JPS63170648A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS63170648A
JPS63170648A JP158987A JP158987A JPS63170648A JP S63170648 A JPS63170648 A JP S63170648A JP 158987 A JP158987 A JP 158987A JP 158987 A JP158987 A JP 158987A JP S63170648 A JPS63170648 A JP S63170648A
Authority
JP
Japan
Prior art keywords
charge
layer
charge transport
charge generation
generation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP158987A
Other languages
Japanese (ja)
Inventor
Seiji Ashitani
芦谷 誠次
Kazuya Hongo
和哉 本郷
Mikiko Yokogawa
横川 幹子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP158987A priority Critical patent/JPS63170648A/en
Publication of JPS63170648A publication Critical patent/JPS63170648A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/047Photoconductive layers characterised by having two or more layers or characterised by their composite structure characterised by the charge-generation layers or charge transport layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0525Coating methods

Abstract

PURPOSE:To obtain an electrophotographic sensitive body superior in sensitivity and in stability against repeated uses by applying a coating solution for forming an electric charge transfer layer containing a solvent having the solubility of dissolving a material for constituting the layer by >=1wt.% to form it. CONSTITUTION:The electrophotographic sensitive body is constituted by successively laminating the charge transfer layer and the charge generating layer on a conductive substrate, and the charge transfer layer is formed by applying a coating solution containing the solvent having a >=1wt.% solubility of the material for constituting the charge transfer layer, thus permitting the obtained electrophotographic sensitive body to be greatly improved in sensitivity and stability in characteristics at the time of repeated uses by successively laminating both of said layers and controlling the solubility of the coating solution or the charge transfer layer to the charge generating layer.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電荷発生層、電荷輸送層とから成る機能分離型
電子写真感光体に係り、光感度や耐久性上滑れた特性を
有する電子写真感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a functionally separated electrophotographic photoreceptor comprising a charge generation layer and a charge transport layer, and which has excellent properties in terms of photosensitivity and durability. Regarding.

従来の技術 最近、有機光導電体を中心とした電子写真感光体につい
て、それが低コストであるという長所を有することから
種々のものが提案されている。代表的な電荷発生材とし
てはジスアゾ顔料やフタロシアニン顔料などがあげられ
、また、電荷輸送材としてはヒドラゾン化合物、ピラゾ
リン化合物などがあげられ、それらは積層タイプの機能
分離型電子写真感光体の構成成分として用いられている
2. Description of the Related Art Recently, various types of electrophotographic photoreceptors, mainly organic photoconductors, have been proposed because they have the advantage of being low cost. Typical charge-generating materials include disazo pigments and phthalocyanine pigments, and charge-transporting materials include hydrazone compounds and pyrazoline compounds, which are components of laminated, functionally separated electrophotographic photoreceptors. It is used as.

発明が解決しようとする問題点 しかしながら、従来知られている積層タイプの機能分離
型電子写真感光体は、感度及び繰り返し安定性の点で未
だ充分満足すべきものではない。
Problems to be Solved by the Invention However, the conventionally known laminated type functionally separated electrophotographic photoreceptors are still not fully satisfactory in terms of sensitivity and repetition stability.

したがって、本発明の目的は、積層型電子写真感光体の
感度及び繰り返し安定性を従来のものに比して大幅に改
善することにある。
Therefore, an object of the present invention is to significantly improve the sensitivity and repetition stability of a laminated electrophotographic photoreceptor compared to conventional ones.

問題点を解決するための手段 本発明者等は、積層型電子写真感光体、とりわけ、電荷
発生層、電荷輸送層を順次塗布し、積層してなる電子写
真感光体において、電荷輸送層用塗布液の電荷発生層へ
の溶解性をコントロールすることにより、電子写真感光
体の感度及び繰り返し安定性が大きく改善されることを
発見し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have developed a layered electrophotographic photoreceptor, particularly an electrophotographic photoreceptor in which a charge generation layer and a charge transport layer are sequentially coated and laminated. The inventors have discovered that the sensitivity and repetition stability of electrophotographic photoreceptors can be greatly improved by controlling the solubility of the liquid in the charge generation layer, and have completed the present invention.

