JPS63171387A - Discrimination of radiation energy - Google Patents

Discrimination of radiation energy

Info

Publication number
JPS63171387A
JPS63171387A JP62003547A JP354787A JPS63171387A JP S63171387 A JPS63171387 A JP S63171387A JP 62003547 A JP62003547 A JP 62003547A JP 354787 A JP354787 A JP 354787A JP S63171387 A JPS63171387 A JP S63171387A
Authority
JP
Japan
Prior art keywords
energy
count value
photon count
radiation
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62003547A
Other languages
Japanese (ja)
Other versions
JP2502555B2 (en
Inventor
Hiroshi Tsutsui
博司 筒井
Yasuichi Oomori
大森 康以知
Matsuki Baba
末喜 馬場
Masanori Watanabe
正則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62003547A priority Critical patent/JP2502555B2/en
Publication of JPS63171387A publication Critical patent/JPS63171387A/en
Application granted granted Critical
Publication of JP2502555B2 publication Critical patent/JP2502555B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To discriminate radiation energy from which the measuring error due to K-shell characteristic X-ray escape is removed, in performing counting in such a state that incident radioactive rays are divided into two energy regions, by preliminarily determining a correction constant even when the K-shell characteristic X-ray escape peculiar to a semiconductive radiation detector is generated. CONSTITUTION:The photon energy is incident radioactive rays is divided into two kinds of energy bands using a discriminator to perform the counting of photons. Then, the photon count value of the high energy band is multiplied by predetermined coefficient to calculate the photon count value of K-shell characteristic X-ray escape and the value obtained by adding this photon count value to a high energy photon count value is set to a real high energy photon count value. Further, the value obtained by subtracting this photon count value from a low energy photon count value is set to a real low energy photon count value to perform the correction of the K-shell characteristic X-ray escape. By this method, even when there is the effect of the K-shell characteristic X-ray escape peak peculiar to the material of a semiconductive radiation detector, an energy band can be accurately separated.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は医療に用いられるX線診断装置あるいは工業
に用いられる非破壊検査装置に用いられるデータ処理あ
るいは画像処理方法における放射線エネルギー弁別方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a radiation energy discrimination method in a data processing or image processing method used in an X-ray diagnostic device used in medical treatment or a non-destructive inspection device used in industry.

従来の技術 第2図に放射線の光電効果による吸収機構を示す。入射
放射線1が原子に入射すると、殻外軌道電子のりちに殻
電子に主として吸収され、K殻電子を励起電子2として
膜外に放出する。この励起電子2が半導体の中で電子−
正孔対を生じさせ、その電子−正孔対により生じる電流
もしくは電圧をパルス計測することによシ放射線の光子
数の検出が可能となる。このに殻電子の無くなった状態
は、より外殻の電子かに殻軌道に入ることによシおぎな
われる。この外殻電子かに殻に遷移すると、軌道エネル
ギー差のエネルギーをに膜特性X線3として放出する。
Prior Art Figure 2 shows the absorption mechanism of radiation due to the photoelectric effect. When incident radiation 1 enters an atom, it is mainly absorbed by shell electrons in the outer shell orbital electrons, and is emitted outside the membrane as K-shell electrons as excited electrons 2. This excited electron 2 is an electron in the semiconductor.
The number of photons of radiation can be detected by generating hole pairs and pulse-measuring the current or voltage generated by the electron-hole pairs. This state where there are no outer shell electrons can be achieved by the electrons in the outer shell entering the shell orbit. When this outer shell electron transits to the crab shell, the energy of the orbital energy difference is emitted as membrane characteristic X-rays 3.

この現象を半導体放射線検出器内での現象として表した
図が第、3図である。半導体検出器4内で放射線1が吸
収されると、励起電子2とに膜特性X線3とを生じ、励
起電子2は半導体結晶幅で大半のエネルギーを失うか、
K膜特性X線3は結晶面近傍で生じた場合は結晶外に放
射される場合がある。この結晶外に出る現象をに膜特性
X線エスケープと呼び、この現象が生じると、検出器か
ら出力される電荷量は減少し、出力パルスの波高値が小
さくなる。この現象を出力パルス波高値で示したのが第
4図である。第4図6は入射放射線のエネルギーと光子
数を示したものである。しかし実測を行なうと単一エネ
ルギーE′の放射線カ入射した場合、半導体放射線検出
器からの化カバ、ユ波高分布は第3図すのようになる。
FIG. 3 shows this phenomenon as a phenomenon within a semiconductor radiation detector. When the radiation 1 is absorbed in the semiconductor detector 4, the excited electrons 2 and film characteristic X-rays 3 are generated, and the excited electrons 2 lose most of their energy due to the width of the semiconductor crystal, or
When the K film characteristic X-rays 3 are generated near the crystal plane, they may be emitted outside the crystal. This phenomenon of radiation exiting the crystal is called membrane characteristic X-ray escape, and when this phenomenon occurs, the amount of charge output from the detector decreases, and the peak value of the output pulse decreases. FIG. 4 shows this phenomenon in terms of output pulse peak values. FIG. 46 shows the energy of incident radiation and the number of photons. However, actual measurements show that when radiation of a single energy E' is incident, the wave height distribution from the semiconductor radiation detector is as shown in Figure 3.

