JPS63171380A - Apparatus for detecting target signal - Google Patents
Apparatus for detecting target signalInfo
- Publication number
- JPS63171380A JPS63171380A JP62001913A JP191387A JPS63171380A JP S63171380 A JPS63171380 A JP S63171380A JP 62001913 A JP62001913 A JP 62001913A JP 191387 A JP191387 A JP 191387A JP S63171380 A JPS63171380 A JP S63171380A
- Authority
- JP
- Japan
- Prior art keywords
- value
- variance
- signal
- target signal
- constant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims abstract description 37
- 230000003321 amplification Effects 0.000 claims abstract description 22
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 22
- 230000001747 exhibiting effect Effects 0.000 claims description 4
- 239000006185 dispersion Substances 0.000 abstract description 14
- 238000010586 diagram Methods 0.000 description 5
- 230000010354 integration Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は振幅特性が任意の分布を呈する雑音信号から物
標信号を検出する物標信号検出装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a target signal detection device for detecting a target signal from a noise signal whose amplitude characteristics exhibit an arbitrary distribution.
[従来の技術]
レーダ観測においては捕虜足すべき目標物体(以下、タ
ーゲットという)を検出するために、物体からの不要な
反射波(以下、クラッタという)をいかに抑圧し、目標
物体からの信号(以下、物標信号という)をいかに検出
するかが問題になる。[Prior art] In radar observation, in order to detect a target object (hereinafter referred to as a target), it is necessary to suppress unnecessary reflected waves from the object (hereinafter referred to as clutter) and to suppress signals from the target object (hereinafter referred to as clutter). The problem is how to detect the target signal (hereinafter referred to as target signal).
クラッタには地表面からの反射によるグランド・クラッ
タ、海面からの反射によるジ−クラッタ等がある。Clutter includes ground clutter caused by reflection from the ground surface, and g-clutter caused by reflection from the sea surface.
従来の物標信号検出装置は適当な、雑音分布を規定し、
この雑音分布に基づいて物標信号を検出するようにして
いた。Conventional target signal detection devices define an appropriate noise distribution,
The target signal was detected based on this noise distribution.
[発明が解決しようとする問題点]
ところで、従来の物標信号検出方法は、雑音分布が規定
したちの以外のものであるときは、物標信号を検出でき
ないという問題があった。[Problems to be Solved by the Invention] By the way, the conventional target signal detection method has a problem in that the target signal cannot be detected when the noise distribution is outside the prescribed range.
本発明は上記問題点を解決するためになされたもので、
任意の雑音分布を呈する雑音信号から物標信号を検出す
る物標信号検出装置を提供することを目的とする。The present invention has been made to solve the above problems,
It is an object of the present invention to provide a target signal detection device that detects a target signal from a noise signal exhibiting an arbitrary noise distribution.
[問題点を解決するための手段]
そこで、本発明では任意の分布を呈する雑音の混入して
いる入力信号Xを対数増幅した対数増幅信号Yから対数
増幅信号Yの平均値を減じた信号を逆対数増幅した対数
増幅・逆対数増幅信号2を出力する対数増幅・逆対数増
幅手段と、逆対数増幅信号Zの分散値σ2を出力する分
散値演算手段と、
分散値σ2をに乗した非線形信号Uを出力する非線形演
算手段と、
非線形信号Uと予設定された閾値THとを比較し、閾値
THより大・きい非線形信号Uを物標信号O8として出
力する物標信号検出手段とから物標信号検出装置を構成
する。[Means for Solving the Problems] Therefore, in the present invention, a signal obtained by subtracting the average value of the logarithmically amplified signal Y from a logarithmically amplified signal Y obtained by logarithmically amplifying an input signal X containing noise having an arbitrary distribution. Logarithmic amplification/anti-logarithm amplification means for outputting the anti-logarithmically amplified logarithmically amplified/anti-logarithm amplified signal 2; variance value calculation means for outputting the variance value σ2 of the anti-logarithmically amplified signal Z; An object is detected from a nonlinear calculation means that outputs a signal U, and a target signal detection means that compares the nonlinear signal U with a preset threshold TH and outputs a nonlinear signal U that is larger than the threshold TH as a target signal O8. Configure a target signal detection device.
[作 用]
上記構成の物標信号検出装置は、対数増幅・逆対数増幅
手段が入力信号Xを対数増幅し゛た対数増幅信号Yから
対数増幅信号Yの平均値を減じた信号を逆対数増幅した
対数増幅・逆対数増幅信号Zを出力し、分散値演算手段
が対数増幅・逆対数増幅信号Zの分散値σ2を算出し、
非線形演算手段が分散値σ2をに乗した非線形信号Uを
出力し、物標信号検出手段が非線形信号Uと予設定され
た閾値THとを比較し、閾値THより大きい非線形信号
Uを物標信号として出力する。[Function] In the target signal detection device having the above configuration, the logarithmic amplification/antilogarithm amplification means antilogarithmically amplifies the signal obtained by subtracting the average value of the logarithmically amplified signal Y from the logarithmically amplified signal Y obtained by logarithmically amplifying the input signal X. outputting the logarithmically amplified/antilogarithmically amplified signal Z, the variance value calculation means calculates the variance value σ2 of the logarithmically amplified/antilogarithmically amplified signal Z,
The nonlinear calculation means outputs a nonlinear signal U multiplied by the variance value σ2, and the target signal detection means compares the nonlinear signal U with a preset threshold TH, and detects a nonlinear signal U larger than the threshold TH as a target signal. Output as .