本発明は、導電性支持体上に、電荷発生層および電荷輸
送層を順次積層してなる電子写真感光体において、電荷
輸送層が、電荷発生層を構成する材料に対し1重量%以
上の溶解度を有する溶剤を溶媒として用いた電荷輸送層
形成用塗布液を塗布することによって形成されたことを
特徴とする。
The present invention provides an electrophotographic photoreceptor in which a charge generation layer and a charge transport layer are sequentially laminated on a conductive support, in which the charge transport layer has a solubility of 1% by weight or more in the material constituting the charge generation layer. It is characterized in that it is formed by applying a coating liquid for forming a charge transport layer using a solvent having as a solvent.

本発明の電子写真感光体において、電荷発生層上に塗布
される電荷輸送層形成用塗布液は、主として、電荷輸送
剤及び結着樹脂よりなる固形分と溶剤とよりなる。
In the electrophotographic photoreceptor of the present invention, the coating liquid for forming a charge transport layer that is coated on the charge generation layer mainly consists of a solid content consisting of a charge transport agent and a binder resin, and a solvent.

本発明においては、電荷輸送層用塗布液に用いる溶剤に
特徴がおって、それが、電荷発生層中の材料に対し、適
度な溶解性をもつことにある。適度な溶解性とは、電荷
発生層上に電荷輸送層を適当な塗布手段によって形成さ
せた場合、その塗布液が、電荷発生層を膨測必るいはそ
の構成材料の一部を溶解させることにより、塗布液中の
電荷輸送剤の一部分を電荷発生層中に拡散させる能力を
有することを意味し、そして、本発明においては、適度
な溶解性とは、電荷発生層を構成する材料に対し、’1
wt%以上、好ましくは5wt%以上の溶解度をもつこ
とを意味する。本発明において、電荷発生層が電荷輸送
層形成用塗布液の溶剤により少なくとも膨潤するために
は、上記の範囲の溶解度が必要である。
In the present invention, the solvent used in the coating solution for the charge transport layer is characterized in that it has appropriate solubility for the material in the charge generation layer. Appropriate solubility means that when a charge transport layer is formed on a charge generation layer by an appropriate coating method, the coating liquid will necessarily swell the charge generation layer or dissolve a part of its constituent materials. In the present invention, appropriate solubility means having the ability to diffuse a portion of the charge transport agent in the coating liquid into the charge generation layer. ,'1
It means having a solubility of at least 5 wt%, preferably at least 5 wt%. In the present invention, solubility within the above range is required in order for the charge generation layer to swell at least with the solvent of the coating solution for forming the charge transport layer.

本発明において、電荷輸送層形成用塗布液を塗布した場
合にあける、溶剤による電荷輸送剤の電荷発生層中への
拡散は、電荷発生材料の種類、電荷輸送層形成のための
塗布方式、電荷輸送層の乾燥条件に大きく左右されるが
、溶剤の溶解度を適宜設定することにより、目的にあっ
た性能を得ることができる。しかしながら、溶解度が’
1wt%未渦の場合、電荷発生層は塗布工程においてほ
とんど膨潤することはなく、電荷発生層への電荷輸送材
の拡散の効果は大きくは期待できない。
In the present invention, the diffusion of the charge transport agent into the charge generation layer by the solvent when the coating solution for forming the charge transport layer is applied depends on the type of charge generation material, the coating method for forming the charge transport layer, the charge Although it is greatly influenced by the drying conditions of the transport layer, by appropriately setting the solubility of the solvent, the desired performance can be obtained. However, the solubility is
In the case of 1 wt% non-vortex, the charge generation layer hardly swells during the coating process, and the effect of diffusion of the charge transport material into the charge generation layer cannot be expected to be large.

本発明において、電荷輸送層用塗布液の溶剤は、また、
電荷輸送材及び結着樹脂を溶解あるいは分散させる能力
の点からも選択される。用いる溶剤としては、多数の有
用な有機溶剤を包含している。
In the present invention, the solvent of the charge transport layer coating solution also includes:
It is also selected from the viewpoint of its ability to dissolve or disperse the charge transport material and the binder resin. The solvents used include many useful organic solvents.

