JPS63171070A - Linearity correction circuit for horizontal deflection system - Google Patents

Linearity correction circuit for horizontal deflection system

Info

Publication number
JPS63171070A
JPS63171070A JP274787A JP274787A JPS63171070A JP S63171070 A JPS63171070 A JP S63171070A JP 274787 A JP274787 A JP 274787A JP 274787 A JP274787 A JP 274787A JP S63171070 A JPS63171070 A JP S63171070A
Authority
JP
Japan
Prior art keywords
correction
horizontal
horizontal deflection
linearity
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP274787A
Other languages
Japanese (ja)
Other versions
JPH06105958B2 (en
Inventor
Mikio Nishiyama
幹雄 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP62002747A priority Critical patent/JPH06105958B2/en
Publication of JPS63171070A publication Critical patent/JPS63171070A/en
Publication of JPH06105958B2 publication Critical patent/JPH06105958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To correct the strain of non-linearity in relation to a horizontal deflection by correcting the strain of almost left side of the tube surface of a CRT with a S-shaped correction capacitor and a non-linear correction coil and correcting the strain of almost right side of the tube surface by supplying the output signal from a function generator to a sub yoke so as to correct. CONSTITUTION:The S-shaped correction capacitor 10, a horizontal deflection yoke 4 and a linearity correction coil 6b whose inductance characteristic is controlled by a magnet 6a are connected to the output terminal of a horizontal output circuit 22 which drives the CRT 2 in series. Meanwhile, the output from an adder 30 is supplied to the sub yoke 24 for correcting the linearity and the output signal of the function generator 32, whose output is controlled with a horizontal oscillation frequency, is supplied to the adder 30. Thus, the strain of almost left side of the tube surface of the CRT 2 can be corrected with the capacitor 10 and the coil 6b and also the strain of the almost right side of the tube surface can be corrected with the yoke 24.

Description

【発明の詳細な説明】 本発明はCRTモニタの水平偏向系の直線性補正装置に
関し、一層詳細には、走査線数の異なる撮像デバイスか
らの映像信号を同一のCRTモニタ上に自動的に表示す
るため、入力する画像信号の走査線数に対応した歪補正
関数を発生する関数発生器を用いて自動的に補正するこ
とを可能とする水平偏向系の直線性補正回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a linearity correction device for a horizontal deflection system of a CRT monitor, and more particularly to a device for automatically displaying video signals from imaging devices having different numbers of scanning lines on the same CRT monitor. Therefore, the present invention relates to a linearity correction circuit for a horizontal deflection system that enables automatic correction using a function generator that generates a distortion correction function corresponding to the number of scanning lines of an input image signal.

同一のCRTモニタに走査線数の異なる映像信号を迅速
に再現するための分野として、例えば、CT(コンピュ
ータトモグラフィ)、US(ウルトラソノグラフィ)、
DF(デジタルフロログラフィ)等の医療用画像診断装
置を利用する医療画像分野を掲げることが出来る。当該
医療画像分野における診断システムは前記複数の診断装
置から導入される画像情報を、先ず、CRTモニタに表
示し、次に、当該表示された画像を撮像レンズ、シャッ
ター装置およびミラー等からなる撮影光学系を介して搬
送されるフイルム上に連続的に撮影出来るように構成さ
れている。
For example, CT (computer tomography), US (ultra sonography),
One example is the medical imaging field that uses medical imaging diagnostic equipment such as DF (digital fluorography). A diagnostic system in the field of medical imaging first displays image information introduced from the plurality of diagnostic devices on a CRT monitor, and then displays the displayed image through a photographing optical system consisting of an imaging lens, a shutter device, a mirror, etc. It is constructed so that images can be taken continuously on the film being conveyed through the system.

そして、この分野においては、前記CT、US、DF等
によって、例えば、人体の患部を中心にその周辺を連続
的に且つ迅速に画像情報として得ることが可能であるた
めに、当該患部自体およびその周囲の状況が明確に把握
出来、医師等にとってその診断等の際に頗る好都合であ
る。さらに、この分野においては、その性質上正確でし
かも精緻な画像情報を得ることが肝要である。それは、
誤診等を回避するためである。
In this field, for example, it is possible to continuously and quickly obtain image information of the affected area of the human body and its surroundings using CT, US, DF, etc. The surrounding situation can be clearly grasped, which is extremely convenient for doctors and others when making a diagnosis. Furthermore, in this field, it is essential to obtain accurate and detailed image information due to its nature. it is,
This is to avoid misdiagnosis, etc.

