JPS63171458A - Magneto-optical medium reproducing circuit - Google Patents

Magneto-optical medium reproducing circuit

Info

Publication number
JPS63171458A
JPS63171458A JP62002042A JP204287A JPS63171458A JP S63171458 A JPS63171458 A JP S63171458A JP 62002042 A JP62002042 A JP 62002042A JP 204287 A JP204287 A JP 204287A JP S63171458 A JPS63171458 A JP S63171458A
Authority
JP
Japan
Prior art keywords
output
magneto
current
differential amplifier
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62002042A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kimoto
木本 輝代志
Shinichi Tanaka
慎一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP62002042A priority Critical patent/JPS63171458A/en
Publication of JPS63171458A publication Critical patent/JPS63171458A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the deterioration in performance due to temperature changes or secular changes by splitting reflected or regenerated light from a magneto-optical medium into two optical paths, converting its current difference directly to eliminate in-phase noise components. CONSTITUTION:A regenerated information signal from a magneto-optical medium is split into two optical paths depending on the difference from the polarized face and the amplification factor of an avalanche photodiode 32 is adjusted by a reverse bias voltage control circuit 35 to make two DC components equal to each other thereby eliminating the in-phase noise components. Since the differential amplifier 12 is constituted to extract the output in response to the difference of the DC component, automatic control for bringing the output of differential amplifier 12 to zero is attained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光磁気媒体に記録された信号を再生する光磁
気媒体再生装置の再生回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a reproducing circuit for a magneto-optical medium reproducing apparatus that reproduces signals recorded on a magneto-optical medium.

(従来の技術) 従来光磁気媒体再生装置の再生回路として、差動増幅回
路を用いるもの(例えば特開昭60−223045)が
知られておりその構成は第2図に示す通りである。
(Prior Art) Conventionally, as a reproducing circuit of a magneto-optical medium reproducing apparatus, one using a differential amplifier circuit (for example, Japanese Patent Application Laid-Open No. 60-223045) is known, and its configuration is as shown in FIG.

第2図に於いて、21は光磁気記録媒体であり、ガラス
、プラスチック等の基板上に例えばMn。
In FIG. 2, reference numeral 21 denotes a magneto-optical recording medium, which is formed by recording, for example, Mn on a substrate made of glass, plastic, or the like.

Bi等の光磁気材料がスパッタまたは蒸着されており、
記録トラ・ツクに記録された垂直磁化方向(上向き又は
下向き)により情報信号が記録されている。また光磁気
記録媒体21は再生時に図示しないモータにより、定速
度回転されている。
A magneto-optical material such as Bi is sputtered or vapor deposited,
Information signals are recorded according to the perpendicular magnetization direction (upward or downward) recorded on the recording track. Further, the magneto-optical recording medium 21 is rotated at a constant speed by a motor (not shown) during reproduction.

この光磁気媒体21に記録された情報を光学的に読み出
す為の信号検出光学系としては、光磁気記録媒体21に
ビームスポットを照射させる為の光源としての半導体レ
ーザ22と、該半導体レーザ22からのレーザ光出力を
平行光束に変換するコリメータレンズ23と、該コリメ
ークレンズ23からの平行光束を直線偏光する偏光子2
4と、該偏光子24で直線偏光された光(S偏光)の一
部を透過、残りを反射するビームスプリンタ25と、該
ビームスプリフタ25からの光束を回折限界程度迄に絞
り込んで光磁気記録媒体21の記録面にビームスポット
を結ぶ集光レンズ26とを備える。尚、光源からの山男
光の直線偏光度が充分に高ければ偏光子24は省略して
も良い。
A signal detection optical system for optically reading information recorded on the magneto-optical medium 21 includes a semiconductor laser 22 as a light source for irradiating a beam spot onto the magneto-optical recording medium 21, and a collimator lens 23 that converts the laser light output into a parallel light beam, and a polarizer 2 that linearly polarizes the parallel light beam from the collimator lens 23.
4, a beam splinter 25 that transmits a part of the linearly polarized light (S-polarized light) by the polarizer 24 and reflects the rest; It includes a condenser lens 26 that connects a beam spot to the recording surface of the recording medium 21. Note that the polarizer 24 may be omitted if the degree of linear polarization of the mountain light from the light source is sufficiently high.