代表的なものとして、例えばベンゼン、トルエン、キシ
レン、メシチレン、クロロベンゼンなどの芳香族系炭化
水素類、アセトン、2−ブタノンなどのケトン類、塩化
メチレン、クロロホルム、塩化エチレンなどのハロゲン
化脂肪族系炭化水素類、テトラヒドロフラン、ジオキサ
ン、エチレングリコール、ジエチルエーテルなどの環状
若しくは、直鎖状のエーテル類など、あるいは、これら
の混合溶剤をあげることができる。
Typical examples include aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, and chlorobenzene, ketones such as acetone and 2-butanone, and halogenated aliphatic carbons such as methylene chloride, chloroform, and ethylene chloride. Examples include hydrogens, cyclic or linear ethers such as tetrahydrofuran, dioxane, ethylene glycol, and diethyl ether, and mixed solvents thereof.

また、電荷輸送剤としては公知のもの、例えばピラゾリ
ン誘導体やヒドラゾン誘導体が用いられるが、例えば特
開昭54−149634号公報に記載されている下記一
般式の化合物が (R1及びR2はそれぞれHまたはCH3を示し、R3
はCH3又はCIを示す) 極めて高い電荷輸送性を示すので、本発明において好適
に用いられる。
Further, as the charge transport agent, known ones such as pyrazoline derivatives and hydrazone derivatives can be used. CH3, R3
(represents CH3 or CI) Since it exhibits extremely high charge transport properties, it is suitably used in the present invention.

また、電荷輸送層用結着樹脂としては、疎水性で、かつ
誘電率が高く、電気絶縁性のフィルム形成性高分子重合
体を用いるのが好ましい。
Further, as the binder resin for the charge transport layer, it is preferable to use a film-forming polymer that is hydrophobic, has a high dielectric constant, and is electrically insulating.

このような高分子重合体としては、例えば次のものをあ
げることができるが、勿論これらに限定されるものでは
ない。
Examples of such high molecular weight polymers include, but are not limited to, the following.

ポリカーボネート、ポリエステル、メタクリル樹脂、ア
クリル樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポ
リスチレン、ポリビニルアセテート、スチレン−ブタジ
ェン共重合体、塩化ビニリデン−アクリロニトリル共重
合体、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−
酢酸ビニルー無水マレイン酸共重合体、シリコン樹脂、
シリコン−アルキッド樹脂、フェノール−ホルムアルデ
ヒド樹脂、スチレン−アルキッド樹脂、ポリ−N−ビニ
ルカルバゾール。
Polycarbonate, polyester, methacrylic resin, acrylic resin, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, styrene-butadiene copolymer, vinylidene chloride-acrylonitrile copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-
Vinyl acetate-maleic anhydride copolymer, silicone resin,
Silicone-alkyd resin, phenol-formaldehyde resin, styrene-alkyd resin, poly-N-vinylcarbazole.

これらの結着樹脂は、単独であるいは2種以上の混合物
として用いることができる。
These binder resins can be used alone or as a mixture of two or more.

本発明において、電荷輸送層用塗布液の組成比は、塗布
方式及び電荷輸送層の膜厚に大きく依存するが、固形分
:溶剤=5〜50:95〜50(wt/wt>ぐらいが
適当である。また、固形分に占める電荷輸送剤の割合は
15〜60wt%が適当である。
In the present invention, the composition ratio of the coating solution for the charge transport layer largely depends on the coating method and the film thickness of the charge transport layer, but it is preferable that solid content: solvent = 5 to 50: 95 to 50 (wt/wt>). Further, the proportion of the charge transport agent in the solid content is suitably 15 to 60 wt%.

本発明において、塗布及び乾燥後の電荷輸送層膜厚は5
〜30μmが適当である。
In the present invention, the thickness of the charge transport layer after coating and drying is 5.
~30 μm is suitable.

本発明の電子写真感光体において、電荷発生層は、電荷
輸送層用塗布液の溶剤により膨潤あるいは一部溶解する
ものであれば、任意の材料を選択することができる。
In the electrophotographic photoreceptor of the present invention, any material can be selected for the charge generation layer as long as it swells or partially dissolves in the solvent of the charge transport layer coating solution.

