JPS63171329A - Light spectrum detector - Google Patents

Light spectrum detector

Info

Publication number
JPS63171329A
JPS63171329A JP349387A JP349387A JPS63171329A JP S63171329 A JPS63171329 A JP S63171329A JP 349387 A JP349387 A JP 349387A JP 349387 A JP349387 A JP 349387A JP S63171329 A JPS63171329 A JP S63171329A
Authority
JP
Japan
Prior art keywords
light
diffraction grating
grating
diffraction
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP349387A
Other languages
Japanese (ja)
Other versions
JPH083445B2 (en
Inventor
Koichiro Miyagi
宮城 幸一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP349387A priority Critical patent/JPH083445B2/en
Publication of JPS63171329A publication Critical patent/JPS63171329A/en
Publication of JPH083445B2 publication Critical patent/JPH083445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/1256Generating the spectrum; Monochromators using acousto-optic tunable filter

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To enable light spectrum to be detected at high speed by deflecting light at high speed by using a diffraction grating wherein grating spacing can be controlled to be changed and changing the incident angle of light being measured to the diffraction grating for use in dispersion. CONSTITUTION:An optical system is provided with a second diffracting grating 9 newly composed of an acoustic optical light modulating element in the rear stage of an input side slit 3. Light to be measured is diffracted and deflected and the deflected light is dispersed by a first diffraction grating 5 via a first concave reflecting mirror 4. The dispersed light is reflected and converged by a second concave reflecting mirror 6 and light spectrum is produced on the surface of an output side slit 7. In case of a sine-wave-like phase grating using surface acoustic wave or the like, the light spectrum is deflected and separated to the three light beams of + or - primary light generated by diffraction and 0-th light that is not subjected to diffraction. Openings are provided in the slit 7 in coincidence with the generating positions of the three light spectrums and light passing the openings is measured by a plurality of light detectors 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、2つの回折格子を用いて光を変向。[Detailed description of the invention] [Industrial application field] This invention uses two diffraction gratings to redirect light.

分散し、その分散した光の波長成分を、高速で検出する
ことを可能とした光スペクトル検出装置に関する。
The present invention relates to an optical spectrum detection device that is capable of detecting dispersed wavelength components of light at high speed.

〔従来の技術〕[Conventional technology]

光の波長成分をスペクトルとして検出する方法には、分
散分光法と干渉分光法とがある。
Methods for detecting wavelength components of light as a spectrum include dispersive spectroscopy and interference spectroscopy.

本発明は、このうち分散分光法に係るもので、その従来
例としては、回折格子を回転させて光スペクトルを検出
する方法が数多く見られる。
The present invention relates to dispersive spectroscopy, and there are many conventional methods for detecting optical spectra by rotating a diffraction grating.

この分散分光法は、高密度な刻線を持った回折格子の開
発により良好な波長分解能を得ることが可能であり、ま
た1機構的にも容易に実現可能であるため、現在の光ス
ペクトル検出装置の主流をなしている。
This dispersive spectroscopy method can obtain good wavelength resolution through the development of a diffraction grating with high-density ruled lines, and is also easily realized mechanically, making it suitable for current optical spectrum detection. It is the mainstream of equipment.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この分散分光法による回折格子を回転さ
せて光スペクトルを検出する方法では、回折格子の形状
や重量、また3回転機構の構成要素により回折格子の回
転速度に限界を生じ、1回のスペクトル検出に要する回
転動作の時間が数10m5〜数msに制限されてしまう
欠点がある。
However, in this method of detecting optical spectra by rotating a diffraction grating using dispersive spectroscopy, there are limits to the rotation speed of the diffraction grating due to the shape and weight of the diffraction grating, as well as the components of the three-rotation mechanism. There is a drawback that the rotational operation time required for detection is limited to several tens of milliseconds to several milliseconds.