次に、光磁気記録媒体21からの反射光を偏光面の角度
に応じて2つの光路に分ける再生光学系としては、ビー
ムスプリッタ25を透過した光磁気媒体21からの反射
光束の偏光面を回転させるλ/2板27による偏光面の
回転角に応じた強さの2つの光路に分ける偏光ビームス
プリンタ28と、該偏光ビームスプリッタ28を透過し
た光を集光して、アバランシェフォトダイオード(以下
単にAPDと称する)32に集光させる集光レンズ29
と、偏光ビームスプリッタ28で反射された光をpin
フォトダイオード(以下単にPINと称する)31に集
光させる集光レンズ30とが設けられる。APD32は
逆バイアス電圧制御回路35によりその増倍率が設定さ
れる。APD32の出力は電流−電圧変換アンプ33に
入力され、PIN31の出力は電流−電圧変換アンプ3
4に入力される。そしてこれらアンプ33と34の出力
は差動アンプ36に人力され、該差動アンプ36の出力
が媒体に記録された信号が再生されるのである。第2図
に於いて31〜36までが光磁気媒体再生回路である。
Next, a reproduction optical system that divides the reflected light from the magneto-optical recording medium 21 into two optical paths according to the angle of the polarization plane rotates the polarization plane of the reflected light beam from the magneto-optical medium 21 that has passed through the beam splitter 25. A polarizing beam splinter 28 divides the light into two optical paths with intensities according to the rotation angle of the polarization plane by a λ/2 plate 27, and a polarizing beam splitter 28 condenses the light transmitted through the polarizing beam splitter 28 and converts the light into an avalanche photodiode (hereinafter simply referred to as A condensing lens 29 that condenses light onto the APD (referred to as APD) 32
, the light reflected by the polarizing beam splitter 28 is
A condensing lens 30 that condenses light onto a photodiode (hereinafter simply referred to as PIN) 31 is provided. The multiplication factor of the APD 32 is set by the reverse bias voltage control circuit 35. The output of APD32 is input to current-voltage conversion amplifier 33, and the output of PIN31 is input to current-voltage conversion amplifier 3.
4 is input. The outputs of these amplifiers 33 and 34 are input to a differential amplifier 36, and a signal recorded on a medium from the output of the differential amplifier 36 is reproduced. In FIG. 2, numerals 31 to 36 are magneto-optical medium reproducing circuits.

(発明が解決しようとする問題点) 上述の如き従来再生回路の構成にあっては、電流−電圧
変換アンプ33.34が2つ必要不可欠であり、それら
のアンプの周波数特性や温度特性等各種の特性が一致し
ている事が後段の差動増幅器36による同相信号除去比
(CMRR)を大きくする為の絶対的条件である。しか
し2つのアンプの周波数特性や温度特性等各種特性を完
全に一致させる事は非常に困難であり、その為CMRR
の向上即ち、再生信号のS/N比の向上には限界があっ
た。
(Problems to be Solved by the Invention) In the configuration of the conventional reproducing circuit as described above, two current-voltage conversion amplifiers 33 and 34 are essential, and various factors such as frequency characteristics and temperature characteristics of these amplifiers are required. It is an absolute condition for increasing the common mode rejection ratio (CMRR) of the differential amplifier 36 in the subsequent stage that the characteristics of However, it is very difficult to perfectly match the frequency characteristics, temperature characteristics, and other various characteristics of two amplifiers, so CMRR
In other words, there is a limit to the improvement in the S/N ratio of the reproduced signal.

又、APDに印加する逆バイアス電圧を手動調整して、
PINによる変換出力に一致させるのには、差動増幅器
の出力を測定器で見ながらの調整作業であるから時間が
かかるという問題があった。
Also, by manually adjusting the reverse bias voltage applied to the APD,
There is a problem in that it takes time to match the output converted by the PIN because the adjustment work is done while checking the output of the differential amplifier with a measuring device.

更に、仮に製造段階での調整が完全にできたとしても、
使用環境、例えば温度の変化、あるいは経年変化による
光学系の汚れ等が起きると当然にCMRRが低下して、
再生信号のS/N比が悪くなるという問題があった。
Furthermore, even if adjustments could be made perfectly at the manufacturing stage,
When the usage environment changes, for example, the optical system becomes dirty due to changes in temperature or aging, the CMRR naturally decreases.
There was a problem that the S/N ratio of the reproduced signal deteriorated.