電荷発生層は、電荷発生剤のみより形成されてもよく、
その場合電荷発生剤それ自体が前記溶剤により膨■また
は一部溶解するものであればよい。
The charge generation layer may be formed only from a charge generation agent,
In that case, the charge generating agent itself may swell or partially dissolve in the solvent.

また電荷発生層は電荷発生剤に電荷発生層用結着樹脂を
混合してなる系により形成されていてもよく、その場合
には、前記溶剤により膨潤または一部溶解する結着樹脂
を用いることができる。また使用できる電荷発生剤とし
ては、ジスアゾ顔料、多環縮合系顔料、フタロシアニン
顔料、チアピリリウム顔料、スクェアリウム顔料、三方
晶系セレンなどがあげられる。
Further, the charge generation layer may be formed by a system in which a charge generation agent is mixed with a binder resin for the charge generation layer, and in that case, a binder resin that swells or partially dissolves in the solvent may be used. Can be done. Examples of charge generating agents that can be used include disazo pigments, polycyclic condensation pigments, phthalocyanine pigments, thiapyrylium pigments, squareium pigments, and trigonal selenium.

作用 本発明において、電荷輸送層用溶剤を用いることによる
作用は、次のように考えることができる。
Effects In the present invention, the effects of using the charge transport layer solvent can be considered as follows.

電荷発生層中の材料に対し、溶解性を有する溶剤を電荷
輸送層形成用塗布液の成分として用いることにより、電
荷輸送層の塗布時に、下層である電荷発生層を侵すこと
ができる。この場合、電荷発生層はその層中の材料の上
記溶剤に対する溶解度により、膨潤状態から一部溶解す
る状態まで種々の形態をとり得る。本発明で重要な点は
、前記溶剤による電荷発生層の侵蝕により、電荷発生層
形成用塗液に含まれる電荷輸送剤が電荷発生層中へ拡散
することにある。これは、溶剤が担体(キャリア)とし
て、電荷輸送剤を電荷発生層へ拡散させる働きをするこ
とに起因している。電荷輸送層形成用塗布液を塗布した
後、乾燥f程を経て、電荷発生層及び電荷輸送層中の溶
剤は取り除かれる。その結果、電荷発生層中に電荷輸送
剤が含有されること(なる。電荷発生層中での電荷輸送
剤の含有量は、拡散によるため電荷発生層と電荷輸送層
との界面側の方が多く、基材側へ向かうに従い連続的に
低下するような分布をとっていると推定される。
By using a solvent that is soluble in the material in the charge-generating layer as a component of the coating liquid for forming the charge-transporting layer, it is possible to attack the underlying charge-generating layer when coating the charge-transporting layer. In this case, the charge generation layer can take various forms, from a swollen state to a partially dissolved state, depending on the solubility of the material in the layer in the above-mentioned solvent. An important point in the present invention is that the charge transporting agent contained in the coating liquid for forming the charge generation layer diffuses into the charge generation layer due to the erosion of the charge generation layer by the solvent. This is due to the fact that the solvent functions as a carrier to diffuse the charge transport agent into the charge generation layer. After applying the coating solution for forming a charge transport layer, a drying step is performed to remove the solvent in the charge generation layer and the charge transport layer. As a result, the charge transport agent is contained in the charge generation layer (because the content of the charge transport agent in the charge generation layer is due to diffusion, the more the charge transport agent is on the interface side between the charge generation layer and the charge transport layer). It is estimated that the distribution is such that it continuously decreases toward the base material.

このようにして作製された本発明の電子写真感光体は、
電荷発生層中に、輸送性の高い電荷輸送剤を混在させる
ことができ、感光体の感度及び繰り返し安定性を大きく
改善することができる。この理由は電子写真感光体の潜
像形成プロセスの中で次のように考えることができる。
The electrophotographic photoreceptor of the present invention produced in this way is
A charge transport agent with high transportability can be mixed in the charge generation layer, and the sensitivity and repetition stability of the photoreceptor can be greatly improved. The reason for this can be considered as follows in the latent image forming process of the electrophotographic photoreceptor.