すなわち、入射エネルギーEに対応した波高のパースと
、エネルギーE−E、(E、: K殻電子の束縛エネル
ギー)に対応した波高のパルスの2つのパルス群に分か
れることになる。
That is, it is divided into two pulse groups: a pulse with a pulse height corresponding to the incident energy E, and a pulse with a pulse height corresponding to the energy EE, (E: binding energy of K-shell electrons).

次に連続エネルギーの放射線を照射した場合を考える。Next, consider the case of irradiation with continuous energy radiation.

第5図に放射線源としてX線を用いたときのX線管から
放出されるエネルギー分布を示す。
FIG. 5 shows the energy distribution emitted from the X-ray tube when X-rays are used as the radiation source.

このような連続エネルギーの放射線が半導体放射線検出
器に入射した場合、検出器からのI(ルス出力波高分布
は第6図中の実線で示したトータルスペクトルのような
分布となる。その成分はに殻電子の束縛エネルギーE、
を境としてL殻光電吸収スペクトル、K殻光電吸収スペ
クトルおよびに殻w性xsエスケープビークスペクトル
の加算されたスペクトル分布からなっている。
When such continuous energy radiation is incident on a semiconductor radiation detector, the I(Russ output wave height distribution from the detector is as shown in the total spectrum shown by the solid line in Fig. 6. Its components are Binding energy of shell electrons E,
It consists of the summed spectral distribution of the L-shell photoelectric absorption spectrum, the K-shell photoelectric absorption spectrum, and the W-shell xs escape peak spectrum, with the boundary at .

発明が解決しようとする問題点 上記のごとく、K殻特性X線エスケープが生じる場合、
入射する連続エネルギー放射線に対し、半導体放射線検
出器からの出力波高スペクトルは入射放射線エネルギー
分布に対して対応しておらず、低エネルギー側にシフト
したスペクトル分布をしておル、この分布をディスクリ
ミネータを用いて2つのエネルギー帯に分割しても、そ
れから得られるデータは入射エネルギーに対応しない。
Problems to be Solved by the Invention As mentioned above, when K-shell characteristic X-ray escape occurs,
For incident continuous energy radiation, the output wave height spectrum from a semiconductor radiation detector does not correspond to the incident radiation energy distribution, but has a spectral distribution shifted to the lower energy side. Even if it is divided into two energy bands using Noether, the data obtained therefrom does not correspond to the incident energy.

問題点を解決するための手段 に殻特性X線エスケープピークスペクトルを半導体放射
線検出器に使用する材料および形状を考慮し、K膜特性
X線エスケープビークの計数値を低エネルギー側よシ減
算し、高エネルギー側に加算することにより補正を行な
う。
As a means to solve the problem, the shell characteristic X-ray escape peak spectrum is calculated by taking into consideration the material and shape used in the semiconductor radiation detector, and subtracting the count value of the K membrane characteristic X-ray escape peak toward the lower energy side. Correction is performed by adding to the high energy side.

すなわち、入射放射線の光子エネルギーをディスクリミ
ネータを用いて2種類のエネルギー帯に分割して光子計
数を行ない、高エネルギー帯の光子計数値に所定の係数
を乗じてに膜特性X線エスケープの光子計数値を算出し
、このに殻特性X線エスケープ光子計数値を高エネルギ
ー光子計数値に加算した値を真の高エネルギー光子計数
値とする。さらに、上記に殻特性X線エスケープ光子計
数値を低エネルギー光子計数値から減算した値を真の低
エネルギー光子計数値とすることにより、K膜特性X線
エスケープビークの補正を行なう。
That is, the photon energy of the incident radiation is divided into two types of energy bands using a discriminator and photon counting is performed, and the photon count value of the high energy band is multiplied by a predetermined coefficient to determine the photon of the film characteristic X-ray escape. The count value is calculated, and the value obtained by adding the shell characteristic X-ray escape photon count value to the high-energy photon count value is defined as the true high-energy photon count value. Furthermore, the K film characteristic X-ray escape peak is corrected by subtracting the shell characteristic X-ray escape photon count value from the low energy photon count value as the true low energy photon count value.