本発明はこれらの問題を解決するもので、電流−電圧変
換アンプが1つで構成される差動回路とし、光電変換ア
ンプの特性を選ぶ条件を緩和せしめ、且つ入力する2つ
の直流信号レベルを常にバランスする様に増幅率可変の
回路例えばアバランシェフォトダイオードを自動的に制
御する様構成することにより製造段階で全く調整を必要
とすることな(、同時に環境の変化や経年変化例えば光
学系の汚れ等に対しても再生信号のS/N比が悪くなら
ず、再生信号の雑音成分を略完全に除去可能の光磁気媒
体再生装置を提供することを目的とする。
The present invention solves these problems by creating a differential circuit consisting of one current-voltage conversion amplifier, relaxing the conditions for selecting the characteristics of the photoelectric conversion amplifier, and changing the levels of two input DC signals. By configuring a variable amplification circuit, such as an avalanche photodiode, to automatically control it so that it is always balanced, there is no need for any adjustment at the manufacturing stage (at the same time, there is no need for any adjustments due to environmental changes, aging, etc., such as dirt on the optical system). It is an object of the present invention to provide a magneto-optical medium reproducing device which can substantially completely remove the noise component of the reproduced signal without degrading the S/N ratio of the reproduced signal even when the reproduction signal is affected by the noise.

(問題点を解決する為の手段) 上記問題点の解決の為、発明者達は鋭意研究の結果、光
磁気媒体再生装置における主たる雑音が記録媒体が反射
型即ちカー効果を用いたものであれば媒体からの平均反
射光強度に比例し、媒体が透過型光即ちファラデー効果
を用いるものであれば、媒体の平均透過光強度に比例し
、且つ偏光特性を示さないレーザー光の強度変動等に依
存しているという事養発見し、この点に着目して本発明
を完成するに至った。
(Means for Solving the Problems) In order to solve the above problems, the inventors conducted extensive research and found that the main noise in magneto-optical media reproducing devices is caused by recording media of reflective type, that is, using the Kerr effect. If the medium uses transmission type light, that is, the Faraday effect, it is proportional to the average transmitted light intensity of the medium, and it is proportional to the intensity fluctuation of laser light that does not exhibit polarization characteristics. The present invention was completed by focusing on this point.

本発明では直接、入力信号電流の差を求める様構成する
ことによりTi、流−電圧変換アンプを2つ必要とせず
1つで差動回路を構成し、且つ入力する2つの信号の直
流レヘルを自動的にバランスする襟増倍率可変の素子或
いは回路例えばアバランシェフォトダイオード或いは光
電変換素子と利得制御アンプを組み合わせて該利得制御
アンプを制御する様にした。
In the present invention, by directly calculating the difference between the input signal currents, a differential circuit can be constructed with one Ti current-voltage conversion amplifier without the need for two current-to-voltage conversion amplifiers, and the DC level of the two input signals can be adjusted. The gain control amplifier is controlled by combining an automatically balanced variable multiplication factor element or circuit, such as an avalanche photodiode or a photoelectric conversion element, with a gain control amplifier.