すなわち、電荷発生層中の電荷発生剤に光かめたりキャ
リアが発生すると、キャリアは電荷発生剤粒子内及び粒
子間を移動し、最終的に電荷輸送剤にキャリアを受は渡
すことになる。しかしながら、電荷発生剤粒子間には、
構造欠陥あるいは結着材や不純物などのバリヤ(障害)
が生じやすく、キャリアの移動は必ずしも速くない。そ
れに対し、本発明におけるように、電荷発生層中に電荷
輸送剤を意図的に混在させると、個々の電荷発生剤の′
周囲に多数の電荷輸送剤が存在する状態になり、電荷発
生剤によって発生したキャリアは、すばやく粒子界面に
存在する電荷輸送剤へと注入し、電荷発生層中を電荷輸
送剤を通して移動でき、最終的に電荷輸送層へのキャリ
ア移動がスムースに行われることになる。したがって、
電荷輸送性が向上した分、見かけ上感度は増加する。
That is, when the charge generation agent in the charge generation layer is illuminated or carriers are generated, the carriers move within and between the particles of the charge generation agent, and eventually are transferred to and delivered to the charge transport agent. However, between the charge generating agent particles,
Structural defects or barriers such as binders or impurities
is likely to occur, and carrier movement is not necessarily fast. On the other hand, when a charge transport agent is intentionally mixed in the charge generation layer as in the present invention, the
A large number of charge transport agents are present in the surrounding area, and the carriers generated by the charge generation agent can quickly inject into the charge transport agent present at the particle interface and move through the charge transport agent in the charge generation layer, resulting in the final Therefore, carrier movement to the charge transport layer is carried out smoothly. therefore,
The apparent sensitivity increases as the charge transportability improves.

また、従来の電子写真感光体では、繰り返し使用するこ
とにより、電荷発生剤粒子界面において、前記のような
バリヤが、キャリアのトラップ・サイト(捕獲中心)と
なりやすく、その分、電荷発生層中に空間電荷がたまり
やすくなり、電子写真感光体の繰り返し安定性が極めて
悪くなる。しかしながら、本発明の如く、電荷発生層中
に電荷輸送剤を混在させてやることによりキャリア移動
がスムースに行われるため、トラップ・サイトは形成さ
れにくくなる。また、トラップ・サイトが存在してもキ
ャリア移動は電荷輸送剤を経ることによって影響を受け
にくくなる。
In addition, in conventional electrophotographic photoreceptors, when used repeatedly, the above-mentioned barrier tends to become a trap site (capture center) for carriers at the charge generating agent particle interface, and accordingly, the barrier in the charge generating layer becomes a trap site (capture center) for the carrier. Space charges tend to accumulate, and the repetition stability of the electrophotographic photoreceptor becomes extremely poor. However, as in the present invention, by mixing a charge transporting agent in the charge generation layer, carrier movement is carried out smoothly, so that trap sites are less likely to be formed. Furthermore, even if a trap site exists, carrier movement is less affected by passing through a charge transport agent.

また、電荷発生層と電荷輸送層との界面においては、電
荷輸送剤の濃度分布が連続的になり、このため、電荷発
生層と電荷輸送層との界面における電荷発生層から電荷
輸送層へのキャリアの注入が、極めてスムースに行われ
ることが予測される。
In addition, the concentration distribution of the charge transport agent becomes continuous at the interface between the charge generation layer and the charge transport layer, and therefore, the concentration distribution of the charge transport agent from the charge generation layer to the charge transport layer at the interface between the charge generation layer and the charge transport layer becomes continuous. It is predicted that carrier injection will be performed extremely smoothly.

実施例 以下、本発明を実施例にしたがって具体的に説明するが
、これにより本発明が実施例に限定されるものではない
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to the Examples.