このため、時間と共に高速(数ms〜数μS)に変動す
る光スペクトルを検出するには通さないという問題点が
あった。
For this reason, there is a problem in that the optical spectrum that changes rapidly (several ms to several μs) with time cannot be detected.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明は、かかる問題点を解決するためになさ
れたもので、従来の回折格子を使用した光スペクトル検
出装置の測定光路の途中に、新たに第2の回折格子を配
置し、この第2の回折格子には1例えば、同一出願人・
同一発明者による発明「表面弾性波(S AW : 5
urface  AcousticWave )を利用
した光の回折装置1i!(特願昭60−234812号
)」など(以下、音響光学的光変調素子という、)を用
いて回折格子間隔の可変制御が可能であるような機能を
持たせた。この機能により、第2の回折格子は従来より
有る第1の回折格子に入射する被測定光の向きを変える
変向素子として働き、その結果、相対的に第1の回折格
子が回転した状態と類似の状態を作り出すことができる
Therefore, the present invention was made to solve this problem, and a second diffraction grating is newly arranged in the middle of the measurement optical path of an optical spectrum detection device using a conventional diffraction grating. For example, the same applicant
Invention by the same inventor “Surface Acoustic Wave (SAW: 5
Light diffraction device 1i using Surface AcousticWave)! (Japanese Patent Application No. 60-234812) (hereinafter referred to as an acousto-optic light modulator), etc., to provide a function that allows variable control of the diffraction grating spacing. With this function, the second diffraction grating acts as a deflection element that changes the direction of the measured light incident on the conventional first diffraction grating, and as a result, the first diffraction grating is rotated relative to the first diffraction grating. A similar situation can be created.

また、前記音響光学的光変調素子は電気信号で高速に回
折格子間隔を可変制御することが可能であるため、一時
的に前記第1の回折格子を高速回転させたと同じ状態と
なるので、光スペクトルを高速に短時間で検出すること
が可能となる。
In addition, since the acousto-optic light modulation element can variably control the diffraction grating spacing at high speed using an electric signal, the state is temporarily the same as that of rotating the first diffraction grating at high speed. It becomes possible to detect spectra at high speed and in a short time.

〔実施例〕〔Example〕

以下、本発明について図示した実施例に基づき詳細に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on illustrated embodiments.

第1図は本発明に係る光スペクトル検出装置の一実施例
についての構成を示した図、第2図は本発明の構成要素
である回折格子間隔が可変制御可能な回折格子の1つで
ある音響光学的光変調素子の構成を示した図、第3図は
第2図の音響光学的光変調素子によって被測定光が変向
した状態を示した図、第4図は本発明の一実施例におけ
る測定光学系を透過形に置き換えた光学系を示した図、
第5図は本発明の構成要素である第1及び第2の回折格
子の格子方向の傾き角と出力される光スペクトルの発生
位置の関連を示した図、第6図は従来の装置に係るもの
で、1枚の回折格子を使用した光スペクトル検出装置の
光学系の構成例を示した図である。
FIG. 1 is a diagram showing the configuration of an embodiment of the optical spectrum detection device according to the present invention, and FIG. 2 is one of the diffraction gratings, which is a component of the present invention, and whose diffraction grating spacing can be variably controlled. A diagram showing the configuration of an acousto-optic light modulator, FIG. 3 is a diagram showing a state in which the measured light is changed by the acousto-optic light modulator of FIG. 2, and FIG. 4 is an example of an embodiment of the present invention. A diagram showing an optical system in which the measurement optical system in the example is replaced with a transmission type,
FIG. 5 is a diagram showing the relationship between the tilt angle of the grating direction of the first and second diffraction gratings, which are the constituent elements of the present invention, and the generation position of the output optical spectrum, and FIG. 6 is a diagram showing the relationship between the generation position of the output optical spectrum. 1 is a diagram showing an example of the configuration of an optical system of an optical spectrum detection device using a single diffraction grating.

以下、第6図で従来技術について説明する。The prior art will be explained below with reference to FIG.

図において、被測定光1はレンズ2に入射して収束され
、該レンズ2の焦点位置に配置された入力側スリット3
の開口部分を通過す名。
In the figure, the light to be measured 1 enters a lens 2 and is converged, and an input side slit 3 is placed at the focal point of the lens 2.
The name that passes through the opening.