即ち、情報を記録した光磁気媒体からの偏光情報を含ん
だ光を偏光状態によって2つに分けられた光路の一方に
よる光を光電変換する第1の光電変換手段(PIN31
)と; 前記光路の他方による光を光電変換する増幅率可変の第
2の光電変換手段(APD32)と;該第2の光電変換
手段(APD32)の増幅率を制御する制御手段(逆バ
イアス電圧制御回路35)と; 前記第1及び第2の光電変換手段のそれぞれの出力に含
まれる直流成分と交流成分とをそれぞれ分離する分離手
段(コンデンサC,,CZ抵抵抗蔦葛R1)と; 該分離手段で分離した2つの直流成分の差に応じた信号
を出力する差動アンプ(12)と;前記分離手段で分離
した2つの交流成分の和を電流−電圧変換する電流−電
圧変換手段(電流−電圧変換アンプ11)とを備え; 前記制御手段(35)は前記差動アンプ(12)の出力
により前記差動アンプの出力が0となる如く前記該第2
の光電変換手段の増倍率を制御する様構成し; 前記電流−電圧変換手段(電流−電圧変換アンプ11)
の出力より再生出力信号を得る様構成したものである。
That is, the first photoelectric conversion means (PIN31
) and; a second photoelectric conversion means (APD32) with a variable amplification factor that photoelectrically converts the light from the other side of the optical path; and a control means (reverse bias voltage) that controls the amplification factor of the second photoelectric conversion means (APD32). a control circuit 35); separation means (capacitor C, CZ resistor R1) for separating the DC component and AC component contained in the respective outputs of the first and second photoelectric conversion means; a differential amplifier (12) that outputs a signal according to the difference between the two DC components separated by the separation means; a current-voltage conversion means (12) that converts the sum of the two AC components separated by the separation means into a current-voltage; a current-voltage conversion amplifier 11); the control means (35) controls the second voltage conversion amplifier so that the output of the differential amplifier becomes 0 according to the output of the differential amplifier (12);
The current-voltage conversion means (current-voltage conversion amplifier 11) is configured to control the multiplication factor of the photoelectric conversion means;
The structure is such that a reproduced output signal is obtained from the output of the .

(作用) 本発明では上述の如く直接、入力信号電流の差を求める
様構成したので、電流−電圧変換アンプが1つで済み、
マンプの特性を選ぶ条件を大幅に緩和できると同時に、
入力する2つの信号の直流レベルを自動的にバランス制
御する様にしたので製造段階での調整の手間を省け、且
つ使用中の温度変化や経年変化による性能の低下を防止
する事が出来る。
(Function) Since the present invention is configured to directly calculate the difference in input signal current as described above, only one current-voltage conversion amplifier is required.
At the same time, the conditions for selecting the characteristics of the mamp can be greatly relaxed,
Since the DC levels of the two input signals are automatically balanced, it is possible to save the effort of adjustment at the manufacturing stage, and to prevent performance deterioration due to temperature changes during use or aging.

(実施例) 第1図は本発明の実施例の回路を示す。光学系は第2図
に示すものと同一であることから省略する。又第2図と
同符号は同効物を表すものとする。
(Embodiment) FIG. 1 shows a circuit according to an embodiment of the present invention. Since the optical system is the same as that shown in FIG. 2, it will be omitted. Also, the same symbols as in Figure 2 represent the same effects.

第1図に於いてR+ 、RzはそれぞれAPD32とP
IN31による出力信号中の直流(低周波)分を分離し
て検出する為の抵抗であり、C1、C2は同じく交流(
高周波)分を分離して検出する為のコンデンサである。
In Figure 1, R+ and Rz are APD32 and P, respectively.
This is a resistor for separating and detecting the DC (low frequency) component in the output signal from IN31, and C1 and C2 are also resistors for detecting the DC (low frequency) component in the output signal from IN31.
This is a capacitor for separating and detecting high frequency components.

11は電流−電圧変換アンプ、12は差動アンプである
11 is a current-voltage conversion amplifier, and 12 is a differential amplifier.

第1図に示す本実施例は電源の正負極間に逆バイアス電
圧制御回路35を介してAPD32と抵抗R1と抵抗R
1とPIN31とが順次直列に接続され、抵抗R,と抵
抗R2との接続点は接地され、APD32と抵抗R1と
の接続点は差動アンプ12の一方の入力端子及びコンデ
ンサC1の一方の端子に接続され、PIN31と抵抗R
2との接続点は差動アンプ12の他方の入力端子及びコ
ンデンサC2の一方の端子に接続され、コンデンサc+
 、Clの他方の端子は共に電流−電圧変換アンプ11
の入力端子に接続される。差動アンプ12の出力はアバ
ランシェフォトダイオード32の逆バイアス制御回路3
5の入力端子に接続され、制御llループを形成し、差
動アンプ12の出力が0となる様にアバランシェフォト
ダイオード32の逆バイアスが制御される。
The present embodiment shown in FIG.
1 and PIN31 are sequentially connected in series, the connection point between resistor R and resistor R2 is grounded, and the connection point between APD32 and resistor R1 is connected to one input terminal of differential amplifier 12 and one terminal of capacitor C1. connected to PIN31 and resistor R
2 is connected to the other input terminal of the differential amplifier 12 and one terminal of the capacitor C2, and the connection point with the capacitor C+
, Cl are both connected to the current-voltage conversion amplifier 11.
connected to the input terminal of The output of the differential amplifier 12 is connected to the reverse bias control circuit 3 of the avalanche photodiode 32.
The avalanche photodiode 32 is connected to the input terminal of the avalanche photodiode 32 to form a control loop, and the reverse bias of the avalanche photodiode 32 is controlled so that the output of the differential amplifier 12 becomes zero.