作  用 上記の方法により、入射放射線を2つのエネルギー帯に
分離して光子計数を行なう際に、半導体放射線検出器の
材料に特有のに殻特性X線エスケープピークの影響があ
る場合にも、K膜特性X線エスケープビークの補正を行
なうことにより、正しいエネルギー帯の分離が可能とな
る。
Effect When using the method described above to separate incident radiation into two energy bands and perform photon counting, K Correct separation of energy bands becomes possible by correcting the membrane characteristic X-ray escape peak.

実施例 第6図に示すような入射X線エネルギースペクトルをf
(6)とすると、積算光子数F(2)は次式で表すこと
ができる。
Example The incident X-ray energy spectrum as shown in Fig. 6 is f.
(6), the cumulative number of photons F(2) can be expressed by the following equation.

F(勾=f″f@dE       ・・・・・・・・
・・・・・・・(1)半導体放射線検出器により吸収さ
れるX線吸収光子数をF ’(Elとすると、F’(E
)  は次式で表すことができる。
F (gradient=f″f@dE ・・・・・・・・・
(1) If the number of X-ray absorption photons absorbed by a semiconductor radiation detector is F'(El, then F'(E
) can be expressed by the following equation.

F ’#−/″f(6)(1−叫(−μ(2)x))d
li:  ・・・・・・・・・(謁μ(6):検出器の
吸収係数 X :検出器の厚さ く2)式で示す吸収エネルギースペクトルに対し、K殻
特性X線エスケープを生じる場合、出力エネルギースペ
クトルを第6図にしたがって分割すると、トータルスペ
クトルの積算光子数は次の2つの式の和、F#(6)+
F″(E−E、)となる。
F '#-/''f(6)(1-scream(-μ(2)x))d
li: ...... (audience μ(6): Absorption coefficient of detector , when the output energy spectrum is divided according to Figure 6, the cumulative number of photons in the total spectrum is the sum of the following two equations, F# (6) +
F''(E-E,).

+(1−A)71戸(1−LEQ(−μm))dE・・
・(3)F#(E−E、)=A/’;、Q(1−ew(
−μ(Elり)dE・(4)ここで(3)式の意味を説
明すると、lr//(6)の第1項は第6図中り殻光電
吸収エネルギースペクトル、第2項はに殻光電吸収スペ
クトルの積算光子数、(4)式のFl′(ト)はに殻特
性X線エスケープビークスペクトルの積算光子数を表し
ている。ここで定数Aは、検出器材料個有の性質すなわ
ち吸収係数μ(勾およびに殻電子束縛エネルギーE、お
よび検出器形状による効果の両方を考慮して定められる
1以下の定数である。この定数Aを定めることにより、
(3) 、 (4式を用いて半導体放射線検出器からの
出力パルス波高スペクトルを式(2に示す半導体放射線
検出器に吸収されるX線エネルギースペクトルに変換が
可能となる。
+ (1-A) 71 units (1-LEQ (-μm)) dE...
・(3) F#(EE-E,)=A/';, Q(1-ew(
-μ(Elri)dE・(4) Here, to explain the meaning of equation (3), the first term of lr//(6) is the shell photoelectric absorption energy spectrum in Figure 6, and the second term is The integrated number of photons in the shell photoelectric absorption spectrum, Fl'(g) in equation (4), represents the integrated number of photons in the shell characteristic X-ray escape beak spectrum. Here, the constant A is a constant of 1 or less, which is determined by considering both the absorption coefficient μ (gradient and shell electron binding energy E) and the effect of the detector shape. By determining A,
(3), (4) It becomes possible to convert the output pulse height spectrum from the semiconductor radiation detector into the X-ray energy spectrum absorbed by the semiconductor radiation detector shown in equation (2).

この変換を実際のエネルギー弁別に応用する。This conversion will be applied to actual energy discrimination.

第1図は半導体放射線検出器の出力パルス波高スペクト
ルに)をディスクリミネタE、およびE2 を用いて2
2種類のエネルギー領域に分離する際の、それぞれの成
分を示したものである。E1〜E2の低エネルギー領域
はL殻光電吸収スペクトル十に殻光電吸収スペクトルの
一部の和(1)とに膜特性X線エスケープピークスペク
トル(3)の和(噂からなっており、82以上の高エネ
ルギー領域は大半かに殻光電吸収スペクトルからなって
いる。図中(1) 、 (2)。
Figure 1 shows the output pulse height spectrum of a semiconductor radiation detector) using discriminators E and E2.
It shows the respective components when separated into two types of energy regions. The low energy region of E1 to E2 consists of the sum of the L-shell photoelectric absorption spectrum (1), the sum of part of the shell photoelectric absorption spectrum (1), and the sum of the film characteristic X-ray escape peak spectrum (3) (rumor has it that more than 82 The high-energy region consists mostly of shell photoelectric absorption spectra (1) and (2) in the figure.