このため、可能な限り歪を少なくしたCRTモニタが採
用される。
For this reason, CRT monitors with as little distortion as possible are employed.

ところで、当該CRTモニタ、特に、フラットフェース
型のCRTモニタにおいて、水平直線性を悪化させる要
因として次なる2つの要素を掲げることが出来る。
By the way, in the CRT monitor, particularly in a flat face type CRT monitor, the following two factors can be cited as factors that deteriorate horizontal linearity.

その1つは、第1図に示すように、歪の発生であってこ
の歪はCRTモニタの蛍光面の曲率の中心と電子ビーム
の偏向中心とが異なるために生ずるCRT管面の中央部
の縮みと両端部での伸びに起因する。図について説明す
れば、第1図aは歪補正を施こさないときのストライブ
模様の管面表示の模式図であって、一方、第1図すはそ
の特性図である。第1図すにおいて横軸は管面水平方向
に対する偏向距離を示し、縦軸は当該偏向距離に対する
蛍光面上の間隔変化率を示す。
One of these is the occurrence of distortion, as shown in Figure 1, which is caused by the difference between the center of curvature of the CRT monitor's phosphor screen and the center of deflection of the electron beam. Due to shrinkage and elongation at both ends. To explain the figures, FIG. 1a is a schematic diagram of a screen display of a striped pattern when no distortion correction is performed, while FIG. 1 is a characteristic diagram thereof. In FIG. 1, the horizontal axis shows the deflection distance with respect to the horizontal direction of the tube surface, and the vertical axis shows the rate of change in the interval on the phosphor screen with respect to the deflection distance.

次に、第2の歪を第2図に示す。すなわち、水平用偏向
ヨークの抵抗分等によって水平偏向電流が直線状に変化
せず指数関数的な飽和曲線になるために生じる画面の左
側が伸び画面の右側が縮む歪現象である。この第2図a
、bの意味することは前記第1図a、bの説明を参照す
ることにより容易に諒解されよう。
Next, the second distortion is shown in FIG. That is, this is a distortion phenomenon in which the left side of the screen stretches and the right side of the screen contracts, which occurs because the horizontal deflection current does not change linearly but becomes an exponential saturation curve due to the resistance of the horizontal deflection yoke. This second figure a
, b will be easily understood by referring to the explanations of FIGS. 1a and 1b.

ここで、前記第1の歪の補正はCRTの水平偏向ヨーク
と直流阻止コンデンサ(5字補正コンデンサ)の直列共
振電流を鋸波電流に重畳して偏向電流をS字形に曲げて
補正している。この場合、5字補正コンデンサの値によ
り、第3図aに示すように、管面に対応して共振インピ
ーダンスを変化させることが可能である。
Here, the first distortion is corrected by superimposing the series resonant current of the horizontal deflection yoke of the CRT and the DC blocking capacitor (5-shaped correction capacitor) on the sawtooth current and bending the deflection current into an S-shape. . In this case, depending on the value of the five-figure correction capacitor, it is possible to change the resonant impedance in accordance with the tube surface, as shown in FIG. 3a.

第2の歪の補正は水平偏向ヨークに直列に直流磁界によ
りバイアスされた可飽和リアクトルを接続し、これを流
れる偏向電流の各点でインダクタンスが変化することを
利用して補正している。この場合、例えば、複数の可飽
和リアクトルを用いれば、第3図すに示すように左側補
正用インダクタンスと右側補正用インダクタンスからな
る合成インピアダンスを変化することが出来る。
The second distortion is corrected by connecting a saturable reactor biased by a DC magnetic field in series with the horizontal deflection yoke, and making use of the fact that the inductance changes at each point of the deflection current flowing through the reactor. In this case, for example, if a plurality of saturable reactors are used, it is possible to change the composite impedance consisting of the left correction inductance and the right correction inductance, as shown in FIG.