再生出力は電流−電圧変換アンプ11の出力端子より得
られる。
The reproduced output is obtained from the output terminal of the current-voltage conversion amplifier 11.

ここで光磁気媒体21からの再生情報信号を偏光面の違
いにより2つの光路に分割した時両光路の再生情報は偏
光面の回転により180°の位相差をもち、一方、雑音
成分については光の強さのみに依存していることから同
相成分となる。従って、180’の位相差をもつ情報信
号は、加え合わせた信号として得られ同相の雑音成分は
APDの増倍率を調整してその振幅をそろえることによ
って相殺除去できる。ここで情l1vi信号は高周波信
号(交流信号)であるからその高周波信号電流は、コン
デンサC+ 、Czを通り、c、 、C2を流れる信号
電流の同相分は相殺され、位相の反転した信号の差が電
流−電圧変換アンプ11へ入力され電圧に変換される。
Here, when the reproduced information signal from the magneto-optical medium 21 is divided into two optical paths due to the difference in the plane of polarization, the reproduced information in both optical paths has a phase difference of 180° due to the rotation of the plane of polarization, while the noise component is Since it depends only on the strength of , it becomes an in-phase component. Therefore, information signals having a phase difference of 180' are obtained as a summed signal, and the in-phase noise components can be canceled out and removed by adjusting the multiplication factor of the APD to make their amplitudes the same. Here, since the information signal is a high frequency signal (alternating current signal), the high frequency signal current passes through capacitors C+ and Cz, and the in-phase components of the signal currents flowing through c, , and C2 are canceled out, and the difference between the signals whose phases are reversed is is input to the current-voltage conversion amplifier 11 and converted into a voltage.

抵抗R+、Rzは2つの入力信号に含まれる直流成分を
検出するためのものである。その直流成分と主たる雑音
成分とが比例関係にあり、且つ同相である事に着目し、
2つの信号の直流成分が等しくなるようAPD32の増
倍率を逆バイアス電圧制御回路35によって調整して同
相の雑音成分を除去する。即ち差動アンプ12は2つの
信号の直流成分の差に応じた出力を取り出す様に構成さ
れているから、その差動アンプ12の出力を零とするよ
うに、APD32の逆バイアス電圧を逆バイアス電圧制
御回路35によって自動制御する。
The resistors R+ and Rz are for detecting DC components contained in the two input signals. Focusing on the fact that the DC component and the main noise component are in a proportional relationship and are in phase,
The multiplication factor of the APD 32 is adjusted by the reverse bias voltage control circuit 35 so that the DC components of the two signals are equal, and the in-phase noise component is removed. That is, since the differential amplifier 12 is configured to extract an output according to the difference between the DC components of two signals, the reverse bias voltage of the APD 32 is reverse biased so that the output of the differential amplifier 12 is zero. It is automatically controlled by the voltage control circuit 35.

尚、上記実施例では増倍率可変の光電変換素子としてA
PDを用いた例を示したが、本発明はこれに限定される
ものではなく、各種の素子、回路例えば光電変換素子と
ゲインコントロールアンプの組み合わせ等適宜のものが
適用可能である。
In the above embodiment, A is used as a photoelectric conversion element with variable multiplication factor.
Although an example using a PD has been shown, the present invention is not limited thereto, and various elements and circuits may be used, such as a combination of a photoelectric conversion element and a gain control amplifier.