(3)の和が出力エネルギースペクトル(ロ)である。The sum of (3) is the output energy spectrum (b).

ここでエネルギー弁別という考え方からスペクトルとい
う名称をやめ、積分されたカウント数にあらためる。ト
ータルカウント数をFに)、領域(1)のカウント数を
F(1)、領域(掲のカウント数をF(g、領域(′4
のカウント数をF(3)とすると、次式が成立する。
Here, based on the idea of energy discrimination, we stop calling it spectrum and rename it to integrated counts. Let the total count number be F), let the count number of area (1) be F(1), let the count number of area (below be F(g, area ('4)
When the count number of is F(3), the following equation holds true.

F(至)=F(1)+ F(2)+ F(3)    
  ・・・・・・・・・・・・(6)EiとE2が近け
れば(3)式の第2項および(4式は次のように書き替
えられる。
F (to) = F (1) + F (2) + F (3)
(6) If Ei and E2 are close, the second term of equation (3) and equation (4) can be rewritten as follows.

(1−A)fooAE)[1−郷(−μ(Ii)x))
dE=F(2)  −(6)E2        ・ A/’M2f(”)(’−呻(−a(ax)dli:=
F(3)  ・−”・・・・・(η(橢、(7)式より (5) 、 (鴫式より F(1)=Fに)−F(鏑−F(鴫 =F■−−F@     ・・・・・・・・・・・・・
・・(9)−A (5) 、 (8) 、 @式から分かることは、ディ
スクリミネータE4.E2を用いて、半導体放射線検出
器からの出力パルスを計数し、81以上のトータルカウ
ントFに)と82以上のカウントF(2)の測定を行な
うことにより、E1〜E2の範囲の真の低エネルギー光
子計数値F(1)と82以上の真の高エネルギー計数値
F (2) + F (s)を求めることができること
を意味しており、その計算式はそれぞれ下記のようKな
る。
(1-A)fooAE) [1-go(-μ(Ii)x))
dE=F(2) −(6)E2 ・A/'M2f('')('-groan(-a(ax)dli:=
F(3) ・−”・・・(η(橢, From equation (7), (5), (F(1) = F from Shizuku equation) −F(Kabura −F(Shiro=F■− -F@・・・・・・・・・・・・・・・
...(9)-A (5), (8), @It is clear from the expression that the discriminator E4. By counting the output pulses from the semiconductor radiation detector using E2 and measuring the total count F(2) of 81 or more and the count F(2) of 82 or more, we can determine the true low value in the range of E1 to E2. This means that the energy photon count value F (1) and the true high energy count value F (2) + F (s) of 82 or more can be obtained, and the calculation formulas thereof are K as shown below.

F(1)=Fに)−TTfF(2)      ・・・
・・・・・・(9)F(噂+F(3)=F(2)+ノ―
F(掲−A 1+A =T−rF(2・・・・・・・・川 このようにして、定数Aを導入することにより、K殻特
性X線エスケープという現象を生じても半導体放射線検
出器で吸収した放射線光子のエネルギー弁別を正確に行
なうことが可能となる。
F(1)=F)−TTfF(2)...
・・・・・・(9)F(Rumor+F(3)=F(2)+No-
By introducing the constant A in this way, the semiconductor radiation detector can be used even if the phenomenon of K-shell characteristic X-ray escape occurs. It becomes possible to accurately discriminate the energy of radiation photons absorbed by

この定数Aを決定する方法は、まず第3図a゛に示すよ
うに半導体放射線検出器に単一エネルギーEの放射線を
照射する。その結果半導体放射線検出器の出力パルス波
高スペクトルには、入射エネルギーEに対応したピーク
の他にエネルギーE−に、に対応した所にに殻特性X線
エスケープによるピークを生じる。両ピークのトータル
カウント数が半導体放射線検出器に吸収させた放射線光
子数であり、トータルカウント数に対するに膜特性X線
エスケープビークのカウント数の比が、決定すべきAの
値となる。このAの値は検出器材料の吸収係数および形
状(大きさ、厚さ)およびに殻電子束縛エネルギーEi
 の関数となり、実験的に求める必要がある。
The method for determining this constant A is to first irradiate a semiconductor radiation detector with radiation of a single energy E, as shown in FIG. 3a. As a result, in the output pulse height spectrum of the semiconductor radiation detector, in addition to the peak corresponding to the incident energy E, a peak due to shell characteristic X-ray escape occurs at a location corresponding to the energy E-. The total count of both peaks is the number of radiation photons absorbed by the semiconductor radiation detector, and the ratio of the count of the film characteristic X-ray escape peak to the total count is the value of A to be determined. The value of A depends on the absorption coefficient and shape (size, thickness) of the detector material and the shell electron binding energy Ei
It is a function of , and needs to be determined experimentally.