入力側スリット3を通過した光は扇形に拡がりながら第
1の凹面反射鏡4に入射し、平行光束となって反射され
9回折格子5に導かれる。この回折格子5には、1龍の
間に数百から数千の等間隔な刻線を有し、−辺の長さが
約2〜4C11程度の方形をした光学回折格子が多く用
いられている。これら高密度な刻線によって回折格子に
入射した被測定光1は、その波長に応じた分散を受けな
がら反射し、第2の凹面反射&1!6に向かって進行し
ていく、そして、前記第2の凹面反射鏡6により出力側
スリット7に向かって反射された分散した被測定光1は
、前記出力側スリット7の面上で各々の光波長に応じた
位置に収束し、久リフトの開口部を通過して光検出器8
によってその光強度が測定される。この測定では、測定
された光強度を被測定光に含まれている波長の順、すな
わち光スペクトルに応じて並べる必要があるため、前記
出力側スリット7の位置を固定し、前記回折格子5を回
転させ、連続的に分散光の強度分布を光検出器8で測定
する。また、狭い範囲の分散光を測定する場合には、回
折格子を固定して前記出力側スリット7及び光検出器8
を移動させる場合もある。
The light that has passed through the input slit 3 is incident on the first concave reflecting mirror 4 while expanding in a fan shape, and is reflected as a parallel beam and guided to the nine diffraction gratings 5. This diffraction grating 5 is often a rectangular optical diffraction grating with hundreds to thousands of evenly spaced scored lines between each dragon, and the side length of about 2 to 4C11. There is. The measured light 1 incident on the diffraction grating by these high-density ruled lines is reflected while undergoing dispersion according to its wavelength, and proceeds toward the second concave reflection &1!6. The dispersed light to be measured 1 reflected by the concave reflector 6 of No. 2 toward the output side slit 7 converges on the surface of the output side slit 7 at a position corresponding to each wavelength of light, and the aperture of the long lift. photodetector 8
The light intensity is measured by In this measurement, it is necessary to arrange the measured light intensities in the order of the wavelengths included in the light to be measured, that is, according to the optical spectrum, so the position of the output side slit 7 is fixed and the diffraction grating 5 is It is rotated and the intensity distribution of the dispersed light is continuously measured by the photodetector 8. In addition, when measuring dispersed light in a narrow range, the diffraction grating may be fixed and the output side slit 7 and the photodetector 8
may be moved.

どちらの場合でも、前記回折格子5が回転中あるいは前
記出力側スリット7及び光検出器8が移動中の間は、被
測定光のスペクトルが一定でなくては正確な光スペクト
ルを検出することはできない。しかしながら、実際の光
において、大半のスペクトルは時間的変化を常に生じて
おり、その間隔も短い。よって、回折格子を高速回転す
るなどして、測定時間の短縮が計られてきた。
In either case, while the diffraction grating 5 is rotating or the output side slit 7 and photodetector 8 are moving, an accurate optical spectrum cannot be detected unless the spectrum of the light to be measured is constant. However, in actual light, most of the spectrum constantly changes over time, and the intervals between these changes are short. Therefore, attempts have been made to shorten the measurement time by rotating the diffraction grating at high speed.

本発明は、回折格子を高速回転さ一亡る代わりに、該回
折格子に入射する被測定光の光路を音響光学的光変調素
子で変向させ、該回折格子が回転したのと同じ効果を生
じさせようとしたものである。
In the present invention, instead of rotating the diffraction grating at high speed, the optical path of the measured light incident on the diffraction grating is deflected by an acousto-optic light modulation element, and the same effect as when the diffraction grating is rotated can be obtained. This is what I was trying to make happen.

ここに、回折格子は本発明では、第1の回折格子となる
Here, the diffraction grating is the first diffraction grating in the present invention.

前記音響光学的光変調素子は電気的に高速に光を変向で
きるものであるため、光スペクトルの検出時間が大幅に
短縮され、変動しているスペクトルの測定に適した光ス
ペクトル検出装置としての構成が可能である。
Since the acousto-optic light modulation element can electrically change the direction of light at high speed, the detection time of the optical spectrum is significantly shortened, making it suitable as an optical spectrum detection device suitable for measuring a fluctuating spectrum. Configurable.

第1図に示すように、基本的には9本発明における光学
系は従来装置と同様に見えるが、入力側スリット3の後
段に新たに音響光学的光変調素子で構成される第2の回
折格子9を設けて被測定光を回折、変向し、その変向し
た光を第1の回折格子5で従来例と同様に分散する。そ
して、分散した光は第2の凹面反射鏡6により反射、収
束され出力側スリット7の面上に光スペクトルを生ずる
As shown in FIG. 1, the optical system according to the present invention basically looks the same as the conventional device, but a second diffraction element newly constructed from an acousto-optic light modulation element is added after the input side slit 3. A grating 9 is provided to diffract and redirect the light to be measured, and the redirected light is dispersed by the first diffraction grating 5 as in the conventional example. Then, the dispersed light is reflected and converged by the second concave reflecting mirror 6 to produce a light spectrum on the surface of the output side slit 7.

