
てくるので一律に規定することはできないが、例えば金
属としてニッケルを用いる場合、消失性繊維消失時の温
度は400〜aOO℃、焼結時の好ましい温度は、多孔
質金属積層成形体を得る場合=800〜1000℃、多
孔質金属酸化物積層成形体を得る場合:1000〜12
00℃である。尚焼結時の温度が低い場合は焼結不足と
なって十分な強度が得られず、一方焼結温度が高過ぎる
場合は過焼結となって多孔度が低下し本発明の特徴が有
効に生かせなくなる。
The temperature for vanishing and sintering varies depending on the type of metal powder and/or metal fiber (especially melting point, etc.), or whether the desired sintered body is a metal or a metal oxide. Although it cannot be specified uniformly, for example, when nickel is used as the metal, the temperature when the fugitive fiber disappears is 400 to aOO℃, and the preferable temperature during sintering is 800 to 800℃ when obtaining a porous metal laminate molded body. 1000°C, when obtaining a porous metal oxide laminate molded product: 1000 to 12
It is 00℃. Note that if the temperature during sintering is low, sintering will be insufficient and sufficient strength will not be obtained, while if the sintering temperature is too high, oversintering will occur and the porosity will decrease, making the features of the present invention effective. It becomes impossible to make use of it.

また焼結に当たっては積層界面の密着性を高めると共に
積層物が反りを生ずるのを防止するため、高融点の多孔
質セラミックス板等で挟み込み、軽くプレスしておくの
がよい。
Further, during sintering, in order to increase the adhesion of the laminated interface and to prevent the laminated product from warping, it is preferable to sandwich it between high-melting point porous ceramic plates or the like and press it lightly.

本発明で使用する金属粉および金属繊維としては、用途
に応じて様々のものが使用されるが、触媒あるいは触媒
担体用としてはニッケル、ニッケルークロム合金、ステ
ンレス鋼、鉄−クロム合金等が、金属フィルタ用として
はステンレス鋼等が、また燃料電池電極(又は基盤)用
としてはニッケル、ニッケルークロム合金、ニッケルー
コバルト合金等が挙げられる。
Various metal powders and metal fibers are used in the present invention depending on the purpose, but for catalysts or catalyst supports, nickel, nickel-chromium alloy, stainless steel, iron-chromium alloy, etc. Examples of materials for metal filters include stainless steel, and materials for fuel cell electrodes (or substrates) include nickel, nickel-chromium alloys, nickel-cobalt alloys, and the like.

またこの焼結体は、抄造方法や積層方法を工夫すること
によって平板状、湾曲板状、筒状等の任意の形状、寸法
となし得るばかりでなく、焼結前または焼結後の切断あ
るいは変形加工によって自由に変更することができる。
Moreover, this sintered body can not only be made into any shape or size such as a flat plate, curved plate, or cylinder by devising the papermaking method or the lamination method, but also can be cut or sized before or after sintering. It can be changed freely through deformation processing.

[実施例] 実施例1 下記2種類のニッケル粉−バルブ混抄体(肉厚はいずれ
も約1.0 mm)を作成した。
[Examples] Example 1 The following two types of nickel powder-bulb mixed paper sheets (all having a wall thickness of approximately 1.0 mm) were prepared.

(a)平均粒径約3μmのニッケル微粉末(インコ社製
、カルボニルNi−255)と直径10〜20μmの木
材バルブを、前者7対後者3の重量比で混抄し乾燥した
もの。
(a) Fine nickel powder (manufactured by Inco, Carbonyl Ni-255) with an average particle diameter of about 3 μm and wood bulbs with a diameter of 10 to 20 μm were mixed and dried in a weight ratio of 7 to 3.

(b)平均粒径15μmのニッケル粉末と直径10〜2
0μmの木材バルブを、前者765対後者2.5の重量
比で混抄し乾燥したもの。
(b) Nickel powder with an average particle size of 15 μm and a diameter of 10-2
0 μm wood bulbs were mixed and dried at a weight ratio of 765 for the former and 2.5 for the latter.

上記2枚の混抄体を重ね合わせ、プレス(20にg/ 
cm’ ) L/た後多孔買セラミックス板で挟持し、
これを管状炉内ヘセットしてCO2ガスを供給しつつ1
000℃まで昇温(所要時間:3時間)した後、供給ガ
スを水素に切換え同温度で30分間保持した。
Layer the above two sheets of mixed paper and press (20 g/
cm') L/After being held between porous ceramic plates,
Set this in a tube furnace and supply CO2 gas.
After raising the temperature to 000° C. (required time: 3 hours), the supply gas was changed to hydrogen, and the same temperature was maintained for 30 minutes.