第1表に本発明に用いることのできる半導体放射線検出
器の素材の元素のに殻電子束縛エネルギー(K吸収端エ
ネルギー)の値を示す。StはE。
Table 1 shows the values of the shell electron binding energy (K absorption edge energy) of the elements of the material of the semiconductor radiation detector that can be used in the present invention. St is E.

が約2 KeV と低(,10KeV以下の低エネルギ
ー領域において、GoおよびGaAtrはE・が10〜
12KeVであル、100KeV以下、特に50 Ke
V以下のエネルギー領域において、CdTeはE、が約
30KeV  であシ、100−200KeV以下のエ
ネルギー領域において本願の放射線エネルギー弁別方法
が非常に有効となる。またH9Iは!のEi が約33
 KeV 、 HgのEiが約83 KeVとはなれて
いるために少し複雑となるが、〜200KeV以下のエ
ネルギー領域に対して有効となる。
is as low as about 2 KeV (in the low energy region below 10 KeV, Go and GaAtr have an E of 10~10 KeV).
12 KeV, below 100 KeV, especially 50 Ke
In the energy range below V, the E of CdTe is about 30 KeV, and the radiation energy discrimination method of the present application is very effective in the energy range below 100-200 KeV. Also H9I! Ei of is about 33
Although it is a little complicated because the Ei of KeV and Hg are different from each other at about 83 KeV, it is effective for the energy range of ~200 KeV or less.

第1表 以下、単一の検出器を用いた放射線エネルギー弁別方法
に関して述べた。検出器が複数個の検出器列1例えば−
次元検出器アレイまたは二次元平面検出器に本願の放射
線エネルギー弁別方法を応用する場合、K膜特性X線エ
スケープの隣接検出器への入射、いいかえると、隣接検
出器から放出されるに膜特性X線エスケープの入射を考
慮する必要がある。すなわち、第3図すに示すに殻特性
X線エスケープピークのカウント数が増加する現象、に
膜特性X線エスケープによる隣接検出器間のクロストー
クが現れる。この様な場合は、定数Aの値を検出器構造
を考慮して変更することによル、隣接検出器間のクロス
トークを補正した放射線エネルギー弁別が可能となる。
In Table 1 and below, a radiation energy discrimination method using a single detector is described. Detector row 1 with a plurality of detectors, for example -
When applying the radiation energy discrimination method of the present application to a dimensional detector array or a two-dimensional plane detector, the incident of K film characteristic X-ray escape to an adjacent detector, in other words, the film characteristic X emitted from an adjacent detector It is necessary to consider the incidence of line escapes. That is, crosstalk between adjacent detectors due to membrane characteristic X-ray escape appears in the phenomenon in which the count number of shell characteristic X-ray escape peaks increases as shown in FIG. In such a case, by changing the value of the constant A in consideration of the detector structure, it becomes possible to discriminate radiation energy while correcting crosstalk between adjacent detectors.

発明の効果 本発明によれば、入射放射線を2つのエネルギー領域に
分割して計数を行なう場合、半導体放射線検出器特有の
に殻特性X1lJエスケープを生じる場合でも、前もっ
て補正の定数を定めることによシ、K膜特性X線エスケ
ープによる測定誤差を除いた放射線エネルギー弁別を行
なうことができる。
Effects of the Invention According to the present invention, when counting is performed by dividing the incident radiation into two energy regions, even when the shell characteristic It is possible to perform radiation energy discrimination without measurement errors due to X-ray escape due to the X-ray escape characteristic of the K film.