[実施例]
以下、本発明の一実施例を添付図面を参照して詳細に説
明する。[Example] Hereinafter, an example of the present invention will be described in detail with reference to the accompanying drawings.
まず、本発明に係る物標信号検出装置の信号処理理論を
説明する。First, the signal processing theory of the target signal detection device according to the present invention will be explained.
本発明に係る物標信号検出装置は振幅特性が任意の分布
を呈する雑音信号から物標信号を検出するものであるが
、ここでは、振幅強度Xがワイブル分布(Weibul
1分布)及び多数正規分布(Log−norma1分布
)を呈する場合について説明する。The target signal detection device according to the present invention detects a target signal from a noise signal whose amplitude characteristic exhibits an arbitrary distribution.
1 distribution) and a majority normal distribution (Log-norma 1 distribution) will be described.
振幅強度Xがワイブル分布に従い、その確率密度関数P
C(X)が、
(ここで、bはスケールパラメータ、Cは形状パラメー
タである。)である受信信号を対数増幅しり対数増幅信
号Y (Y−ag ’kn (b6 X)から対数増幅
信号Yの平均値<’f>を減じた信号V (V−Y−<
Y))を逆対数増幅すると、初期のS/N比が保たれる
。逆対数増幅回路の増幅特性
Z−CQ EXP (DQ V) (
2)(ここで、Go、d(1は逆対数増幅回路の利得を
決める定数)として
ag −do −1(3)
なる関係を与えると、逆対数増幅回路の出力Zの平均値
<z>及び二乗平均値触〉はそれぞれ、<Z> −f
Z P (X)dXC
−CEXP(−ンr<−+1) (4)OC
C
−c Exp(P)r (’−+l>C
・・・(5)
となる。従って分散値σ2は
σ 2 諺<72>−4>2
2 2γ 2 21
− C。EXP(τ−) (r (7+1>−r’ (
テ41) )・・・(6)
となる。この分散値σ をに乗して物標信号O8を検出
する。The amplitude intensity X follows the Weibull distribution, and its probability density function P
C(X) is (where b is a scale parameter and C is a shape parameter.) The received signal is logarithmically amplified and the logarithmically amplified signal Y (Y-ag 'kn (b6 The signal V (V-Y-<
When antilogarithmically amplifying Y)), the initial S/N ratio is maintained. Amplification characteristics of anti-logarithmic amplifier circuit Z-CQ EXP (DQ V) (
2) (Here, if Go and d (1 is a constant that determines the gain of the anti-logarithmic amplifier circuit) are given as follows: ag −do −1 (3), then the average value of the output Z of the anti-logarithmic amplifier circuit <z> and the root mean square value 〉 are respectively 〈Z〉 −f
Z P (X)dXC -CEXP(-r<-+1) (4)OC
C -c Exp(P)r ('-+l>C...(5) Therefore, the variance value σ2 is σ 2 Proverb <72>-4>2 2 2γ 2 21 - C.EXP(τ-) (r (7+1>-r' (
Te41) )...(6) becomes. The target signal O8 is detected by multiplying this variance value σ.
次に、第1図は本発明に係る物標信号検出装置のブロッ
ク図である。第1図において、対数増幅・逆対数増幅手
段10は第3図に示した信号X1即ち振幅がXである受
信信号Xを対数増幅した対数増幅信号Yから対数増幅信
号Yの平均値(Y>を減じ、さらに逆対数増幅した対数
増幅・逆対数増幅信号Zを二乗平均値算出手段20及び
平均値の二乗値算出手段30にそれぞれ出力する。対数
増幅・逆対数増幅手段lOは対数増幅回路11.シフト
レジスタ等によって構成される遅延回路12、積算回路
13、割算回路14、減算回路15及び逆対数増幅回路
16から構成されており、前述の対数増幅・逆対数増幅
信号Zを出力する。即ち、対数増幅回路11が入力信号
Xを対数増幅して、対数増幅信号Yを出力し、遅延回路
12が対数増幅信号Yを標本化・量子化して対数増幅信
号Yの振幅yに対応するn個の標本値Y1、Y2、・・
・、Ynを取り出し、積算回路13がn個の標本値Y1
、Y2、・・・、Ynの積算値を算出し、割算回路14
が積算値をnで除し積算値の平均値、即ち対数増幅信号
Yの平均値<Y>を算出する。さらに、減算回路15が
対数増幅信号Yから対数増幅信号Yの平均値(Y>を減
じ、逆対数増幅回路1Bが対数増幅信号Yから対数増幅
信号Yの平均値(Y>を減じた信号Vを逆対数増幅し、
対数増幅・逆対数増幅信号Z
(Z−CQ EXP (DQ V) )を出力する。Next, FIG. 1 is a block diagram of a target signal detection device according to the present invention. In FIG. 1, the logarithmic amplification/anti-logarithm amplification means 10 converts the logarithmically amplified signal Y obtained by logarithmically amplifying the signal X1 shown in FIG. The logarithmically amplified/antilogarithmically amplified signal Z which has been further antilogarithmically amplified is outputted to the mean square value calculating means 20 and the mean square value calculating means 30, respectively. It is comprised of a delay circuit 12, an integration circuit 13, a division circuit 14, a subtraction circuit 15, and an antilogarithmic amplification circuit 16, which are configured by a shift register or the like, and outputs the above-mentioned logarithmically amplified/antilogarithmically amplified signal Z. That is, the logarithmic amplifier circuit 11 logarithmically amplifies the input signal X and outputs the logarithmically amplified signal Y, and the delay circuit 12 samples and quantizes the logarithmically amplified signal Y to obtain n corresponding to the amplitude y of the logarithmically amplified signal Y. sample values Y1, Y2,...