この光スペクトルは、前記第2の回折格子によって変向
された被測定光の各変向光、ずなわら、前記第2の自訴
格子9がSAWなどを使用した正弦波状位相格子の場合
、回折によって生じた±1次光及び回折を受けない0次
光の3本の光束に変向・分離されるのであるが、この各
々の変向された光束について光スペクトルが生ずるため
、前記出力側スリット面上には3つの光スペクトルが同
時発生ずる。これらの光スペクトルは、光量的に異なる
がスペクトルの分布形状は同一であることが知られてい
る0本発明では、これら3つの光スペクトルを空間的に
分離して独立に測定する必要があるため、前記出力側ス
リット7には前記3つの光スペクトルの発生場所に合わ
せて開口が設けられており、各々の関口を通過した光を
測定するための複数の光検出器8が備えられた構成とな
っている。
This optical spectrum includes each deflected light of the measured light deflected by the second diffraction grating. The output side slit Three light spectra occur simultaneously on the surface. It is known that these light spectra differ in light quantity but have the same spectrum distribution shape. In the present invention, it is necessary to spatially separate these three light spectra and measure them independently. , the output side slit 7 is provided with openings corresponding to the generation locations of the three light spectra, and a plurality of photodetectors 8 are provided for measuring the light passing through each of the entrances. It has become.

次に、第2の回折格子による被測定光の変向と複数の光
スペクトルの発生について第2図で説明する。第2図は
、格子間隔の可変制御可能な回折格子として使用できる
SAWチューナプルグレイティングの構成例を示したも
ので、同図に示すグレイティングは基板11、電気絶縁
性台座12、圧電性基板13の三層構造である。前記基
板11及び電気絶縁性台座12にはその中央部にそれぞ
れ光透過窓が整合するように設けられ、この窓を光が通
過する0通過した光は前記圧電性基板13のほぼ中央を
透過し、そめ際に該基板11上に伝搬しているSAWに
より位相変化を受ける。圧電性基板13の表面にはSA
Wを発生させるための二つの櫛の歯が互に入り組んだ構
造をもつ第1の交差指形電極14aと、この電極14a
より発生し、前記圧電性基板13上を伝搬して来たSA
Wをモニタするための第2の交差指形電極14bとが一
対となって設けられている。
Next, the deflection of the measured light by the second diffraction grating and the generation of a plurality of optical spectra will be explained with reference to FIG. FIG. 2 shows a configuration example of a SAW tunable grating that can be used as a diffraction grating whose grating spacing can be variably controlled. It has a three-layer structure. The substrate 11 and the electrically insulating pedestal 12 are each provided with a light transmitting window aligned with each other at the center thereof, and light passes through this window. , the phase changes due to the SAW propagating on the substrate 11. SA on the surface of the piezoelectric substrate 13
A first interdigital electrode 14a having a structure in which two comb teeth are intertwined to generate W, and this electrode 14a.
The SA generated by the SA and propagated on the piezoelectric substrate 13
A pair of second interdigital electrodes 14b for monitoring W is provided.

第3図は、SAWを位相格子として使用した場合におけ
る光の変向が行われる様子を示しているもので、周波数
fOの正弦波の電気信号によって圧電性基板13の表面
に発生したSAWは、格子定数にあたる空間周期dを有
し、速度Vで矢印の方向に進行する。前記圧電性基板1
3は光に対し透過性を有し、同図左の方向から入射した
光がこの圧電性基板13を透過すると、該入射光はSA
Wによる圧電性基板13の表面の正弦波状の凹凸と圧電
性基板13の表面直下の密度の変化、オなわち、屈折率
の変化によって位相変稠を受ける。
FIG. 3 shows how light is deflected when a SAW is used as a phase grating. It has a spatial period d corresponding to the lattice constant, and moves at a speed V in the direction of the arrow. The piezoelectric substrate 1
3 is transparent to light, and when light incident from the left direction in the figure passes through this piezoelectric substrate 13, the incident light is SA
The phase shift is caused by the sinusoidal unevenness of the surface of the piezoelectric substrate 13 caused by W and the change in the density directly under the surface of the piezoelectric substrate 13, that is, the change in the refractive index.

この位相変調は、空間周期dの繰返しによる周期的なも
のであるから、これらの光は通常の位相格子を透過した
ものと同じく、レンズ15でレンズの焦点面16に結像
させると回折像を生じる。
Since this phase modulation is periodic due to the repetition of the spatial period d, when these lights are focused on the focal plane 16 of the lens by the lens 15, they form a diffraction image, just like those transmitted through a normal phase grating. arise.

ここで入射光が波長λの単色光であれば、回折像には、
格子定数dによって定まる±1次の回折輝点が生ずる。
If the incident light is monochromatic light with wavelength λ, the diffraction image will be
A diffraction bright spot of the ±1st order determined by the lattice constant d is generated.