本出願による方法をX線画像診断に用いれば、被写体に
対して1回のX線照射を行なうことにより、被写体を透
過した放射線を2つのエネルギー領域からなる画像に分
けることが可能となる。さらにはそれらの画像の差分を
取ることにより、エネルギー差分法と呼ばれる画像処理
が可能となる。その結果、従来具なるエネルギーの放射
線を用いて2回照射し、その画像の差分を取る場合に生
じる撮影時間の時間差による画像のずれといつ問題を、
本出願による方法によシ解消することができ、被写体の
ずれの全くない2つの画像およびその差分画像を得るこ
とが可能となる。さらに、従来の異なるエネルギーの放
射線、特にX線の場合は、エネルギー範囲が広範囲に分
布している為に、異なるエネルギーを用いても実際のエ
ネルギースペクトルの分布は重なった部分ができるが、
本願発明によるエネルギー弁別は1重なシがなくエネル
ギー分離能力が非常に高いものである。
If the method according to the present application is used for X-ray image diagnosis, by irradiating the subject with X-rays once, it becomes possible to divide the radiation that has passed through the subject into images consisting of two energy regions. Furthermore, by taking the difference between these images, image processing called the energy difference method becomes possible. As a result, we have solved the problem of image deviation due to the difference in imaging time that occurs when irradiating twice with conventional energy radiation and taking the difference between the images.
This problem can be solved by the method according to the present application, and it becomes possible to obtain two images with no subject shift and a difference image thereof. Furthermore, in the case of conventional radiation with different energies, especially X-rays, the energy range is distributed over a wide range, so even if different energies are used, the actual energy spectrum distribution will have overlapping parts.
The energy discrimination according to the present invention has very high energy separation ability without any single layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による出力パルス波高分布を示す図、第
2図はに殻光電効果の基本原理を示す図、第3図はに殻
特性X線エスケープ現象の模式図、第4図は単一エネル
ギー放射線の入射に対する出力パルス波高分布を示す図
、第6図は入射X線エネルギー分布を示す図、第6図は
検出器からの出力パルス波高分布を示す図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 そ刀し 137  イJL 第2図 第5図 第6図 ヒレ 浪鶏1 轍 艷      1 cv)! 城          綜 R仁へ五都
Fig. 1 is a diagram showing the output pulse height distribution according to the present invention, Fig. 2 is a diagram showing the basic principle of the shell photoelectric effect, Fig. 3 is a schematic diagram of the shell characteristic X-ray escape phenomenon, and Fig. 4 is a diagram showing the simple principle of the shell photoelectric effect. FIG. 6 is a diagram showing the output pulse height distribution with respect to the incidence of one-energy radiation, FIG. 6 is a diagram showing the incident X-ray energy distribution, and FIG. 6 is a diagram showing the output pulse height distribution from the detector. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 5 Figure 6 Hire Rangi 1 Watari 1 cv)! Five capitals to the castle

Claims (4)

【特許請求の範囲】[Claims] (1)半導体放射線検出器を用い、2つのディスクリミ
ネートレベルをもうけ、入射放射線を2種類のエネルギ
ー帯に分割して放射線光子計数を行なう方法であって、
高いエネルギー帯の計数値を高エネルギー光子計数値、
低いエネルギー帯の計数値を低エネルギー光子計数値と
し、前記高エネルギー光子計数値に所定の係数を乗じた
値を前記高エネルギー光子計数値に加算した値を真の高
エネルギー光子計数値とし、また前記高エネルギー光子
計数値に所定の係数を乗じた値を前記低エネルギー光子
計数値から減算した値を真の低エネルギー光子計数値と
して2つのエネルギー領域の光子数を得ることを特徴と
する放射線エネルギー弁別方法。
(1) A method of counting radiation photons by using a semiconductor radiation detector, creating two discriminatory levels, and dividing incident radiation into two types of energy bands,
The high energy band count value is the high energy photon count value,
A count value in a low energy band is defined as a low-energy photon count value, a value obtained by multiplying the high-energy photon count value by a predetermined coefficient and added to the high-energy photon count value is defined as a true high-energy photon count value, and Radiation energy characterized in that the number of photons in two energy regions is obtained as a true low-energy photon count by subtracting a value obtained by multiplying the high-energy photon count by a predetermined coefficient from the low-energy photon count. Discrimination method.
(2)高エネルギー光子計数値と、真の低エネルギー光
子計数値の2つのエネルギー領域の光子数を得ることを
特徴とする特許請求の範囲第1項記載の放射線エネルギ
ー弁別方法。
(2) The method for discriminating radiation energy according to claim 1, characterized in that photon numbers in two energy regions are obtained: a high-energy photon count value and a true low-energy photon count value.
(3)検出する放射線エネルギー範囲が200KeV以
下のエネルギー範囲であることを特徴とする特許請求の
範囲第1項記載の放射線エネルギー弁別方法。
(3) The radiation energy discrimination method according to claim 1, wherein the radiation energy range to be detected is an energy range of 200 KeV or less.
(4)半導体放射線検出器に用いる半導体結晶材料がG
e、GaAs、CdTe、HgIから選択された一種で
あることを特徴とする特許請求の範囲第1項記載の放射
線エネルギー弁別方法。
(4) The semiconductor crystal material used in semiconductor radiation detectors is G
2. The radiation energy discrimination method according to claim 1, wherein the radiation energy is one selected from e, GaAs, CdTe, and HgI.
JP62003547A 1987-01-09 1987-01-09 Radiation energy-discrimination method Expired - Lifetime JP2502555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62003547A JP2502555B2 (en) 1987-01-09 1987-01-09 Radiation energy-discrimination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62003547A JP2502555B2 (en) 1987-01-09 1987-01-09 Radiation energy-discrimination method