(発明の効果) 以上、説明してきた様に、本発明によれば、光磁気媒体
からの反射或いはi3過光による再生光を偏光面の角度
に応じて強さの異なる2つの光路に分けた後に、一方の
再生光をpinフォトダイオード(PIN)で電気信号
に変換し、他方の再生光は増幅機能をもつアバランシェ
フォトダイオード(APD)で電気信号に変換し、直接
それらの電流の差を電流−電圧変換する事により信号の
雑音成分を除去するようにしたため、従来の2つの電流
−電圧変換アンプと1つの差動増幅器を用いる方法に較
べ、差動増幅器を使わず、電流−電圧変換アンプは1つ
でよいため回路が簡略化でき、電流−電圧変換アンプの
特性の差異による雑音が無く、回路が簡略化されること
によって、配線の線路長も短くすることができ入力信号
の位相差を小さくおさえることができる。これらによっ
てSZN比の高い情報信号の再生を得ることができると
同時に、2つの光電変換手段(PINとAPI))で得
られた各々の出力中に含まれる直流成分を抽出し、その
直流成分と主たる雑音成分の振幅が比例関係にあり、且
つ同相であるという事を発見し、この点に着目して常時
直流成分が等しくなるように、言い換えれば差動増幅出
力信号に含まれる雑音成分が常時最小となるように制御
するようにしたため、装置の使用環境、使用状態ある程
度の経年変化により雑音成分に変動を生じても自動的に
差動出力に現われる雑音成分を最小とする閉ループ制御
が行なわれ、光磁気再生装置を常に最適な状態に保つこ
とができ、装置の性能を長期間に亘って維持することが
でき、また製造時の調整作業も極めて簡単にすることが
できる。
(Effects of the Invention) As explained above, according to the present invention, reproduced light due to reflection from a magneto-optical medium or i3 transmission is divided into two optical paths with different intensities depending on the angle of the polarization plane. Later, one of the reproduced lights is converted into an electrical signal by a pin photodiode (PIN), and the other reproduced light is converted into an electrical signal by an avalanche photodiode (APD) with an amplification function, and the difference between these currents is directly converted into an electric current. -Since the noise component of the signal is removed by voltage conversion, compared to the conventional method using two current-voltage conversion amplifiers and one differential amplifier, the current-voltage conversion amplifier does not use a differential amplifier. Since only one is required, the circuit can be simplified, and there is no noise due to differences in the characteristics of the current-voltage conversion amplifier. By simplifying the circuit, the wiring line length can be shortened, and the phase difference of the input signal can be reduced. can be kept small. With these, it is possible to reproduce an information signal with a high SZN ratio, and at the same time extract the DC component contained in each output obtained from the two photoelectric conversion means (PIN and API), and extract the DC component and the He discovered that the amplitudes of the main noise components are proportional and in phase, and by focusing on this point, he tried to make sure that the DC components were always equal.In other words, the noise components included in the differential amplification output signal were always the same. Since it is controlled to minimize the noise component that appears in the differential output even if the noise component fluctuates due to changes in the operating environment and usage conditions of the device over time, closed-loop control is performed that automatically minimizes the noise component that appears in the differential output. The magneto-optical reproducing device can always be kept in an optimal condition, the performance of the device can be maintained over a long period of time, and adjustment work during manufacturing can be made extremely simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の光磁気媒体再生回路のブロッ
ク図であり、第2図は従来の光磁気媒体再生装置の説明
図である。 (主要部分の符号の説明) 31 :  pinフォトダイオード(P I N)3
2ニアバランシエフオドダイオード(A P D)33
.34.11:電流−電圧変換アンブ35:逆バイアス
電圧制御回路 36.12;差動アンプ 出願人   日本光学工業株式会社 代理人 弁理士 渡 辺  隆 男 第1図
FIG. 1 is a block diagram of a magneto-optical medium reproducing circuit according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram of a conventional magneto-optical medium reproducing apparatus. (Explanation of symbols of main parts) 31: PIN photodiode (PIN) 3
2 near balancier diode (APD) 33
.. 34.11: Current-voltage conversion amplifier 35: Reverse bias voltage control circuit 36.12; Differential amplifier Applicant: Nippon Kogaku Kogyo Co., Ltd. Agent Patent attorney: Takashi Watanabe Figure 1

Claims (1)