三方晶系セレン24重量部と、フェノキシ樹脂(ユリオ
ン・カーバイド社製、グレードPKHH>6重量部をテ
トラヒドロフラン300重量部に溶かした溶液とを混合
し、ボールミルで20時間分散した後、ワイヤバーを用
いて導電性支持体<100μm厚さのA9シート)上に
塗布、乾燥して厚さ約0.3μ■の電荷発生層を形成さ
せた。
24 parts by weight of trigonal selenium and a solution of phenoxy resin (manufactured by Yurion Carbide, grade PKHH > 6 parts by weight dissolved in 300 parts by weight of tetrahydrofuran) were mixed and dispersed in a ball mill for 20 hours, and then dispersed using a wire bar. A charge generating layer having a thickness of about 0.3 μm was formed by coating on a conductive support (A9 sheet with a thickness of 100 μm) and drying.

次にこの電荷発生層の上に下記の電荷輸送剤10重四部
と、下記のポリ(4,4−−シクロへキシリデン−ジフ
ェニレンカーボネート)であるポリカーボネートZ 10重量部とを塩化メチレン90重量部に溶解した溶液
をワイヤバーを用いて塗布、乾燥して厚さ約20μmの
電荷輸送層を形成させて2層からなる電子写真感光層を
有する電子写真感光体を作製した。
Next, on this charge generation layer, 10 parts by weight of the charge transport agent shown below, 10 parts by weight of polycarbonate Z which is poly(4,4-cyclohexylidene-diphenylene carbonate) shown below, and 90 parts by weight of methylene chloride were added. A solution dissolved in the above was applied using a wire bar and dried to form a charge transport layer having a thickness of about 20 μm, thereby producing an electrophotographic photoreceptor having a two-layer electrophotographic photosensitive layer.

電荷輸送層用塗布液に用いた塩化メチレンは電荷発生層
を構成する材料であるフェノキシ樹脂に対し約4Qwt
%の溶解度を有している。
The amount of methylene chloride used in the coating solution for the charge transport layer was approximately 4Qwt based on the phenoxy resin that is the material constituting the charge generation layer.
It has a solubility of %.

この電子写真感光体を円筒状シリンダーに貼りつけてこ
れを複写機(富士ゼロックス■製3500を改造したも
の)に装着した。この複写機は、シリンダーの周囲に負
極性帯電器、露光光学系、除電光学系等を配置しており
、シリンダーの回転に伴ない、順次各工程の操作が繰り
返し行われ、そして電子写真感光体の表面電位をシリン
ダー周囲の数ケ所にて測定することができるようになっ
ている。
This electrophotographic photoreceptor was attached to a cylindrical cylinder, and this was installed in a copying machine (a modified version of Fuji Xerox 3500). This copying machine has a negative charger, an exposure optical system, a static elimination optical system, etc. arranged around the cylinder, and as the cylinder rotates, each process is repeated in sequence. The surface potential of the cylinder can be measured at several locations around the cylinder.

この実施例の電子写真感光体での帯電特性を第1表中に
示す。
Charging characteristics of the electrophotographic photoreceptor of this example are shown in Table 1.

比較例 電荷輸送層用塗布液の溶剤として、モノクロルベンゼン
を用いた以外は実施例と同様にして電子写真感光体を得
た。モノクロルベンゼンはフェノキシ樹脂に対し、溶解
度1wt%より以下で、殆ど溶解能力を有しない。
Comparative Example An electrophotographic photoreceptor was obtained in the same manner as in the example except that monochlorobenzene was used as the solvent for the charge transport layer coating solution. Monochlorobenzene has a solubility of less than 1 wt% in phenoxy resin, and has almost no dissolving ability.

この比較例の電子写真感光体での帯電特性を第1表中に
示す。
Charging characteristics of the electrophotographic photoreceptor of this comparative example are shown in Table 1.

(単位:マイナスボルト) E1/2・・・VDの電位を172に減衰させるのに必
要な光量(単位:erg/Cd) VL・・・・・・コピ一時、白地部分に相当する明部電
位(単位:マイナスボルト) 発明の効果 本発明の電子写真゛感光体は、前記の構成を有するから
、上記実施例及び比較例から明らかなように優れた感度
を有し、また、繰り返し使用した場合の安定性において
も優れている。
(Unit: Minus Volt) E1/2... Amount of light required to attenuate the potential of VD to 172 (Unit: erg/Cd) VL... Bright area potential corresponding to the white area at the time of copying (Unit: minus volt) Effects of the Invention Since the electrophotographic photoreceptor of the present invention has the above-described structure, it has excellent sensitivity as is clear from the above Examples and Comparative Examples, and also has excellent sensitivity when used repeatedly. It also has excellent stability.