この回折輝点の発生位置は、焦点面16の光軸より距離
α゛だけ離れた位置となり、その方向はSAWの伝搬方
向に等しい。
The generation position of this diffraction bright spot is a distance α' from the optical axis of the focal plane 16, and its direction is equal to the propagation direction of the SAW.

距離αの値は前記レンズ15の焦点距離をFとすれば、 で表される。ここで、正弦波電気信号の周波数がf6 
を中心に±Δf/2変化するものとすれば、焦点面16
上における±1次の回折輝点の変位量Δαは、 Δ’fFλ Δα−−□−−−(21 となる、(2)式で明らかなように、SAWの伝1股速
度が遅く、前記レンズ15の焦点距離が長く、光の波長
λが長いほど、変位量Δαは大きな値を取ることとなる
The value of the distance α is expressed as follows, where F is the focal length of the lens 15. Here, the frequency of the sine wave electrical signal is f6
If it changes by ±Δf/2 around , then the focal plane 16
The displacement amount Δα of the ±1st-order diffraction bright spot above is Δ′fFλ Δα−−□−−−(21) As is clear from equation (2), the SAW transmission speed is slow, and the above-mentioned The longer the focal length of the lens 15 and the longer the wavelength λ of the light, the larger the displacement Δα.

このようなSAWチューナプルダレイテイングを光スペ
クトル検出器の測定光路の途中に配置すると、前述の±
1次の回折輝点及び回折を受けない0次光の3つの輝点
を中心とした3つの光スペクトルが同時に発生ずること
となるが、第4図は前記第1図の本発明による光学系を
透過形に、すなわら、第1図における第1、第2の凹面
反射鏡4.6の代わりに凸レンズ17.1Bを考え、ま
た、反射形の第1の回折格子5を透過形回折格子19に
置き換えた光学系により前記SAWチェーナブルダレイ
テイングによってi句された回折光が角度を変えて第1
の回折格子5に入射し、再び3つの輝点を結ぶことを示
している。第し図に示した点線がSAWにより変向され
た光束の光軸を示しており、第1図において、第1の回
折格子を光が透過する時、第4図の実線で示した0次回
折光の光軸と角度を持つことがわかる。実際には、第1
の回折格子は反射形であるから、入射光線の入射角の変
化は、回折格子自身の回転と同様の効果を生ずる。
If such a SAW tuner puller is placed in the middle of the measurement optical path of the optical spectrum detector, the above-mentioned ±
Three light spectra centered on the first-order diffraction bright spot and the three bright spots of zero-order light that does not undergo diffraction are generated simultaneously, and FIG. 4 shows the optical system according to the present invention shown in FIG. In other words, a convex lens 17.1B is used in place of the first and second concave reflecting mirrors 4.6 in FIG. The optical system replaced with the grating 19 changes the angle of the diffracted light beams generated by the SAW chainable grading, and
It is shown that the light enters the diffraction grating 5 and connects three bright spots again. The dotted line shown in Figure 2 indicates the optical axis of the light beam deflected by the SAW. It can be seen that it has an angle with the optical axis of the folded light. Actually, the first
Since the diffraction grating is of a reflective type, a change in the angle of incidence of the incident light ray produces an effect similar to a rotation of the diffraction grating itself.

さて、前記した3つの同時に発生したスペクトルは、第
1、第2の回折格子5.9の格子方向が同一であると、
はぼ−直線上に並び、各スペクトルの分離が困難である
。また、格子方向が直角を成す場合には、各スペクトル
は上下関係に並び分離は容易であるが、SAW周波数を
掃引し、第2の回折格子の格子間隔を変化させて±1次
回折光を中心とする光スペクトルを空間的に走査しても
、光スペクトルの並び方向には移動しないので、効果は
ない。よって、第1及び第2の回折格子の格子方向は斜
めにする必要がある。
Now, if the grating directions of the first and second diffraction gratings 5.9 are the same, the three simultaneously generated spectra described above are as follows.
The spectra are arranged on a straight line, making it difficult to separate each spectrum. In addition, when the grating directions are perpendicular, each spectrum is arranged in a vertical relationship and separation is easy, but by sweeping the SAW frequency and changing the grating spacing of the second diffraction grating, Even if the light spectrum is spatially scanned, there is no effect because it does not move in the direction in which the light spectrum is arranged. Therefore, the grating directions of the first and second diffraction gratings must be oblique.