Publications (2)

Publication Number Publication Date
JPS63171387A true JPS63171387A (en) 1988-07-15
JP2502555B2 JP2502555B2 (en) 1996-05-29

Family

ID=11560444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62003547A Expired - Lifetime JP2502555B2 (en) 1987-01-09 1987-01-09 Radiation energy-discrimination method

Country Status (1)

Country Link
JP (1) JP2502555B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271633A (en) * 1995-03-29 1996-10-18 Toshiba Corp Radiation detection apparatus
FR2815132A1 (en) * 2000-10-10 2002-04-12 Commissariat Energie Atomique Processing of Gamma radiation energy spectrum
JP2007508040A (en) * 2003-10-10 2007-04-05 シエーリング アクチエンゲゼルシヤフト X-ray apparatus, X-ray contrast method and use of the X-ray apparatus for image formation on at least one subject comprising radiopaque elements
JP2007155360A (en) * 2005-11-30 2007-06-21 Hitachi Ltd Nuclear medical diagnosis device, and radiation detection method in nuclear medical diagnosis device
JP2011089901A (en) * 2009-10-22 2011-05-06 Sumitomo Heavy Ind Ltd Detection result correction method, radiation detection device and program using the same, and recording medium for recording the program
WO2013005848A1 (en) * 2011-07-07 2013-01-10 株式会社東芝 Photon counting image detector, x-ray diagnosis apparatus, and x-ray computerized tomography apparatus
JPWO2011039819A1 (en) * 2009-10-01 2013-02-21 株式会社島津製作所 Pulse height analyzer and nuclear medicine diagnostic apparatus provided with the same
JP2014159973A (en) * 2013-02-19 2014-09-04 Rigaku Corp X-ray data processing device, x-ray data processing method and x-ray data processing program
JP2014230584A (en) * 2013-05-28 2014-12-11 株式会社東芝 X-ray diagnostic apparatus, medical image processing apparatus and medical image processing program
JP2015160135A (en) * 2014-02-26 2015-09-07 株式会社東芝 X-ray photon-counting computer tomographic imaging apparatus, spectrum correction method and spectrum correction program
JP2016010649A (en) * 2014-06-30 2016-01-21 株式会社東芝 Photon-counting type x-ray ct apparatus, and photon-counting type imaging program
JP2016104125A (en) * 2014-11-19 2016-06-09 東芝メディカルシステムズ株式会社 X-ray ct apparatus, image processing apparatus and program
WO2017085905A1 (en) * 2015-11-20 2017-05-26 Canon Kabushiki Kaisha Radiation imaging system, signal processing apparatus, and signal processing method for radiographic image
JP2018021899A (en) * 2016-08-05 2018-02-08 清華大学Tsinghua University Method and device for reconstituting energy spectrum detected by probe