第4図は上記の二種の歪を補正するための従来の回路図
例であって、当該回路図において、CRT2の水平偏向
を行う水平偏向ヨーク4に、磁石6a、8aを介してイ
ンダクタンスが電流に依存して変えられる可飽和リアク
トルで構成される直線性補正コイル6b、8bおよび3
字補正コンデンサ10が直列に接続されている。これら
の構成要素からなる前記第1と第2の歪に係る水平直線
性補正回路は水平ドライブトランス12)水平出力トラ
ンジスタ14、ダンパダイオード16、共振コンデンサ
18および電源+Vl1mに接続されるチョークコイル
20からなる水平出力回路22により駆動され、水平偏
向作用を遂行すると共に、前記3字補正に係る歪および
指数関数的歪を補正するように動作する。
FIG. 4 is an example of a conventional circuit diagram for correcting the above two types of distortion. In this circuit diagram, an inductance is applied to the horizontal deflection yoke 4 that horizontally deflects the CRT 2 via magnets 6a and 8a. Linearity correction coils 6b, 8b and 3 consisting of saturable reactors that can be changed depending on the current
A character correction capacitor 10 is connected in series. The horizontal linearity correction circuit related to the first and second distortions made of these components includes a horizontal drive transformer 12) a horizontal output transistor 14, a damper diode 16, a resonant capacitor 18, and a choke coil 20 connected to the power supply +Vl1m. The horizontal output circuit 22 performs a horizontal deflection function and operates to correct the distortion and exponential distortion associated with the three-character correction.

ところが、上記した従来の水平直線性補正回路は特定の
走査線数(水平発振周波数)に対応する映像信号にのみ
対応可能である。
However, the above-described conventional horizontal linearity correction circuit is only compatible with video signals corresponding to a specific number of scanning lines (horizontal oscillation frequency).

そのため、例えば、走査線数525本(水平発振周波数
では約15KHz)において、電源電圧十V、II=1
5Vに設定されているとして前記5字補正コンデンサ1
0と直線性補正コイル6b 、 8bを調整して最適な
直線性補正定数を求めたとしても、走査線数が1125
本(水平発振周波数約33KHz)の信号が導入された
場合には水平振幅が縮小する等、画像の正確な再現性は
保証されない。この場合、第5図a、bに示すように、
異なる走査線数の信号に対しても管面の偏向幅、すなわ
ち、電流値振幅を同じにする要請から、前記電源電圧+
VlBを15VX33KHz/15KHz=33Vと約
2倍に増大する必要がある。その結果、水平発振周波数
が15K)tzから33KHzに変化する分に対応して
前記各素子のインピーダンスが変化するために、3字補
正コンデンサ10と直線性補正コイル6b、8bを変化
後の水平発振周波数に適合するように時間をかけて再調
整しない限り、水平直線性を良好に保持することは不可
能となる。
Therefore, for example, when the number of scanning lines is 525 (horizontal oscillation frequency is approximately 15 KHz), the power supply voltage is 10 V, II = 1
The 5-character correction capacitor 1 is set to 5V.
0 and the linearity correction coils 6b and 8b to find the optimal linearity correction constant, the number of scanning lines is 1125.
If a signal with a high frequency (horizontal oscillation frequency of approximately 33 KHz) is introduced, the horizontal amplitude will be reduced, and accurate reproducibility of the image cannot be guaranteed. In this case, as shown in Figure 5 a and b,
The power supply voltage +
It is necessary to increase VlB approximately twice as much as 15V x 33KHz/15KHz = 33V. As a result, since the impedance of each element changes corresponding to the change in the horizontal oscillation frequency from 15Ktz to 33KHz, the horizontal oscillation after changing the three-figure correction capacitor 10 and the linearity correction coils 6b and 8b changes. Good horizontal linearity cannot be maintained unless readjusted over time to suit the frequency.

然しなから、この再調整に係る時間の損失は前記した複
数の撮像デバイスから映像信号を導入してCRTモニタ
に迅速に表示することを必要とする医療用画像診断装置
を利用する分野においては致命的欠点となる不都合とし
て露呈する。
However, the loss of time associated with this readjustment is fatal in the field of using medical image diagnostic equipment, which requires video signals to be introduced from the plurality of imaging devices mentioned above and quickly displayed on a CRT monitor. It is exposed as an inconvenience that becomes a disadvantage.