第5図はこの様子を示しており、第1の回折格子の格子
方向をy軸方向、また、格子方向に垂直な方向をX方向
として、第2の回折格子(S AWチューナプルグレイ
ティング)の配置状態を同図(a)に、第1の回折格子
及びその入射光束の状態を同図(b)に、また、これら
の配置による光スペクトルの出力分布状筋を同図(C)
に示しである。角度θは第2の回折格子のIIJiき角
であるが、本発明では、第2の回折格子を形成するSA
Wの周波数を掃引して、出力側スリット7面上の±1次
回折光による光スペクトルをスペクトルの並び方向に移
動させ、前記スリットの固定された開口によって高速走
査測光を行うものであるため、SAWの周波数変化に対
してより効果的な光スペクトルの移UJを必要とし、こ
のため、前記角度θは前記スリット上で3つの光スペク
トルが空間的に分離可能な範囲で最少にする必要がある
。前記第5図(C)の点線で囲んだ部分が±1次回折光
による高速走査測光可能な光スペクトル20、及び第1
の回折格子を回転して測定する通常測光用の光スペクト
ル21を示している。本発明では、この点線内の適当な
部分に開口を持つ出力側スリット7を使用し、必要に応
じて、光検出器8を複数個用いて光スペクトルの検出を
行う。また、光スペクトルの表示に関しては、従来より
の、第1の回折格子の回転角により波長軸を表示する方
法に加え、第2の回折格子に加えたSAW発生用電気信
号の周波数によって波長軸を表示する方法を併用する。
Figure 5 shows this situation, where the grating direction of the first diffraction grating is the y-axis direction, and the direction perpendicular to the grating direction is the x-direction, and the second diffraction grating (S AW tunable grating) is Figure (a) shows the arrangement of the first diffraction grating, Figure (b) shows the state of the first diffraction grating and its incident light flux, and Figure (C) shows the output distribution lines of the optical spectrum due to these arrangements.
This is shown below. The angle θ is the angle IIJi of the second diffraction grating, but in the present invention, the SA forming the second diffraction grating
SAW is a method that sweeps the frequency of W to move the optical spectrum of the ±1st-order diffracted light on the output side slit 7 surface in the direction in which the spectra are arranged, and performs high-speed scanning photometry using the fixed aperture of the slit. It is necessary to shift UJ of the optical spectrum more effectively with respect to the frequency change of , and for this reason, the angle θ needs to be minimized within a range in which the three optical spectra can be spatially separated on the slit. The part surrounded by the dotted line in FIG.
2 shows an optical spectrum 21 for normal photometry, which is measured by rotating the diffraction grating. In the present invention, an output side slit 7 having an opening at an appropriate portion within this dotted line is used, and if necessary, a plurality of photodetectors 8 are used to detect the optical spectrum. Regarding the display of the optical spectrum, in addition to the conventional method of displaying the wavelength axis by the rotation angle of the first diffraction grating, the wavelength axis can be displayed by the frequency of the SAW generation electric signal applied to the second diffraction grating. Use display methods together.

併用の方法は被測定光の種類あるいは性質によって種々
考えられるが、最も一般的で簡便な方法は、広帯域走査
を低速の第1の回折格子の回転で行い、特定部分の狭帯
域高速走査を第2の回折格子で適時行う方法であろうと
思われる。
Various methods can be considered depending on the type or property of the light to be measured, but the most common and simple method is to perform broadband scanning by rotating the first diffraction grating at a low speed, and perform narrow-band high-speed scanning of a specific portion by rotating the first diffraction grating at a low speed. This seems to be a method that can be carried out in a timely manner using the second diffraction grating.

また、当然に第1の回折格子、第2の回折格子の順序は
、入れ換えても原理的には同じ動作ができる。
Further, even if the order of the first diffraction grating and the second diffraction grating is changed, the same operation can be performed in principle.