・, Yn is taken out, and the integrating circuit 13 collects n sample values Y1.
, Y2, . . . , Yn, and the division circuit 14
divides the integrated value by n to calculate the average value of the integrated values, that is, the average value <Y> of the logarithmically amplified signal Y. Further, the subtracting circuit 15 subtracts the average value (Y> of the logarithmically amplified signal Y from the logarithmically amplified signal Y, and the antilogarithm amplifier circuit 1B subtracts the average value (Y>) of the logarithmically amplified signal Y from the logarithmically amplified signal Y. is inverse logarithmically amplified,
A logarithmically amplified/antilogarithmically amplified signal Z (Z-CQ EXP (DQ V)) is output.
又、二乗平均値算出手段20は二乗演算回路21゜シフ
トレジスタ等によって構成される遅延回路22、積算回
路23及び割算回路24から構成されており、第4式に
示した対数増幅・逆対数増幅回路1oの出力である対数
増幅・逆対数増幅信号Zの二乗平均値<22〉を算出す
る。即ち、二乗演算回路21が対数増幅・逆対数増幅信
号Zの振幅2を二乗して振幅z2とし、遅延回路22が
対数増幅・逆対数増幅信号Zを標本化・量子化して対数
増幅・逆対数増幅信号Zの振幅z2に対応するn個(n
は自然数)の標本値zi、zl、・・・、ZMを取り出
し、積算回路23がn個の標本値zf、z?1.・・・
、zえの積算値
を算出し、割算回路24が積算値をnで除し積算値の平
均値、即ち対数増幅・対数増幅信号2の平均値
を算出する。The mean square value calculation means 20 is composed of a square calculation circuit 21, a delay circuit 22 constituted by a shift register, etc., an integration circuit 23, and a division circuit 24. The root mean square value <22> of the logarithmically amplified/antilogarithmically amplified signal Z which is the output of the amplifier circuit 1o is calculated. That is, the square calculation circuit 21 squares the amplitude 2 of the logarithmically amplified/antilogarithmically amplified signal Z to obtain the amplitude z2, and the delay circuit 22 samples and quantizes the logarithmically amplified/antilogarithmically amplified signal Z to obtain the logarithmically amplified/antilogarithmically amplified signal Z. n (n
is a natural number) sample values zi, zl, ..., ZM are taken out, and the integrating circuit 23 extracts n sample values zf, z? 1. ...
.
又、平均値の二乗値算出手段3oは遅延回路3L積算回
路32、割算回路33及び二乗値演算回路34から構成
されており、第7式に示した対数増幅・逆対数増幅信号
Zの平均値の二乗値<z〉2を算出する。The average square value calculation means 3o is composed of a delay circuit 3L integration circuit 32, a division circuit 33, and a square value calculation circuit 34, and calculates the average value of the logarithmically amplified/antilogarithmically amplified signal Z shown in Equation 7. Calculate the square value <z>2 of the value.
即ち、遅延回路31が対数増幅・逆対数増幅信号Zを標
本化・量子化して対数増幅・逆対数増幅信号Zの振幅2
に対応するn個(nは自然数)の標本値Z11Z2、・
・・、Znを取り出し、積算回路33がn個の標本値Z
ISZ2、・・・、Znの積算値Σ Z
(11)i−11
を算出し、割算回路34が積算値をnで除し積算値の平
均値、即ち対数増幅・対数増幅信号Zの平均値<z>
−Σ Z
(12)n t”t t
を算出し、さらに、二乗値演算回路35が平均値を二乗
し、逆対数増幅信号Zの平均値の二乗値<z〉2を算出
する。That is, the delay circuit 31 samples and quantizes the logarithmically amplified/antilogarithmically amplified signal Z to obtain the amplitude 2 of the logarithmically amplified/antilogarithmically amplified signal Z.
n sample values Z11Z2 (n is a natural number) corresponding to
..., Zn is taken out, and the integrating circuit 33 collects n sample values Z.
ISZ2, ..., integrated value Σ Z of Zn
(11) i-11 is calculated, and the division circuit 34 divides the integrated value by n to obtain the average value of the integrated values, that is, the average value of the logarithmically amplified/logarithmically amplified signal Z <z> -Σ Z
(12) nt"t t is calculated, and the square value calculation circuit 35 squares the average value to calculate the square value <z>2 of the average value of the anti-logarithmically amplified signal Z.
次に、引算回路40は二乗平均値<22〉及び平均値の
二乗値<z〉に基づいて分散値
σ 2 − <22>−<Z>2
・・・(14)
を算出する。Next, the subtraction circuit 40 calculates the variance value σ 2 −<22>−<Z>2 (14) based on the root mean square value <22> and the square value of the mean value <z>.