得られた焼結体における前記混抄1体(a)を原料とす
る部分の多孔度は0.72、平均細孔径は4.9μmで
あり、一方混抄体(b)を原料とする部分の多孔度は0
.64、平均細孔径は8.8μmであった。
In the obtained sintered body, the porosity of the part made from the mixed paper material 1 (a) was 0.72 and the average pore diameter was 4.9 μm, while the porosity of the part made from the mixed paper material (b) was 0.72 and the average pore diameter was 4.9 μm. degree is 0
.. 64, and the average pore diameter was 8.8 μm.

そして積層焼結体全体としての多孔度は0.67、平均
細孔径は6.0μmであり、はぼ平均的な値を示した。
The porosity of the laminated sintered body as a whole was 0.67, and the average pore diameter was 6.0 μm, which were approximately average values.

この積層焼結体の積層境界部を走査型電子顕微鏡により
観察したところ、夫々の層は3次元iな空間を残してう
まく焼結しているばかりでなく、積層界面も強固に接合
一体化していることが確認された。またこの積層焼結体
の強度は実用上全く支障のない非常に優れたものもあっ
た。
When we observed the layer boundaries of this layered sintered body using a scanning electron microscope, we found that not only were the layers sintered successfully leaving a three-dimensional space, but the layer interfaces were also strongly bonded and integrated. It was confirmed that there is. In addition, the strength of this laminated sintered body was extremely good and had no practical problems.

[発明の効果] 本発明は以上の様に構成されており、均質で多孔度が高
く且つ強度の優れた多孔質積層焼結体を一回の加熱処理
のみで生産性良く製造し得ることになった。そしてこの
積層焼結体は、次の様な用途に使用することによってそ
の優れた性能をいかんなく発揮する。
[Effects of the Invention] The present invention is configured as described above, and a porous laminated sintered body that is homogeneous, has high porosity, and has excellent strength can be manufactured with high productivity by only one heat treatment. became. This laminated sintered body exhibits its excellent performance to the fullest when used in the following applications.

■触媒又はその担体として。■As a catalyst or its carrier.

多孔質金属(又は金属酸化物)焼結体をそのまま気相反
応等の触媒として使用し、あるいは触媒担体として使用
することは公知であるが、本発明の積層焼結体は多孔度
が高いので高レベルの触媒活性を発揮し得るばかりでな
く、多孔度の異なる多孔層の積層によって強化されてい
るので機械的強度も非常に高い。
It is known that porous metal (or metal oxide) sintered bodies can be used as catalysts in gas phase reactions or as catalyst carriers, but the laminated sintered bodies of the present invention have high porosity. Not only can it exhibit a high level of catalytic activity, but it also has extremely high mechanical strength because it is reinforced by stacking porous layers with different porosity.

■フィルタとして。■As a filter.

混抄用原料の大きさ等を変えることによって多孔度や細
孔径を自由に調整することができ、炉材として広範囲の
用途に適用することができる。しかも複層構造により強
化されているので、真空度の高い減圧濾過等にも支障な
く通用できる。
The porosity and pore diameter can be adjusted freely by changing the size of the raw material for paper mixing, and it can be applied to a wide range of applications as a furnace material. Moreover, since it is reinforced with a multi-layer structure, it can be used for vacuum filtration with a high degree of vacuum without any problems.

■たとえば溶融炭酸塩型燃料電池用の電極として使用す
る場合、溶融炭酸塩との接触側は塩の浸透に有利な細孔
層とし、−男気体接触側はガス拡散に有利な大きめの細
孔層とすることができ、燃料電池の性能向上に著しく寄
与する。しかも電極の強度向上に伴って該電池の寿命も
延長することができる。
■For example, when used as an electrode for a molten carbonate fuel cell, the side in contact with the molten carbonate should have a pore layer that is advantageous for salt penetration, and the side in contact with the gas should have larger pores that are advantageous for gas diffusion. layer, which significantly contributes to improving the performance of fuel cells. Furthermore, as the strength of the electrode is improved, the life of the battery can also be extended.