〔効果〕〔effect〕

以上述べたように、本発明によれば、格子間隔が可変制
御可能な回折格子を用いて光を高速変向し、従来装置に
使用されていたと同様の分散用に用いられる回折格子へ
の被測定光の入射角度を変化させ、その結果、相対的に
分散用の回折格子を急速回転したと同様の効果を得、光
スペクトル検出に要する測定時間を大幅に短縮すること
が可能となった。これにより、変動周期の短い光のスベ
クトルも検出可能となり、光スペクトルの変化していく
状態の観察も可能であるといった効果が生まれた。
As described above, according to the present invention, light is deflected at high speed using a diffraction grating whose grating spacing can be variably controlled, and the diffraction grating used for dispersion, similar to that used in conventional devices, is exposed to light. By changing the incident angle of the measurement light, we obtained an effect similar to that achieved by rapidly rotating a diffraction grating for dispersion, and it became possible to significantly shorten the measurement time required for optical spectrum detection. This has made it possible to detect light spectral fluctuations with short fluctuation periods, making it possible to observe changes in the optical spectrum.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第2の回折格子を使用した光スペク
トル検出装置の一実施例における測定光学系の構成を示
す。 第2図は、本発明の構成要素である格子間隔が可変制御
可能な回折格子の一つである音響光学的光変關素子(S
AWチューナブルダレイティング)の構成を示す。 第3図は、前記第2図のSAWチェーナプルダレイティ
ングによる光の変向状態を示す。 第4図は、本発明の一実施例における測定光学系を透過
形に書き換えた光学系図を示す。 第5図は、本発明の構成要素である第1及び第2の回折
格子の格子方向の傾きθと出力される光スペクトルの発
生位置の関連を示す。 第6図は、従来装置における光スペクトル検出装置の測
定光学系の一実施例を示す。 図において、■は被測定光、2はレンズ、3は入力側ス
リット、4は第1の凹面反射鏡、5は第1の回折格子、
6は第2の凹面反射鏡、7は出力側スリット、8は光検
出器、9は第2の回折格子。 ”11は基板、12は電気絶縁性台座、13は圧電性基
板、14aは第1の交差指形電極、14bは第2の交差
指形電極、15はレンズ、16は焦点面、17と18は
凸レンズ、19は透過形回折格子、20は高速走査測光
可能な光スペクトル、21は通常測光用の光スペクトル
をそれぞれ示す。 特許出願人     アンリッ株式会社代理人  弁理
士  小 池 龍 太 部第1図 1・・・被測定光 2・・・レンズ 3・・−入力端スリット 4・・・第1の凹面反射鏡 5・・・第1の回折格子 6・・・第1の凹面反射鏡 7・・・出力側スリット 8・・・光検出器 9・・・第1の回折格子 第2図 11・・・基板 12・−・電気絶縁性台座 13・・・圧電性基板
FIG. 1 shows the configuration of a measurement optical system in an embodiment of the optical spectrum detection device using the second diffraction grating of the present invention. FIG. 2 shows an acousto-optic light variable element (S
This figure shows the configuration of AW Tunable Dating. FIG. 3 shows a state in which the direction of light is changed by the SAW chain puller rating shown in FIG. 2. FIG. 4 shows an optical system diagram in which the measuring optical system in one embodiment of the present invention is rewritten as a transmission type. FIG. 5 shows the relationship between the grating direction inclination θ of the first and second diffraction gratings, which are the constituent elements of the present invention, and the generation position of the output optical spectrum. FIG. 6 shows an example of a measurement optical system of a conventional optical spectrum detection device. In the figure, ■ is the light to be measured, 2 is the lens, 3 is the input side slit, 4 is the first concave reflecting mirror, 5 is the first diffraction grating,
6 is a second concave reflecting mirror, 7 is an output side slit, 8 is a photodetector, and 9 is a second diffraction grating. 11 is a substrate, 12 is an electrically insulating pedestal, 13 is a piezoelectric substrate, 14a is a first interdigital electrode, 14b is a second interdigital electrode, 15 is a lens, 16 is a focal plane, 17 and 18 19 is a convex lens, 19 is a transmission type diffraction grating, 20 is a light spectrum capable of high-speed scanning photometry, and 21 is a light spectrum for normal photometry.Patent applicant Ryuta Koike, Patent attorney, Anri Co., Ltd. Figure 1 1... Light to be measured 2... Lens 3...-Input end slit 4... First concave reflecting mirror 5... First diffraction grating 6... First concave reflecting mirror 7. ... Output side slit 8 ... Photodetector 9 ... First diffraction grating Fig. 2 11 ... Substrate 12 ... Electrically insulating pedestal 13 ... Piezoelectric substrate

Claims (1)