本発明は前記の不都合を克服するためになされたもので
あって、各種の診断装置を構成する異種の撮像デバイス
から出力される走査線数の異なる映像信号を同一のCR
Tモニタに表示する際、CRTモニタの管面上の水平偏
向に係る非直線歪を自動的に補正するために、3字補正
コンデンサと直線性補正コイルおよびサブヨークを利用
し、当該サブヨークに供給される電流波形を走査線数に
対応してダイナミックに変化させることを可能とし、そ
の結果、水平偏向に係るCRTモニタの非直線歪を顕著
に低減し、結果として、前記補正用素子の再調整に係る
時間損失の低減を可能とするCRTモニタの水平偏向系
の直線性補正回路を提供することを目的とする。
The present invention has been made in order to overcome the above-mentioned disadvantages, and it is possible to transfer video signals with different numbers of scanning lines output from different types of imaging devices constituting various diagnostic apparatuses to the same CR.
When displaying on a T monitor, in order to automatically correct nonlinear distortion related to horizontal deflection on the CRT monitor screen, a three-figure correction capacitor, a linearity correction coil, and a sub-yoke are used. It is possible to dynamically change the current waveform corresponding to the number of scanning lines, and as a result, the non-linear distortion of the CRT monitor related to horizontal deflection can be significantly reduced, and as a result, the correction element can be readjusted. It is an object of the present invention to provide a linearity correction circuit for a horizontal deflection system of a CRT monitor, which makes it possible to reduce such time loss.

前記の目的を達成するために、本発明はCRTの管面略
左側の歪を水平偏向ヨークと直列に接続した3字補正コ
ンデンサと非直線補正コイルによって補正し、管面略右
側の歪を水平発振周波数によって出力が制御される関数
発生器の出力信号をサブヨークに供給して補正するよう
に構成することを特徴とする。
In order to achieve the above object, the present invention corrects the distortion on the substantially left side of the CRT tube surface using a three-figure correction capacitor and a nonlinear correction coil connected in series with the horizontal deflection yoke, and corrects the distortion on the substantially right side of the tube surface horizontally. The present invention is characterized in that the output signal of a function generator whose output is controlled by the oscillation frequency is supplied to the sub-yoke for correction.

次に、本発明に係る水平偏向系の直線性補正回路につい
て好適な実施態様を挙げ、添付の図面を参照しながら以
下詳細に説明する。なお、第4図に示す構成要素と同一
の構成要素には同一の参照符号を付し、その詳細な説明
を省略する。
Next, preferred embodiments of the horizontal deflection system linearity correction circuit according to the present invention will be described in detail with reference to the accompanying drawings. Components that are the same as those shown in FIG. 4 are given the same reference numerals, and detailed explanations thereof will be omitted.

第6図において、参照符号22はCRT2を駆動する水
平出力回路であって当該水平出力回路22の出力端子に
は3字補正コンデンサ10、水平偏向ヨーク4および磁
石6aによってインダクタンス特性が制御される直線性
補正コイル6bが直列に接続され、他端は接地されてい
る。
In FIG. 6, reference numeral 22 is a horizontal output circuit that drives the CRT 2, and the output terminal of the horizontal output circuit 22 has a straight line whose inductance characteristics are controlled by the three-figure correction capacitor 10, the horizontal deflection yoke 4, and the magnet 6a. The gender correction coils 6b are connected in series, and the other end is grounded.

一方、直線性補正のためのサブヨーク24の一方の端子
は接地され、他方の端子は加算器30の出力端子と接続
される。当該加算器30の入力端子は走査線数に対応し
て種々の関数電圧を発生する関数発生回路32内の第1
の可変抵抗器34の摺動端子と接続される。
On the other hand, one terminal of the sub-yoke 24 for linearity correction is grounded, and the other terminal is connected to the output terminal of the adder 30. The input terminal of the adder 30 is the first terminal in the function generating circuit 32 that generates various function voltages corresponding to the number of scanning lines.
is connected to the sliding terminal of the variable resistor 34.