Claims (1)

【特許請求の範囲】 加熱焼失可能な消失性繊維に金属粉および/または金属
繊維を抄き込んで得られる薄板状混抄体であって、 (1)物理的性質あるいは大きさの異なる金属粉および
/または金属繊維を用いるか、 (2)大きさの異なる消失性繊維を用いるか、(3)消
失性繊維と金属粉および/または金属繊維の配合比の異
なる材料を用いるか、 のいずれかによって得られる複数枚の前記薄板状混抄体
を積層し、次いで該積層体を加熱処理して消失性繊維を
消失させ、更に金属粉および/または金属繊維同士ある
いはそれらの酸化物同士の焼結を行なうことを特徴とす
る多孔質積層成形体の製造方法。
[Claims] A thin plate-like mixed paper product obtained by incorporating metal powder and/or metal fibers into fugitive fibers that can be burnt out by heating, comprising: (1) metal powders and metal powders having different physical properties or sizes; (2) Use fugitive fibers of different sizes; (3) Use materials with different blending ratios of fugitive fibers and metal powder and/or metal fibers. A plurality of the obtained thin plate-like mixed paper sheets are laminated, and then the laminated body is heat-treated to eliminate the fugitive fibers, and the metal powder and/or metal fibers or their oxides are sintered with each other. A method for producing a porous laminate molded article, characterized in that:
JP62002478A 1987-01-08 1987-01-08 Production of porous laminated and sintered body Pending JPS63171803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62002478A JPS63171803A (en) 1987-01-08 1987-01-08 Production of porous laminated and sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62002478A JPS63171803A (en) 1987-01-08 1987-01-08 Production of porous laminated and sintered body

Publications (1)

Publication Number Publication Date
JPS63171803A true JPS63171803A (en) 1988-07-15

Family

ID=11530450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62002478A Pending JPS63171803A (en) 1987-01-08 1987-01-08 Production of porous laminated and sintered body

Country Status (1)

Country Link
JP (1) JPS63171803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001526737A (en) * 1997-03-31 2001-12-18 ファイバーマーク インコーポレイテッド Metal fiber sheet and method for producing the same
KR100502815B1 (en) * 2002-09-25 2005-07-22 한국기계연구원 Porous Ceramic Material with Double Pore Structures and Manufacturing Process therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001526737A (en) * 1997-03-31 2001-12-18 ファイバーマーク インコーポレイテッド Metal fiber sheet and method for producing the same
KR100502815B1 (en) * 2002-09-25 2005-07-22 한국기계연구원 Porous Ceramic Material with Double Pore Structures and Manufacturing Process therefor

Similar Documents

Publication Publication Date Title
EP1836017B8 (en) A method for shrinkage and porosity control during sintering of multilayer structures
US9346240B2 (en) Open-porous metal foam body and a method for fabricating the same
WO2021258746A1 (en) Preparation method for concha margaritifera-like layered high-strength super-tough ceramic
US4652411A (en) Method of preparing thin porous sheets of ceramic material
JP3508604B2 (en) Method for producing high-strength sponge-like fired metal composite plate
US20090181292A1 (en) Flexible, porous ceramic composite film
JP5465883B2 (en) Porous material
WO1997031738A1 (en) Porous materials and method for producing
US20230044409A1 (en) Fe-al-based metal porous membrane and preparation method thereof
JP4513520B2 (en) Titanium alloy sponge sintered body with excellent compressive strength
JPS63171802A (en) Prodoction of porous sintered metallic body
JPH02282442A (en) Aluminide structure
US11918958B2 (en) Fe-Al-based metal porous membrane and preparation method thereof
US5887240A (en) Method of manufacturing a platinum electrode
JPS63171803A (en) Production of porous laminated and sintered body
CN110590367B (en) Organic template dip forming-pressureless sintering preparation method of gradient TiC porous ceramic
JPH0652863A (en) Electrode body for solid electrolytic fuel cell and manufacture thereof
JPH09278558A (en) Carbonaceous porous body and its production
JP2002114573A (en) Method for manufacturing conductive carbon porous body and conductive carbon porous body manufactured by the method
JP7142748B1 (en) Titanium porous body and method for producing titanium porous body
JP4868231B2 (en) Porous titanium having low contact resistance and method for producing the same
JPS62287027A (en) Manufacture of porous cu-alloy sintered compact
JP3735610B2 (en) Method for producing metal / oxide monolith
JPS63255304A (en) Production of porous metal sintered body
JP3208528B2 (en) Electrode for molten carbonate fuel cell and method for producing the same