第2図は以上のようにして得られた分散値σ2を示す図
である。第2図において、対数増幅・逆対数増幅回路1
0に入力された信号Xは物標信号O8の振幅と雑音信号
NSの振幅がほぼ同様な値であっても(第2図(a)参
照)、引算回路40から出力される分散値σ2は物標信
号O8に対応する部分の値が大きく、 又雑音信号NS
に対応する部分の値がほぼ一定で変動幅が小さいので(
第2図(b)参照)、物標信号O8に対応する分散値σ
2を容易に検出できる。FIG. 2 is a diagram showing the variance value σ2 obtained as described above. In Fig. 2, logarithmic amplification/antilogarithmic amplification circuit 1
Even if the amplitude of the target signal O8 and the amplitude of the noise signal NS are almost the same (see FIG. 2(a)), the signal The value of the part corresponding to the target signal O8 is large, and the noise signal NS
Since the value of the part corresponding to is almost constant and the fluctuation range is small (
(see Figure 2(b)), the variance value σ corresponding to the target signal O8
2 can be easily detected.
本実施例においては、物標信号に対応する分散値σ2の
検出をより容易なものにするため、分散値σ2を非線形
増幅回路50(非線形増幅手段)に加える。In this embodiment, in order to more easily detect the dispersion value σ2 corresponding to the target signal, the dispersion value σ2 is added to the nonlinear amplification circuit 50 (nonlinear amplification means).
この非線形増幅回路50は分散値σ2をに乗(ただし、
kは実数)した非線形信号U
U−(σ2k)(15)
を出力するものである。なお、非線形増幅回路50の具
体例としては、k−2とした二乗増幅回路などが知られ
ている。非線形増幅回路50から出力される非線形信号
Uは、第2図(C)に示すように引算回路40から出力
される分散値σ2に比べて雑音信号NSに対応する部分
の変動が抑圧され、物標信号O8に対応する部分が大き
く増幅されており、物標信号O8に対応する分散値σ2
の検出、即ち閾値の設定がさらに容易になる。This nonlinear amplifier circuit 50 has a dispersion value σ2 raised to the power of (however,
k is a real number) and outputs a nonlinear signal U U-(σ2k) (15). Note that, as a specific example of the nonlinear amplification circuit 50, a square amplification circuit with k-2 is known. As shown in FIG. 2(C), the nonlinear signal U output from the nonlinear amplifier circuit 50 has fluctuations in the portion corresponding to the noise signal NS suppressed compared to the variance value σ2 output from the subtraction circuit 40. The part corresponding to the target signal O8 is greatly amplified, and the dispersion value σ2 corresponding to the target signal O8 is
Detection, that is, threshold setting becomes easier.
さらに、物標信号検出回路60(物標信号検出手段)は
非線形増幅回路50から出力される非線形信号Uを手動
又は自動により予め設定された閾値と比較して、閾値よ
りも大きい非線形信号Uを物標信号O8に対応するもの
として、出力する。Furthermore, the target signal detection circuit 60 (target signal detection means) compares the nonlinear signal U output from the nonlinear amplifier circuit 50 with a preset threshold manually or automatically, and selects a nonlinear signal U larger than the threshold. It is output as a signal corresponding to the target signal O8.
上述した閾地THは手動又は自動によって設定するが、
手動による場合には非線形信号UをAスコープ、Bスコ
ープ又はPPIスコープ等で観察しながら設定する。又
、自動による場合は非線形信号Uの平均値<u>と平均
値のまわりの分散値Marに基づいて、雑音信号NSが
物標信号O8と誤って検出される誤警報確率又は物標信
号O8の検出確率を所定の値とするような値に設定する
。The threshold TH mentioned above is set manually or automatically,
In the case of manual operation, the setting is made while observing the nonlinear signal U with an A scope, a B scope, a PPI scope, or the like. In addition, in the case of automatic detection, based on the average value <u> of the nonlinear signal U and the variance value Mar around the average value, the false alarm probability that the noise signal NS is mistakenly detected as the target signal O8 or the target signal O8 The detection probability is set to a predetermined value.
非線形信号Uの平均値<IJ>と二乗平均値<U2〉は
非線形信号Uの確率密度関数をp (u)とすると、<
1> 鴫 f U −P (U)dU
(16)となり、非線形信
号Uの平均値<ll>のまわりの分散値Varは、
Var = <U”>−<U>2
(1g)となる。又、誤警報確
率Pf’aは、
〜
Pra −J P (U)dU
(19)H
となり、非線形信号Uに物標信号O8の振幅tが重畳さ
れているときの物標信号O8の検出確率PaはPa−J
’ P (U+t ) d(U+t )
(20)I
となる。従って、誤警報確率Pfa又は検出確率Paが
所定の値となるように閾値THを設定する。The average value <IJ> and the root mean square value <U2> of the nonlinear signal U are expressed as < if the probability density function of the nonlinear signal U is p (u).
1> Kazu f U −P (U) dU
(16), and the variance value Var around the average value <ll> of the nonlinear signal U is Var = <U”>−<U>2
(1g). Also, the false alarm probability Pf'a is ~Pra - J P (U) dU
(19)H, and the detection probability Pa of the target signal O8 when the amplitude t of the target signal O8 is superimposed on the nonlinear signal U is Pa−J
' P (U+t) d(U+t)
(20) becomes I. Therefore, the threshold value TH is set so that the false alarm probability Pfa or the detection probability Pa becomes a predetermined value.