当該関数発生回路32の中の第1の可変抵抗器34の片
側の端子は接地され、他方の端子は乗算器36の出力端
子と接続される。当該乗算器36の一方の入力端子には
水平発振鋸波HSAWが直流阻止コンデンサ38、半波
整流器40および2乗器42によって波形成形された直
線性補正波HSFKが導入される。また、前記乗算器3
6の他方の入力端子には、水平同期信号H8が周波数−
電圧変換器44(以下F/V変換器という)とオペアン
プ46を介して後述する関数波形に変換されて導入され
る。このオペアンプ46は増幅作用と共に、抵抗48.
50および第2の可変抵抗器52並びに電源電圧■、に
よってレベルシフト作用を遂行する。なお、前記関数発
生回路32内の2乗器42はCRTの偏向系の特性によ
り、場合によっては3乗器等、n乗器を選択することが
可能である。
One terminal of the first variable resistor 34 in the function generating circuit 32 is grounded, and the other terminal is connected to the output terminal of the multiplier 36. A linearity correction wave HSFK is introduced into one input terminal of the multiplier 36, which is a horizontally oscillated sawtooth wave HSAW shaped into a waveform by a DC blocking capacitor 38, a half-wave rectifier 40, and a squarer 42. Further, the multiplier 3
6, the horizontal synchronizing signal H8 is connected to the other input terminal of
The signal is converted into a function waveform to be described later and introduced via a voltage converter 44 (hereinafter referred to as an F/V converter) and an operational amplifier 46. This operational amplifier 46 has an amplifying effect and a resistor 48.
50, the second variable resistor 52, and the power supply voltage (2) perform the level shifting function. Note that, as the squarer 42 in the function generating circuit 32, depending on the characteristics of the deflection system of the CRT, an n-power generator such as a cube generator may be selected depending on the case.

本実施態様に係る水平偏向系の直線性補正回路は基本的
には以上のように構成されるものであり、次にその作用
並びに効果について以下詳細に説明する。
The horizontal deflection system linearity correction circuit according to this embodiment is basically constructed as described above, and its operation and effects will be explained in detail below.

本発明に係る水平偏向系の直線性補正回路の動作方式は
基本的にはCRT2の画面の左側の歪を直線性補正コイ
ル6bで補正し、画面の右側の歪をサブヨーク24で補
正する方式である。
The operating system of the horizontal deflection system linearity correction circuit according to the present invention is basically a method in which the distortion on the left side of the screen of the CRT 2 is corrected by the linearity correction coil 6b, and the distortion on the right side of the screen is corrected by the sub-yoke 24. be.

第7図の特性曲線において横軸は偏向距離、縦軸は間隔
変化率を示すものとする。
In the characteristic curve shown in FIG. 7, the horizontal axis represents the deflection distance, and the vertical axis represents the interval change rate.

そこで、今、例えば、CRTモニタ2が第1の走査線数
に係る発振周波数、例えば、15KHzで第7図aに示
す非直線歪特性を持っており、第2の走査線数に係る発
振周波数、例えば、33KHzにおいて、第7図すの非
直線歪特性を持っているものとする。この場合、前記直
線性補正コイル6bの特性を磁石6aの回転操作により
第7図Cに示す特性とすることは容易である。
Therefore, for example, if the CRT monitor 2 has the nonlinear distortion characteristic shown in FIG. , for example, at 33 KHz, it is assumed that the non-linear distortion characteristic shown in FIG. 7 is obtained. In this case, it is easy to change the characteristics of the linearity correction coil 6b to the characteristics shown in FIG. 7C by rotating the magnet 6a.

次に、この第7図Cの特性を持った直線性補正コイル6
bによって補正された残余の非直線性歪、すなわち、残
余の歪の補正に係る歪特性は発振周波数15に&におい
て、第7図dに示す特性曲線で表される特性となり、発
振周波数33に七では第7図eに示す特性曲線で表され
る特性となることが諒解されよう。
Next, the linearity correction coil 6 having the characteristics shown in FIG.
The residual nonlinear distortion corrected by b, that is, the distortion characteristics related to the correction of the residual distortion, have the characteristics expressed by the characteristic curve shown in FIG. 7, it will be understood that the characteristics are expressed by the characteristic curve shown in FIG. 7e.

そこで、次に、この第7図dS eに係るCRTの画面
右側に係る歪補正特性の発生手段について説明する。こ
の場合、当該歪補正特性、すなわち、水平発振周波数1
5KHzにおいて画面の右側を第7図dの特性曲線上の
上方に補正する特性、33KHzにおいて画面の右側を
第7図eの特性曲線上の下方に特性とすることを、入力
する映像信号の水平発振周波数、すなわち、走査線数の
変化に対応して自動的に生成することが可能となれば、
異なる走査線数を有する前記診断装置の映像信号を歪な
く同一のCRTモニタ上に表示出来ることが自明である
。次にその補正特性に係る補正信号の生成過程を説明す
る。
Next, a description will be given of the means for generating the distortion correction characteristic on the right side of the screen of the CRT shown in FIG. 7dSe. In this case, the distortion correction characteristic, that is, the horizontal oscillation frequency 1
At 5 KHz, the right side of the screen is corrected above the characteristic curve shown in Figure 7 d, and at 33 KHz, the right side of the screen is corrected below the characteristic curve shown in Figure 7 e, depending on the horizontal direction of the input video signal. If it were possible to automatically generate the oscillation frequency in response to changes in the number of scanning lines,
It is obvious that video signals of the diagnostic equipment having different numbers of scanning lines can be displayed on the same CRT monitor without distortion. Next, a process of generating a correction signal related to the correction characteristic will be explained.