本発明による電子写真感光体は、電子写真複写機のほか
、ゼログラフィー技術を応用した各種のプリンター、マ
イクロフィルムリーダー、電子写真製版システムなどに
も広く用いることができる。
The electrophotographic photoreceptor according to the present invention can be widely used not only in electrophotographic copying machines but also in various printers that apply xerography technology, microfilm readers, electrophotographic engraving systems, and the like.

Claims (2)

【特許請求の範囲】[Claims] (1)導電性支持体上に、電荷発生層および電荷輸送層
を順次積層してなる電子写真感光体において、電荷輸送
層が、電荷発生層を構成する材料に対し、1重量%以上
の溶解度を有する溶剤を溶媒として用いた電荷輸送層形
成用塗布液を塗布することによって形成されたことを特
徴とする電子写真感光体。
(1) In an electrophotographic photoreceptor in which a charge generation layer and a charge transport layer are sequentially laminated on a conductive support, the charge transport layer has a solubility of 1% by weight or more in the material constituting the charge generation layer. 1. An electrophotographic photoreceptor, characterized in that it is formed by coating a coating liquid for forming a charge transport layer using a solvent having as a solvent.
(2)電荷発生層を構成する材料が結着樹脂であること
を特徴とする特許請求の範囲第1項記載の電子写真感光
体。
(2) The electrophotographic photoreceptor according to claim 1, wherein the material constituting the charge generation layer is a binder resin.
JP158987A 1987-01-09 1987-01-09 Electrophotographic sensitive body Pending JPS63170648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP158987A JPS63170648A (en) 1987-01-09 1987-01-09 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP158987A JPS63170648A (en) 1987-01-09 1987-01-09 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS63170648A true JPS63170648A (en) 1988-07-14

Family

ID=11505702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP158987A Pending JPS63170648A (en) 1987-01-09 1987-01-09 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS63170648A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8753239B2 (en) 2008-12-19 2014-06-17 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power transmission device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8753239B2 (en) 2008-12-19 2014-06-17 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power transmission device

Similar Documents

Publication Publication Date Title
EP0435634B1 (en) Conductive and blocking layers for electrophotographic imaging members
US4327169A (en) Infrared sensitive photoconductive composition, elements and imaging method using trimethine thiopyrylium dye
US5244762A (en) Electrophotographic imaging member with blocking layer containing uncrosslinked chemically modified copolymer
US4297425A (en) Imaging member
JP2565598B2 (en) Conductive and blocking layers for electrophotographic imaging members
US7223507B2 (en) Imaging members
JPH0670718B2 (en) Electrophotographic image forming member
JP4865261B2 (en) Photoconductive member
US20030186158A1 (en) Electrophotographic imaging method
JP2006317939A (en) Photoreceptors
JPS63170648A (en) Electrophotographic sensitive body
US5384223A (en) Photoconductive imaging members with polymer binders
GB2059617A (en) Electrophotographic materials
JP3281968B2 (en) Negatively charged single-layer type electrophotographic photoreceptor
JP3042383B2 (en) Electrophotographic photoreceptor
JP2707795B2 (en) Electrophotographic photoreceptor
JPS63278065A (en) Electrophotographic sensitive body
EP0448780A1 (en) Electrophotographic imaging member
JPH1069104A (en) Electrophotographic photoreceptor and electrophotographic device
GB1603279A (en) Electrophotographic materials
JP2903714B2 (en) Laminated photoreceptor
JP2004062211A (en) Electrophotographic photoreceptor, electrophotographic drum, electrophotographic cartridge, and image forming device
JPH10254151A (en) Electrophotographic image forming member having resistance to diminution of electric charge
JPS6135551B2 (en)
JPH08227166A (en) Electrophotographic photoreceptor