【特許請求の範囲】 入射光を、第1及び第2の回折格子とを経由して出射す
る光スペクトル検出装置において;前記第1及び第2の
回折格子のうち、いずれか一方の回折格子は回折格子間
隔が固定で入射された光を分散して光スペクトルを得る
ための回折格子であり、他方の回折格子は回折格子間隔
が制御可能に可変でき、前記回折格子間隔の固定された
一方の回折格子に入射する光の光路を空間的に変向させ
るための回折格子であり、 前記回折格子間隔が可変とされた他方の回折格子によっ
て変向され、かつ前記回折格子間隔が固定の一方の回折
格子によって分散された光スペクトルのみを通過させる
ための空間フィルタを備えていることを特徴とする光ス
ペクトル検出装置。
[Claims] In an optical spectrum detection device that emits incident light via first and second diffraction gratings; one of the first and second diffraction gratings is The diffraction grating has a fixed diffraction grating interval and is used to disperse incident light to obtain an optical spectrum. A diffraction grating for spatially changing the optical path of light incident on the diffraction grating, the diffraction grating being deflected by the other diffraction grating having a variable spacing, and one having a fixed diffraction grating spacing. An optical spectrum detection device characterized by comprising a spatial filter for passing only the optical spectrum dispersed by the diffraction grating.
JP349387A 1987-01-09 1987-01-09 Optical spectrum detector Expired - Lifetime JPH083445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP349387A JPH083445B2 (en) 1987-01-09 1987-01-09 Optical spectrum detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP349387A JPH083445B2 (en) 1987-01-09 1987-01-09 Optical spectrum detector

Publications (2)

Publication Number Publication Date
JPS63171329A true JPS63171329A (en) 1988-07-15
JPH083445B2 JPH083445B2 (en) 1996-01-17

Family

ID=11558861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP349387A Expired - Lifetime JPH083445B2 (en) 1987-01-09 1987-01-09 Optical spectrum detector

Country Status (1)

Country Link
JP (1) JPH083445B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997016708A1 (en) * 1995-10-31 1997-05-09 Kyoto Daiichi Kagaku Co., Ltd. Light source apparatus and measurement method
US6201606B1 (en) 1995-11-08 2001-03-13 Kyoto Daiichi Kagaku Co., Ltd. Method and apparatus for processing spectrum in spectral measurement
US6381489B1 (en) 1995-10-31 2002-04-30 Kyoto Daiichi Kagaku Co., Ltd. Measuring condition setting jig, measuring condition setting method and biological information measuring instrument
US6972839B2 (en) 2001-03-16 2005-12-06 Fujitsu Limited Optical spectrum analyzer and optical spectrum detecting method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997016708A1 (en) * 1995-10-31 1997-05-09 Kyoto Daiichi Kagaku Co., Ltd. Light source apparatus and measurement method
US6381489B1 (en) 1995-10-31 2002-04-30 Kyoto Daiichi Kagaku Co., Ltd. Measuring condition setting jig, measuring condition setting method and biological information measuring instrument
US6404492B1 (en) 1995-10-31 2002-06-11 Kyoto Daiichi Kagaku Co., Ltd. Light source apparatus and measurement method
US6201606B1 (en) 1995-11-08 2001-03-13 Kyoto Daiichi Kagaku Co., Ltd. Method and apparatus for processing spectrum in spectral measurement
US6972839B2 (en) 2001-03-16 2005-12-06 Fujitsu Limited Optical spectrum analyzer and optical spectrum detecting method

Also Published As

Publication number Publication date
JPH083445B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
US7170610B2 (en) Low-coherence inferometric device for light-optical scanning of an object
CN102656431B (en) Spectrometer arrangement
US4575243A (en) Monochromator
JPH06207853A (en) Spectrophotometer and analysis of light
US20080024763A1 (en) Optical Interferometer And Method
JP4640577B2 (en) Optical spectrum analyzer
US4750834A (en) Interferometer including stationary, electrically alterable optical masking device
US6646739B2 (en) Four-stage type monochromator
KR19990076349A (en) Reflective holographic optical element characterization system
US5914777A (en) Apparatus for and method of measuring a distribution of luminous intensity of light source
JPS63171329A (en) Light spectrum detector
JPS6038644B2 (en) spectrophotometer
US4345838A (en) Apparatus for spectrometer alignment
US3217591A (en) Angled plate scanning interferometer
Ingersoll Polarization of radiation by gratings
US3639062A (en) Spectrometric instrument with transposition of ray paths
JP2755958B2 (en) Double grating spectrometer
JPS58727A (en) Fourier transform spectrum device
JPH078736U (en) Spectroscopic device
EP0228702B1 (en) Interferometer including stationary, electrically alterable, optical masking device
JPH02145927A (en) Fourier transform type interferospectroscope
JPS63218827A (en) Light spectrum detector
JPH10122959A (en) Spectral light source device using acoustooptical element
JPH076840B2 (en) High resolution spectrometer
JP2003028714A (en) Fast spectrometric observation system