先ず、第6図に示す水平発振調波H,A、からコンデン
サ38、半波整流器40を通じて水平発振調波H3□の
半波整流波H3Fが得られる。次に、当該半波整流波H
sFを、例えば、ダイオードの2乗特性を利用した2乗
器42により右上がりの直線性補正波H、,2に変換す
る。そして、この右上がり直線性補正波H!F4は乗算
器36の一方の入力端子に導入される。
First, a half-wave rectified wave H3F of the horizontal oscillation harmonic H3□ is obtained from the horizontal oscillation harmonics H and A shown in FIG. 6 through the capacitor 38 and the half-wave rectifier 40. Next, the half-wave rectified wave H
sF is converted into a linearity correction wave H, , 2 with an upward slope to the right by, for example, a squarer 42 that utilizes the square characteristic of a diode. And this upward-sloping linearity correction wave H! F4 is introduced into one input terminal of multiplier 36.

一方、前記診断装置から出力される複合映像信号から同
期分離して導入される水平同期信号HsはF/V変換器
44により周波数に比例した電圧に変換される。この場
合、その変換特性は、第8図aに示すように、水平発振
周波数fHに比例して補正電圧V141が増加する特性
とされる。
On the other hand, the horizontal synchronizing signal Hs, which is synchronously separated and introduced from the composite video signal output from the diagnostic device, is converted by the F/V converter 44 into a voltage proportional to the frequency. In this case, the conversion characteristic is such that the correction voltage V141 increases in proportion to the horizontal oscillation frequency fH, as shown in FIG. 8a.

そして、当該補正電圧VNIは次段のオペアンプ46で
レベルシフト処理と増幅処理補正され、第8図すに示す
補正特性を有する電圧信号VHzに変換される。この場
合、ゼロクロス点は、例えば、水平発振周波数の24K
Hz点とする。当該補正特性を持った電圧信号■。は前
記乗算器36の他方の入力端子に導入される。
Then, the correction voltage VNI is subjected to level shift processing and amplification processing correction in the next stage operational amplifier 46, and is converted into a voltage signal VHz having correction characteristics shown in FIG. In this case, the zero crossing point is, for example, 24K of the horizontal oscillation frequency.
Hz point. Voltage signal with the relevant correction characteristics■. is introduced into the other input terminal of the multiplier 36.

次いで、乗算器36では、前記直線性補正波H3F2と
前記放射線電圧信号vnzとが乗算処理される。この時
、水平発振周波数が15KHzの場合であれば、入力す
る信号は反転されるので、第6図に示す第1の直線性補
正電圧関数Helが発生する。若し、水平発振周波数が
33に1(zの場合であれば、符号は反転されず、第2
の直線性補正電圧関数I(czが発生する。
Next, the multiplier 36 multiplies the linearity correction wave H3F2 and the radiation voltage signal vnz. At this time, if the horizontal oscillation frequency is 15 KHz, the input signal is inverted, so that the first linearity correction voltage function Hel shown in FIG. 6 is generated. If the horizontal oscillation frequency is 33 to 1 (z), the sign is not inverted and the second
A linearity correction voltage function I(cz is generated).

この2つの補正電圧関数HcIとHCZは前記第7図d
およびeに示す歪特性を反転した波形と相似な波形とな
っている。このため、当該補正電圧関数HCIとHCZ
を第1の可変抵抗器34で適当に分圧した電圧とした上
で、前記CRT2のサブヨーク24に導入することによ
り水平非直線歪を補正することが出来る。
These two correction voltage functions HcI and HCZ are shown in Fig. 7d above.
The waveforms are similar to the waveforms obtained by inverting the distortion characteristics shown in and e. Therefore, the correction voltage functions HCI and HCZ
Horizontal nonlinear distortion can be corrected by appropriately dividing the voltage using the first variable resistor 34 and introducing the voltage into the sub-yoke 24 of the CRT 2.