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271633A (en) * 1995-03-29 1996-10-18 Toshiba Corp Radiation detection apparatus
FR2815132A1 (en) * 2000-10-10 2002-04-12 Commissariat Energie Atomique Processing of Gamma radiation energy spectrum
JP2007508040A (en) * 2003-10-10 2007-04-05 シエーリング アクチエンゲゼルシヤフト X-ray apparatus, X-ray contrast method and use of the X-ray apparatus for image formation on at least one subject comprising radiopaque elements
JP2007155360A (en) * 2005-11-30 2007-06-21 Hitachi Ltd Nuclear medical diagnosis device, and radiation detection method in nuclear medical diagnosis device
JP4594855B2 (en) * 2005-11-30 2010-12-08 株式会社日立製作所 Nuclear medicine diagnostic apparatus, radiation camera, and radiation detection method in nuclear medicine diagnostic apparatus
JPWO2011039819A1 (en) * 2009-10-01 2013-02-21 株式会社島津製作所 Pulse height analyzer and nuclear medicine diagnostic apparatus provided with the same
JP5531021B2 (en) * 2009-10-01 2014-06-25 株式会社島津製作所 Pulse height analyzer and nuclear medicine diagnostic apparatus provided with the same
JP2011089901A (en) * 2009-10-22 2011-05-06 Sumitomo Heavy Ind Ltd Detection result correction method, radiation detection device and program using the same, and recording medium for recording the program
US9213108B2 (en) 2011-07-07 2015-12-15 Kabushiki Kaisha Toshiba Photon counting type image detector, X-ray diagnosis apparatus and X-ray computed tomography apparatus
WO2013005848A1 (en) * 2011-07-07 2013-01-10 株式会社東芝 Photon counting image detector, x-ray diagnosis apparatus, and x-ray computerized tomography apparatus
JP2013019698A (en) * 2011-07-07 2013-01-31 Toshiba Corp Photon count type image detector, x-ray diagnostic device, and x-ray computer tomographic device
JP2014159973A (en) * 2013-02-19 2014-09-04 Rigaku Corp X-ray data processing device, x-ray data processing method and x-ray data processing program
US10209375B2 (en) 2013-02-19 2019-02-19 Rigaku Corporation X-ray data processing apparatus, X-ray data processing method, and X-ray data processing program
JP2014230584A (en) * 2013-05-28 2014-12-11 株式会社東芝 X-ray diagnostic apparatus, medical image processing apparatus and medical image processing program
JP2015160135A (en) * 2014-02-26 2015-09-07 株式会社東芝 X-ray photon-counting computer tomographic imaging apparatus, spectrum correction method and spectrum correction program
JP2016010649A (en) * 2014-06-30 2016-01-21 株式会社東芝 Photon-counting type x-ray ct apparatus, and photon-counting type imaging program
JP2016104125A (en) * 2014-11-19 2016-06-09 東芝メディカルシステムズ株式会社 X-ray ct apparatus, image processing apparatus and program
WO2017085905A1 (en) * 2015-11-20 2017-05-26 Canon Kabushiki Kaisha Radiation imaging system, signal processing apparatus, and signal processing method for radiographic image
JP2017096720A (en) * 2015-11-20 2017-06-01 キヤノン株式会社 Radiation imaging system, signal processor, and signal processing method of radiation image
US20180267177A1 (en) * 2015-11-20 2018-09-20 Canon Kabushiki Kaisha Radiation imaging system, signal processing apparatus, and signal processing method for radiographic image
US10359520B2 (en) 2015-11-20 2019-07-23 Canon Kabushiki Kaisha Radiation imaging system, signal processing apparatus, and signal processing method for radiographic image
JP2018021899A (en) * 2016-08-05 2018-02-08 清華大学Tsinghua University Method and device for reconstituting energy spectrum detected by probe
US10649104B2 (en) 2016-08-05 2020-05-12 Tsinghua University Methods and apparatuses for reconstructing incident energy spectrum for a detector

Also Published As

Publication number Publication date
JP2502555B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
JP6995820B2 (en) Scattering estimation and / or correction in radiography
Shikhaliev Energy-resolved computed tomography: first experimental results
US5132998A (en) Radiographic image processing method and photographic imaging apparatus therefor
US7885372B2 (en) System and method for energy sensitive computed tomography
Yaffe et al. Spectroscopy of diagnostic x rays by a Compton‐scatter method
JP2962015B2 (en) K-edge filter and X-ray device
JPS63171387A (en) Discrimination of radiation energy
Shikhaliev Tilted angle CZT detector for photon counting/energy weighting x-ray and CT imaging
US20090225938A1 (en) Anti-scatter-grid for a radiation detector
GB2130835A (en) Apparatus for the diagnosis of body structures into which a gamma-emitting radioactive isotape has been introduced
JPH0640077B2 (en) Radiation image receiving method
JPS62228941A (en) Method and device for determining spatial structure of layerof inspection region
US4081681A (en) Treatment of absorption errors in computerized tomography
US20170105688A1 (en) X-ray scanning apparatus
Kimoto et al. Reproduction of response functions of a multi-pixel-type energy-resolved photon counting detector while taking into consideration interaction of X-rays, charge sharing and energy resolution
Després et al. Physical characteristics of a low‐dose gas microstrip detector for orthopedic x‐ray imaging
Kimoto et al. Feasibility study of photon counting detector for producing effective atomic number image
Niederlohner et al. Using the Medipix2 detector for photon counting computed tomography
Tsutsui et al. Measurement of X-ray spectrum using a small size CdTe multichannel detector
Burgess et al. Voltage, energy, and material dependence of secondary radiation
JPH05212028A (en) Radiation three-dimensional picture photographing device
Jensen et al. X-ray imaging: Fundamentals and planar imaging
Albuquerque et al. Practical method for photon fluency evaluation of digital X-ray image system
Baek et al. A Monte Carlo simulation study on effects of energy weighted dual-energy subtraction images with indirect photon-counting detector in mammography
Firsching et al. First measurements of material reconstruction in X-ray imaging with the medipix2 detector

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term