次に、上述したようにして算出される閾値T11の具体
的な値について説明する。即ち、引算回路4゜の出力で
ある分散値σ2のm乗をM、Mの平均値を<1> 、M
の二乗平均値を〈M2〉、Mの分散値を(〈M2〉 −
〈M〉2) 、定数をに、Aとすると、次のいずれかの
値となる。Next, a specific value of the threshold value T11 calculated as described above will be explained. That is, the m power of the variance value σ2 which is the output of the subtraction circuit 4° is M, the average value of M is <1>, M
The root mean square value of M is <M2>, and the variance value of M is (<M2> −
〈M〉2), and let A be a constant, it will be one of the following values.
K ・ 〈M)
(21)K、J’3π
(22)K ・ (〈M2>
−〈M)2) (
23)〈M〉+K ・ (cM2>−〈M>2)
(24)K ・ (〈M〉
+ (<)42>−<河〉2)
(25)K ・ 〈M> + A
(2B)K
−f1C+ A (27)K
・ (〈M2>−<1>2) + A
(28)〈M〉+K ・ (
〈M2〉−〈M>2) 十 A (29)・
K ・(〈M> + <%”>−<@X) +A
(30)次に、振幅強度Xが対数正規分布(Log
−Normal)を呈する場合について説明する。K・〈M〉
(21) K, J'3π
(22) K ・ (〈M2〉
-〈M)2) (
23)〈M〉+K ・ (cM2>−〈M〉2)
(24) K ・ (〈M〉
+ (<)42>-<river>2)
(25) K ・〈M〉 + A
(2B)K
-f1C+ A (27)K
・ (<M2>-<1>2) + A
(28)〈M〉+K・(
<M2>-<M>2) 10 A (29)・
K ・(〈M〉 + <%”>−<@X) +A
(30) Next, the amplitude intensity X has a lognormal distribution (Log
-Normal) will be described.
受信信号Xに対して対数正規分布は、
P(X、m、 ρ)
となる。ここで、mは受信信号Xの中央値、ρは平均値
対中央値比で、
ρ−÷ (32)である。受信信
号を対数増幅した対数増幅信号Y(Y=aok (bo
X)から対数増幅信号Yの平均値〈Y〉を減じた信号V
(V−Y−<Y> )を逆対数増幅すると、初期のS
/N比が保たれる。逆対数増幅回路の増幅特性
Z=COEXP (dOV) ’ (
33’)(ここで、co、doは逆対数増幅回路の利得
を決める定数)として
ao ” dO=1 (34
)なる関係を与えると、逆対数増幅回路の出力である逆
対数増幅回路の出力Zの平均値〈z〉及び二乗平均値<
z−〉はそれぞれ、
<’l> −f Z−P(X;m、ρ )dX
−CQ ρ (35
)2 ■ 2
くz >=f Z P (X:m、ρ
) ax″Coρ
となる。従うで分散値σ2は (36)σ
2 − <Z2>−<z>2
−Co (ρ −ρ )
となる。実際の回路では、受信信号を対数増幅・逆対数
増幅した対数増幅・逆対数増幅信号2の二乗平均値<2
2〉及び平均値の二乗値<z〉2は上述した値となるの
で、その説明は省略する。The lognormal distribution for the received signal X is P(X, m, ρ). Here, m is the median value of the received signal A logarithmically amplified signal Y (Y=aok (bo
Signal V obtained by subtracting the average value <Y> of the logarithmically amplified signal Y from X)
When (V-Y-<Y>) is anti-logarithmically amplified, the initial S
/N ratio is maintained. Amplification characteristics of anti-logarithmic amplifier circuit Z = COEXP (dOV) ' (
33') (here, co and do are constants that determine the gain of the anti-logarithm amplifier circuit), ao'' dO=1 (34
), then the average value <z> and the root mean square value of the output Z of the antilogarithmic amplifier circuit, which is the output of the antilogarithmic amplifier circuit.
z−〉 is respectively <'l> −f Z−P(X; m, ρ) dX
−CQ ρ (35
)2 ■ 2 Kuz >=f Z P (X: m, ρ
) ax″Coρ. Therefore, the variance value σ2 is (36)σ
2-<Z2>-<z>2-Co (ρ-ρ). In an actual circuit, the root mean square value of logarithmically amplified/antilogarithmically amplified signal 2 obtained by logarithmically amplifying/antilogarithmically amplifying the received signal <2
2> and the square value of the average value <z>2 are the values mentioned above, so their explanation will be omitted.
なお、本実施例ではワイブル分布及び対数正規分布を呈
する雑音信号から物標信号O8を検出する場合について
説明したが、任意の分布を呈する雑音信号であっても、
物標信号O3を検出できる。In this embodiment, a case has been described in which the target signal O8 is detected from a noise signal exhibiting a Weibull distribution and a lognormal distribution. However, even if the target signal O8 is a noise signal exhibiting an arbitrary distribution,
Target signal O3 can be detected.
[発明の効果]
以上説明したように本発明によれば、振幅特性が任意の
分布を呈する雑音信号を含む入力信号Zを対数増幅した
対数増幅信号Yから対数増幅信号Yの平均値を減じた信
号Vを逆対数増幅して得られる対数増幅・逆対数増幅信
号Z
(Z−CQ EXP (dQ V) )の分散値を出
力し、さらに分散値を非線形増幅することにより、物標
信号に対応する分散値若しくは非線形増幅された分散値
の大きさが雑音信号に対応する分散値の大きさよりも大
きくなるので、適当な閾値を設定することにより、物標
信号の振幅が雑音信号の振幅より小さい場合であっても
、容易に物標信号を検出できる。[Effects of the Invention] As explained above, according to the present invention, the average value of the logarithmically amplified signal Y is subtracted from the logarithmically amplified signal Y obtained by logarithmically amplifying the input signal Z containing the noise signal whose amplitude characteristics exhibit an arbitrary distribution. By outputting the dispersion value of the logarithmically amplified/antilogarithmically amplified signal Z (Z-CQ EXP (dQ V)) obtained by antilogarithmically amplifying the signal V, and further nonlinearly amplifying the dispersion value, it corresponds to the target signal. Since the magnitude of the dispersion value or the nonlinearly amplified dispersion value is larger than the magnitude of the dispersion value corresponding to the noise signal, by setting an appropriate threshold value, the amplitude of the target signal is smaller than the amplitude of the noise signal. target signal can be easily detected.
第1図は本発明に係る物標信号検出装置のブロック図、
第2図は受信信号の時間に対する変化、分散値及び分散
値をに乗した新たな分散値の説明図、第3図は受信信号
の時間に対する変化を示す説明図である。
lO・・・対数増幅・逆対数増幅手段、11・・・対数
増幅回路、12.22.31・・・遅延回路、13.2
3.32・・・積算回路、14.24.33・・・割算
回路、15・・・減算回路、1B・・・逆対数増幅回路
、20・・・二乗平均値算出手段、21・・・二乗演算
回路、30・・・平均値の二乗値算出手段、34・・・
二乗演算回路、40・・・引算回路、50・・・非線形
増幅回路、60・・・物標信号検出回路。FIG. 1 is a block diagram of a target signal detection device according to the present invention,
FIG. 2 is an explanatory diagram of changes in the received signal over time, a dispersion value, and a new dispersion value multiplied by the dispersion value, and FIG. 3 is an explanatory diagram showing changes in the received signal over time. lO... Logarithmic amplification/anti-logarithmic amplification means, 11... Logarithmic amplification circuit, 12.22.31... Delay circuit, 13.2
3.32... Integration circuit, 14.24.33... Division circuit, 15... Subtraction circuit, 1B... Anti-logarithm amplifier circuit, 20... Mean square value calculation means, 21... - Square calculation circuit, 30...mean value square value calculation means, 34...
Square calculation circuit, 40... Subtraction circuit, 50... Nonlinear amplifier circuit, 60... Target signal detection circuit.
Claims (1)
Xから物標信号を検出する物標信号検出装置において、 前記入力信号Xを対数増幅した対数増幅信号Yから該対
数増幅信号Yの平均値を減じた信号Vをさらに逆対数増
幅した対数増幅・逆対数増幅信号Z(Z=C_0EXP
(D_0V))を出力する対数増幅・逆対数増幅手段と
、 前記対数増幅・逆対数増幅信号Zの分散値σ^2を出力
する分散値演算手段と、 前記分散値σ^2をK乗(Kは任意の実数)した非線形
信号Uを出力する非線形演算手段と、前記非線形信号U
と予設定された閾値THとを比較し、該閾値THより大
きい非線形信号Uを物標信号OSとして出力する物標信
号検出手段とを備えたことを特徴とする物標信号検出装
置。 (2)対数増幅・逆対数増幅手段は、前記入力信号Xを
対数増幅した対数増幅信号Yを出力する対数増幅手段、
該対数増幅信号Yの平均値〈Y〉を算出する平均値演算
手段、該対数増幅信号Yから該平均値〈Y〉を減じる減
算手段及び該対数増幅信号Yと該平均値〈Y〉との差を
逆対数増幅する逆対数増幅手段から構成されている特許
請求の範囲第1項記載の物標信号検出装置。 (4)物標信号検出手段における閾値は、前記分散値演
算手段によって得られる分散値σ^2をm乗した値Mの
平均値及び該Mの平均値のまわりの分散値に基づいて、
前記物標信号の誤警報確率又は検出確率が所定の値にな
るように設定する特許請求の範囲第1項記載の物標信号
検出装置。 (5)閾値は、前記分散値演算手段によって得られる分
散値σ^2をm乗した値Mの平均値〈M〉に定数Kを乗
じた値 K・〈M〉 である特許請求の範囲第1項記載の物標信号検出装置。 (6)閾値は、前記分散値演算手段によって得られる分
散値σ^2をm乗した値Mの二乗平均値〈M^2〉の平
方根√〈M^2〉に定数Kを乗じた値 k・√〈M^2〉 である特許請求の範囲第1項記載の物標信号検出装置。 (7)閾値は、前記分散値演算手段によって得られる分
散値σ^2をm乗した値Mの平均値〈M〉のまわりの分
散値(〈M^2〉−〈M〉^2)を算出し、さらに該分
散値の平方根√(〈M^2〉−〈M〉^2)に定数Kを
乗じた値 K・√(〈M^2〉−〈M〉^2) である特許請求の範囲第1項記載の物標信号検出装置。 (8)閾値は、前記分散値演算手段によって得られる分
散値σ^2をm乗した値Mの平均値〈M〉のまわりの分
散値(〈M^2〉−〈M〉^2)を算出し、さらに該分
散値の平方根√(〈M^2〉−〈M〉^2)に定数Kを
乗じ、さらに該平均値〈M〉を加えた値 〈M〉+K・√(〈M^2〉−〈M〉^2)である特許
請求の範囲第1項記載の物標信号検出装置。 (9)閾値は、前記分散値演算手段によって得られる分
散値σ^2をm乗した値Mの平均値〈M〉のまわりの分
散値(〈M^2〉−〈M〉^2)を算出し、該分散値の
平方根√(〈M^2〉−〈M〉^2)に該平均値〈M〉
を加え、さらに定数Kを乗じた値 K・(〈M〉+√(〈M^2〉−〈M〉^2)である特
許請求の範囲第1項記載の物標信号検出装置。 (10)閾値は、前記分散値演算手段によって得られる
分散値σ^2をm乗した値Mの平均値〈M〉に定数Kを
乗じ、さらに定数Aを加えた値 K・〈M〉+A である特許請求の範囲第1項記載の物標信号検出装置。 (11)閾値は、前記分散値演算手段によって得られる
分散値σ^2をm乗した値Mの二乗平均値〈M^2〉の
平方根√〈M^2〉に定数Kを乗じ、さらに定数Aを加
えた値 K・√〈M^2〉+A である特許請求の範囲第1項記載の物標信号検出装置。 (12)閾値は、前記分散値演算手段によって得られる
分散値σ^2をm乗した値Mの平均値〈M〉のまわりの
分散値(〈M^2〉−〈M〉^2)を算出し、該分散値
の平方根√(〈M^2〉−〈M〉^2)に定数Kを乗じ
、さらに定数Aを加えた値 K・√(〈M^2〉−〈M〉^2 )+A である特許請求の範囲第1項記載の物標信号検出装置。 (13)閾値は、前記分散値演算手段によって得られる
分散値σ^2をm乗した値Mの平均値〈M〉のまわりの
分散値(〈M^2〉−〈M〉^2)を算出し、該分散値
の平方根√(〈M^2〉−〈M〉^2)に定数Kを乗じ
、該平均値〈M〉を加え、さらに定数Aを加えた値〈M
〉+K・√(〈M^2〉−〈M〉^2)+Aである特許
請求の範囲第1項記載の物標信号検出装置。 (14)閾値は、前記分散値演算手段によって得られる
分散値σ^2をm乗した値Mの平均値〈M〉のまわりの
分散値(〈M^2〉−〈M〉^2)を算出し、該分散値
の平方根√(〈M^2〉−〈M〉^2)に該平均値〈M
〉を加え、該分散値の平方根と該平均値の和に定数Kを
乗じ、さらに定数Aを加えた値 K・(〈M〉+√〈M^2〉−〈M〉^2)+Aである
特許請求の範囲第1項記載の物標信号検出装置。[Scope of Claims] (1) In a target signal detection device that detects a target signal from an input signal X mixed with noise exhibiting an arbitrary distribution, from a logarithmically amplified signal Y obtained by logarithmically amplifying the input signal X. A logarithmically amplified/antilogarithmically amplified signal Z (Z=C_0EXP) is obtained by further antilogarithmically amplifying the signal V obtained by subtracting the average value of the logarithmically amplified signal Y.
(D_0V)); a variance calculation means that outputs the variance value σ^2 of the logarithmically amplified/antilogarithmically amplified signal Z; K is an arbitrary real number) and a nonlinear calculation means for outputting a nonlinear signal U;
and target signal detection means for comparing the nonlinear signal U with a preset threshold TH and outputting a nonlinear signal U larger than the threshold TH as a target signal OS. (2) the logarithmic amplification/anti-logarithm amplification means outputs a logarithmically amplified signal Y obtained by logarithmically amplifying the input signal X;
An average value calculation means for calculating the average value <Y> of the logarithmically amplified signal Y, a subtraction means for subtracting the average value <Y> from the logarithmically amplified signal Y, and a subtraction means for subtracting the average value <Y> from the logarithmically amplified signal Y; 2. The target signal detection device according to claim 1, comprising antilogarithm amplification means for antilogarithmically amplifying the difference. (4) The threshold value in the target signal detection means is based on the average value of the value M, which is the m-th power of the variance value σ^2 obtained by the variance value calculation means, and the variance value around the average value of M.
The target signal detection device according to claim 1, wherein the false alarm probability or detection probability of the target signal is set to a predetermined value. (5) The threshold value is the value K·<M> obtained by multiplying the average value <M> of the value M, which is the mth power of the variance value σ^2 obtained by the variance value calculating means, by a constant K. The target signal detection device according to item 1. (6) The threshold value is the value k obtained by multiplying the square root √<M^2> of the root mean square value <M^2> of the value M, which is the mth power of the variance value σ^2 obtained by the variance value calculation means, by the constant K. - √<M^2> The target signal detection device according to claim 1. (7) The threshold value is the variance value (〈M^2〉−〈M〉^2) around the average value 〈M〉 of the value M which is the mth power of the variance value σ^2 obtained by the above-mentioned variance value calculation means. A patent claim in which the value K·√(<M^2>−<M>^2) is calculated and further multiplies the square root of the variance value √(<M^2>−<M>^2) by a constant K. The target signal detection device according to item 1. (8) The threshold value is the variance value (〈M^2〉−〈M〉^2) around the average value 〈M〉 of the value M which is the mth power of the variance value σ^2 obtained by the above-mentioned variance value calculation means. Then, the square root of the variance value √(〈M^2〉−〈M〉^2) is multiplied by a constant K, and the value obtained by adding the mean value〈M〉〈M〉+K・√(〈M㼾2>-<M>^2) The target signal detection device according to claim 1. (9) The threshold value is the variance value (〈M^2〉−〈M〉^2) around the average value 〈M〉 of the value M which is the mth power of the variance value σ^2 obtained by the above-mentioned variance value calculating means. Calculate the mean value〈M〉 to the square root √(〈M^2〉−〈M〉^2) of the variance value.