以上のように、本発明によれば、各種診断装置を構成す
る異種の撮像デバイスから出力される走査線数の異なる
映像信号を同一のCRTモニタに表示する際、CRTモ
ニタの管面上の水平偏向に係る非直線歪を自動的に補正
するために、8字補正コンデンサと直線性補正コイルお
よびサブヨークを適切に配置し、その上で関数発生器を
配設したことにより前記サブヨークに供給される補正用
電流を走査線数に対応してダイナミックに変化させるこ
とが可能となる。その結果、水平偏向に係るCRTモニ
タの非直線歪を顕著に低減し、このため、前記補正素子
の再調整に係る時間損失の著しい削減を達成することが
出来る効果を奏する。
As described above, according to the present invention, when displaying video signals with different numbers of scanning lines outputted from different types of imaging devices constituting various diagnostic devices on the same CRT monitor, horizontal In order to automatically correct nonlinear distortion related to deflection, a figure-8 correction capacitor, a linearity correction coil, and a sub-yoke are appropriately arranged, and a function generator is provided on top of the 8-character correction capacitor, which is supplied to the sub-yoke. It becomes possible to dynamically change the correction current in accordance with the number of scanning lines. As a result, the non-linear distortion of the CRT monitor related to horizontal deflection is significantly reduced, and therefore the time loss related to readjustment of the correction element can be significantly reduced.

以上、本発明について好適な実施態様を挙げて説明した
が、本発明はこの実施態様に限定されるものではなく、
本発明の要旨を逸脱しない範囲において種々の改良並び
に設計の変更が可能なことは勿論である。
Although the present invention has been described above with reference to preferred embodiments, the present invention is not limited to these embodiments.
Of course, various improvements and changes in design are possible without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCRTモニタの3字補正コンデンサに係る模式
図とその特性図、 第2図はCRTモニタの指数関数的歪を表す模式図とそ
の特性図、 第3図は補正素子のインピーダンス特性図、第4図は従
来の水平直線性補正回路図、第5図は水平偏向に係る調
波を示す図、第6図は本発明に係る直線性補正回路図、
第7図は本発明に係る直線性補正回路の波形説明図、 第8図は本発明に係る直線性補正回路の特性の一部を説
明する説明図である。 2・・・CRT        4・・・水平偏向ヨー
ク6b・・・直線性補正コイル 10・・・3字補正コンデンサ 22・・・水平出力回
路24・・・サブヨーク ←     偏向距離     。 FIG、3 ↑ 左  −偏1’1lffn!    =  右左  −
偏向距離   −右 FIG、5
Figure 1 is a schematic diagram and its characteristic diagram related to the three-figure correction capacitor of a CRT monitor. Figure 2 is a schematic diagram showing the exponential distortion of a CRT monitor and its characteristic diagram. Figure 3 is an impedance characteristic diagram of the correction element. , FIG. 4 is a conventional horizontal linearity correction circuit diagram, FIG. 5 is a diagram showing harmonics related to horizontal deflection, and FIG. 6 is a linearity correction circuit diagram according to the present invention.
FIG. 7 is an explanatory diagram of waveforms of the linearity correction circuit according to the invention, and FIG. 8 is an explanatory diagram illustrating part of the characteristics of the linearity correction circuit according to the invention. 2...CRT 4...Horizontal deflection yoke 6b...Linearity correction coil 10...3-character correction capacitor 22...Horizontal output circuit 24...Sub yoke ← Deflection distance. FIG, 3 ↑ Left - biased 1'1lffn! = Right left −
Deflection distance - right FIG, 5

Claims (2)