【特許請求の範囲】 情報を記録した光磁気媒体からの偏光情報を含んだ光を
偏光状態によって2つに分けられた光路の一方による光
を光電変換する第1の光電変換手段と; 前記光路の他方による光を光電変換する増倍率可変の第
2の光電変換手段と; 該第2の光電変換手段の増倍率を制御する制御手段と; 前記第1及び第2の光電変換手段のそれぞれの出力に含
まれる直流成分と交流成分とをそれぞれ分離する分離手
段と; 該分離手段で分離した2つの直流成分の差に応じた信号
を出力する差動アンプと; 前記分離手段で分離した2つの交流成分の差を電流−電
圧変換する電流−電圧変換手段とを備え; 前記制御1手段は前記差動アンプの出力により前記差動
アンプの出力が0となる如く前記該第2の光電変換手段
の増倍率を制御する様構成し;前記電流−電圧変換手段
の出力より再生出力信号を得る様構成した事を特徴とす
る光磁気媒体再生回路。
[Scope of Claims] A first photoelectric conversion means for photoelectrically converting light including polarization information from a magneto-optical medium on which information is recorded along one of two optical paths divided according to the polarization state; the optical path; a second photoelectric conversion means with a variable multiplication factor for photoelectrically converting the light emitted by the other one; a control means for controlling the multiplication factor of the second photoelectric conversion means; and each of the first and second photoelectric conversion means. Separation means that separates a DC component and an AC component contained in the output; A differential amplifier that outputs a signal corresponding to the difference between the two DC components separated by the separation means; current-voltage converting means for converting a difference between alternating current components into current-voltage; the first control means converts the second photoelectric conversion means so that the output of the differential amplifier becomes zero according to the output of the differential amplifier; A magneto-optical medium reproducing circuit, characterized in that the circuit is configured to control the multiplication factor of the current-to-voltage converter; and is configured to obtain a reproduction output signal from the output of the current-voltage conversion means.
JP62002042A 1987-01-08 1987-01-08 Magneto-optical medium reproducing circuit Pending JPS63171458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62002042A JPS63171458A (en) 1987-01-08 1987-01-08 Magneto-optical medium reproducing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62002042A JPS63171458A (en) 1987-01-08 1987-01-08 Magneto-optical medium reproducing circuit

Publications (1)

Publication Number Publication Date
JPS63171458A true JPS63171458A (en) 1988-07-15

Family

ID=11518269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62002042A Pending JPS63171458A (en) 1987-01-08 1987-01-08 Magneto-optical medium reproducing circuit

Country Status (1)

Country Link
JP (1) JPS63171458A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225453A (en) * 2015-05-29 2016-12-28 シャープ株式会社 Photosensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225453A (en) * 2015-05-29 2016-12-28 シャープ株式会社 Photosensor

Similar Documents

Publication Publication Date Title
US4691308A (en) Apparatus for reproducing information from magnetooptical recording medium
US4682311A (en) Photomagnetic differential reproducing system
US5586101A (en) Magneto-optic data storage system with differential detection channels having separate gain control circuit
JPH0731837B2 (en) Optical pickup device
JP2687350B2 (en) Magneto-optical disk playback device
JP2008152883A (en) Optical pickup and optical information reproducing device
JPS63171458A (en) Magneto-optical medium reproducing circuit
JPS618753A (en) Photomagnetic reproducing device
JPS63138533A (en) Reproducing system for magneto-optical disk
JP2576579B2 (en) Information signal detector
JPS60119642A (en) Optical information recording and reproducing device
JPH06274924A (en) Optical information detecting circuit
JPH0654554B2 (en) Magneto-optical reproducing device
JPS62134839A (en) Optical magnetic reproducing device
JPS61289539A (en) Optical reproducing device
JPH02148441A (en) Magneto-optical disk recording and reproducing device
JP2696852B2 (en) Optical recording / reproducing device
JP2862024B2 (en) Magneto-optical signal reproducing device
JPH02148440A (en) Nagneto-optical disk recording and reproducing device
JPS63299583A (en) Optical recording and reproducing device
JPS61162843A (en) Photomagnetic signal reproducing device
JPS61165845A (en) Optical reproducer
JPS63184944A (en) Magneto-optical recording and reproducing device
JPH05159404A (en) Optical pickup device
JPH05258382A (en) Optical head