and further multiplied by a constant K, which is the value K・(<M>+√(<M^2>−<M>^2)). (10 ) The threshold value is a value obtained by multiplying the average value <M> of the value M obtained by raising the variance value σ^2 obtained by the variance value calculating means by a constant K, and further adding a constant A, K・〈M〉+A. The target signal detection device according to claim 1. (11) The threshold value is the root mean square value <M^2> of the value M obtained by raising the variance value σ^2 obtained by the variance value calculating means to the m power. The target signal detection device according to claim 1, which is a value obtained by multiplying the square root √〈M^2〉 by a constant K and further adding a constant A to the value K・√〈M̂2〉+A. (12) Threshold value calculates the variance value (〈M^2〉−〈M〉^2) around the average value <M> of the value M obtained by raising the variance value σ^2 obtained by the variance value calculation means to the m power, and The square root of the variance √(〈M^2〉−〈M〉^2) is multiplied by a constant K, and the constant A is further added to the value K・√(〈M^2〉−〈M〉^2)+A. The target signal detection device according to claim 1. (13) The threshold value is the variance around the average value <M> of the value M obtained by raising the variance value σ^2 obtained by the variance value calculation means to the m power. Calculate the value (〈M^2〉−〈M〉^2), multiply the square root of the variance value √(〈M^2〉−〈M〉^2) by a constant K, and calculate the average value〈M〉. In addition, the value 〈M
〉+K·√(〈M^2〉−〈M〉^2)+A. The target signal detection device according to claim 1. (14) The threshold value is the variance value (〈M^2〉−〈M〉^2) around the average value 〈M〉 of the value M which is the mth power of the variance value σ^2 obtained by the above-mentioned variance value calculation means. Calculate the mean value 〈M
〉, the sum of the square root of the variance value and the average value is multiplied by a constant K, and the constant A is further added to the value K・(〈M〉+√〈M^2〉−〈M〉^2)+A. A target signal detection device according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62001913A JPS63171380A (en) | 1987-01-09 | 1987-01-09 | Apparatus for detecting target signal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62001913A JPS63171380A (en) | 1987-01-09 | 1987-01-09 | Apparatus for detecting target signal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63171380A true JPS63171380A (en) | 1988-07-15 |
JPH0516754B2 JPH0516754B2 (en) | 1993-03-05 |
Family
ID=11514820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62001913A Granted JPS63171380A (en) | 1987-01-09 | 1987-01-09 | Apparatus for detecting target signal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63171380A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006343252A (en) * | 2005-06-10 | 2006-12-21 | Nec Corp | Signal detection method and signal detection device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS557554A (en) * | 1978-06-30 | 1980-01-19 | Murata Mfg Co Ltd | Dielectric thin film |
JPS6128883A (en) * | 1984-07-19 | 1986-02-08 | Matsuo Sekine | Target signal detector |
-
1987
- 1987-01-09 JP JP62001913A patent/JPS63171380A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS557554A (en) * | 1978-06-30 | 1980-01-19 | Murata Mfg Co Ltd | Dielectric thin film |
JPS6128883A (en) * | 1984-07-19 | 1986-02-08 | Matsuo Sekine | Target signal detector |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006343252A (en) * | 2005-06-10 | 2006-12-21 | Nec Corp | Signal detection method and signal detection device |
JP4655766B2 (en) * | 2005-06-10 | 2011-03-23 | 日本電気株式会社 | Signal detection method and signal detection apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0516754B2 (en) | 1993-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0320714B2 (en) | ||
Khalighi et al. | Adaptive CFAR processor for nonhomogeneous environments | |
GB2589220A (en) | Techniques for howling detection | |
JP2909159B2 (en) | Smoothing processing method, noise elimination apparatus by smoothing processing, and optical pulse test apparatus using the same | |
JPH02236424A (en) | Electrical signal processing method and apparatus | |
JPS63171380A (en) | Apparatus for detecting target signal | |
US20110071791A1 (en) | Signal-level determining device and method | |
Ivić et al. | The use of coherency to improve signal detection in dual-polarization weather radars | |
Hammoudi et al. | Distributed IVI-CFAR detection in non-homogeneous environments | |
JPS63171381A (en) | Apparatus for detecting target signal | |
JP2001159559A (en) | Noise measuring method | |
JPS63171379A (en) | Apparatus for detecting target signal | |
JP2902155B2 (en) | Clutter signal suppression device for radar | |
JPS63171378A (en) | Apparatus for detecting target signal | |
JPH04216484A (en) | Clutter signal suppression device for radar | |
US9236939B2 (en) | Atmospheric transmissometer using a modulated optical source | |
US20110077907A1 (en) | Signal-level determining device and method | |
JPH062260U (en) | Target detection device | |
KR101968141B1 (en) | Environmental adaptation auto threshold setting type radar apparatus and control method thereof | |
GB2184626A (en) | Detecting signals in clutter | |
US3878382A (en) | Apparatus for determining signal magnitudes expressing those parameters which indicate how quickly changes take place in a time function | |
JP2590118B2 (en) | Radar signal processing equipment | |
JPH0125342Y2 (en) | ||
Hmam | SNR calculation procedure for target types 0, 1, 2, 3-- | |
JPH0579486U (en) | Target detection device |