【特許請求の範囲】[Claims] (1)CRTの管面略左側の歪を水平偏向ヨークと直列
に接続したS字補正コンデンサと非直線補正コイルによ
って補正し、管面略右側の歪を水平発振周波数によって
出力が制御される関数発生器の出力信号をサブヨークに
供給して補正するように構成することを特徴とする水平
偏向系の直線性補正回路。
(1) A function in which the distortion on the left side of the CRT tube surface is corrected by an S-shaped correction capacitor and a nonlinear correction coil connected in series with the horizontal deflection yoke, and the output of distortion on the right side of the tube surface is controlled by the horizontal oscillation frequency. A linearity correction circuit for a horizontal deflection system, characterized in that it is configured to supply an output signal of a generator to a sub-yoke for correction.
(2)特許請求の範囲第1項記載の回路において関数発
生器は乗算器を有し、当該乗算器の一方の入力端子には
半波整流器と2乗器の直列回路を接続し、他方の入力端
子にはF/V変換器とレベルシフト器からなる直列回路
を接続するよう構成してなる水平偏向系の直線性補正回
路。
(2) In the circuit described in claim 1, the function generator has a multiplier, one input terminal of the multiplier is connected to a series circuit of a half-wave rectifier and a squarer, and the other input terminal is connected to a series circuit of a half-wave rectifier and a squarer. A horizontal deflection system linearity correction circuit configured to connect a series circuit consisting of an F/V converter and a level shifter to the input terminal.
JP62002747A 1987-01-09 1987-01-09 Horizontal deflection system linearity correction circuit Expired - Fee Related JPH06105958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62002747A JPH06105958B2 (en) 1987-01-09 1987-01-09 Horizontal deflection system linearity correction circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62002747A JPH06105958B2 (en) 1987-01-09 1987-01-09 Horizontal deflection system linearity correction circuit

Publications (2)

Publication Number Publication Date
JPS63171070A true JPS63171070A (en) 1988-07-14
JPH06105958B2 JPH06105958B2 (en) 1994-12-21

Family

ID=11537943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62002747A Expired - Fee Related JPH06105958B2 (en) 1987-01-09 1987-01-09 Horizontal deflection system linearity correction circuit

Country Status (1)

Country Link
JP (1) JPH06105958B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04207355A (en) * 1990-11-29 1992-07-29 Sharp Corp Stabilized power supply circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129484A (en) * 1980-03-17 1981-10-09 Sony Corp Horizontal linearity corrector
JPS61131168U (en) * 1985-01-31 1986-08-16
JPS61230576A (en) * 1985-04-05 1986-10-14 Hitachi Ltd Sigmoidal correction circuit
JPS62122630A (en) * 1985-11-22 1987-06-03 株式会社トプコン Non-contact type tonometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129484A (en) * 1980-03-17 1981-10-09 Sony Corp Horizontal linearity corrector
JPS61131168U (en) * 1985-01-31 1986-08-16
JPS61230576A (en) * 1985-04-05 1986-10-14 Hitachi Ltd Sigmoidal correction circuit
JPS62122630A (en) * 1985-11-22 1987-06-03 株式会社トプコン Non-contact type tonometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04207355A (en) * 1990-11-29 1992-07-29 Sharp Corp Stabilized power supply circuit

Also Published As

Publication number Publication date
JPH06105958B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
US4795946A (en) Method of and circuit for correcting linearity of horizontal deflection system
US6265836B1 (en) Image distortion compensating apparatus
JPS63171070A (en) Linearity correction circuit for horizontal deflection system
KR20000022942A (en) Image display circuit
US5416818A (en) X-ray TV camera having function to switch a visual field of X-ray image
JPH0259792A (en) Circuit for correcting horizontal s-distortion
EP0089505B1 (en) Crt deflection distortion correcting circuit
JPS5994973A (en) Device for recording image indicated on video on photographic film
JPH08227666A (en) Leakage field reduction device for crt display
WO2002076087A1 (en) Vertical deflection apparatus
JPH07322086A (en) Video,display unit and deflection waveform compensator
KR200160230Y1 (en) Circuit for compensating a n/s distortion of a video display apparatus
KR200160229Y1 (en) Circuit for compensating a n/s distortion of a video display apparatus
JPS5835847A (en) Coil assembly for camera tube
JPH06259543A (en) Picture processor
US5841487A (en) Circuit arrangement for controlling a picture display tube
JPS61100791A (en) Crt display unit
JP2664669B2 (en) Image display device
KR100340459B1 (en) Focusing method for an imaging apparatus
JPH0927919A (en) Moire reduction device
JP3815008B2 (en) Adjustment method of display device
JPS5841028B2 (en) cathode ray tube deflection circuit
Ichikawa et al. Novel MTF measurement method for medical image viewers using a bar pattern image
JP2888268B2 (en) Display device
JPS61127280A (en) Picture display device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees