JPS63169557A - Hydrazine concentration measuring instrument - Google Patents

Hydrazine concentration measuring instrument

Info

Publication number
JPS63169557A
JPS63169557A JP136087A JP136087A JPS63169557A JP S63169557 A JPS63169557 A JP S63169557A JP 136087 A JP136087 A JP 136087A JP 136087 A JP136087 A JP 136087A JP S63169557 A JPS63169557 A JP S63169557A
Authority
JP
Japan
Prior art keywords
reaction
hydrazine
liquid
reaction tube
flow cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP136087A
Other languages
Japanese (ja)
Other versions
JPH0672874B2 (en
Inventor
Hiroshi Yoshida
弘 吉田
Munemitsu Asano
浅野 宗光
Kiyoshi Ogawa
清 小川
Shizuo Kitahama
北浜 静夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Chubu Electric Power Co Inc
DKK Corp
Original Assignee
Chubu Electric Power Co Inc
DKK Corp
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, DKK Corp, Denki Kagaku Kogyo KK filed Critical Chubu Electric Power Co Inc
Priority to JP136087A priority Critical patent/JPH0672874B2/en
Publication of JPS63169557A publication Critical patent/JPS63169557A/en
Publication of JPH0672874B2 publication Critical patent/JPH0672874B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To quickly measure hydrazine by heating a liquid mixture contg. the hydrazine, color forming reagent, etc. to bring the liquid into reaction so that the liquid forms a color, measuring the light absorptivity with a flow cell and specifying the capacities of respective apparatus to specific sizes. CONSTITUTION:The hydrazine, color forming reagent (p-dimethylaminobenzaldehyde) and diluent are put into a mixer 3 and are mixed. The liquid mixture is fed to a reaction tube 13 and is brought into reaction so that the liquid forms the color. The absorbancy is measured by the flow cell 19 and the hydrazine concn. is analyzed. The reaction is accelerated by heating the mixer 3 and the reaction tube 13 to about 40 deg.C at this time. The relations between the liquid capacity VM of the mixer 3, the capacity VR of the reaction tube 13, the capacity VC of the flow cell 19 and the discharge rate VP of a fixed delivery pump are specified to VM>VP VR>=5VC. Since these capacities are related in the above-mentioned manner, the cleaning of the mixer 3 during the reaction in the reaction tube 13 is possible. The liquid mixture can be admitted into the flow cell 19 while the flow passage 20 thereof is jointly cleaned. Since reaction is carried out at the high temp. and the capacities of the apparatus are specified to the specific sizes, the hydrazine concn. is quickly measured.

Description

【発明の詳細な説明】 及星上辺■里分互 本発明は、ヒドラジン濃度測定装置に関し、更に詳述す
ると、火力発電所ボイラユニットの起動排水処理装置人
出口における起動排水中のヒドラジン濃度を連続測定す
る場合に特に好適に使用される測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrazine concentration measuring device, and more specifically, to a device for measuring hydrazine concentration, and more specifically, to continuously measure the hydrazine concentration in startup wastewater at the exit of a startup wastewater treatment equipment of a thermal power plant boiler unit. The present invention relates to a measuring device particularly suitable for use in measurements.

従来勿技先 火力発電所においては、ユニットの停止時にボイラヘヒ
ドラジンを注入して蒸発管の防食を図っているが、その
起動排水はCOD (化学的酸素要求量)が高いため、
ヒドラジンを起動排水処理装置で分解してから排水して
いる。この場合、ヒドラジンと反応する分解剤は当量注
入することが必要であり、このためには排水中のヒドラ
ジン濃度を予め検知しておかなければならない。
Conventionally, at the Muwazasa thermal power plant, hydrazine is injected into the boiler when the unit is stopped to prevent corrosion of the evaporator pipes, but since the start-up wastewater has a high COD (chemical oxygen demand),
Hydrazine is decomposed in the activated wastewater treatment equipment before being discharged. In this case, it is necessary to inject an equivalent amount of the decomposer that reacts with hydrazine, and for this purpose, the hydrazine concentration in the waste water must be detected in advance.

従って、起動排水処理装置の運用管理においては起動排
水中のヒドラジン濃度を常時計測することが必要となり
、このため起動排水中のヒドラジン濃度をJISに規定
されたp−ジメチルアミノベンズアルデヒド比色法に基
づく手分析法によって測定したり、ORP計を用いて測
定することが従来行なわれている。
Therefore, in the operational management of startup wastewater treatment equipment, it is necessary to constantly measure the hydrazine concentration in the startup wastewater, and for this reason, the hydrazine concentration in the startup wastewater is measured based on the p-dimethylaminobenzaldehyde colorimetric method specified in JIS. Conventionally, it has been measured by manual analysis or by using an ORP meter.

発明が解決しようとする問題へ しかしながら、上述した手分析による方法は迅速性に欠
けるという問題があり、また○RP計による方法は正確
な測定値を得ることができないという欠点を有する。従
って、これらの方法によっては起動排水処理装置の運用
管理を充分満足に行なうことができないのが実情である
Problems to be Solved by the Invention However, the above-mentioned method using manual analysis lacks speed, and the method using an RP meter has the disadvantage that accurate measured values cannot be obtained. Therefore, the reality is that these methods cannot fully and satisfactorily manage the operation of the activated wastewater treatment equipment.

このため、起動排水中のヒドラジン濃度をJISに規定
されたp−ジメチルアミノベンズアルデヒド法に基いて
正確に、がっ短時間で自動測定し得る手段が要望されて
いるが、満足すべき提案は未だなされていないのが実情
であった。
For this reason, there is a need for a means to automatically measure the hydrazine concentration in startup wastewater accurately and in a short time based on the p-dimethylaminobenzaldehyde method specified in JIS, but no satisfactory proposal has yet been found. The reality is that nothing has been done.

皿貝孟1邂 するための手 本発明者らは、上記事情に鑑み、上述したJIS法に基
づく自動測定装置を得るために種々検討を行なった結果
、下記■〜■の知見をなした。
In view of the above circumstances, the inventors of the present invention conducted various studies in order to obtain an automatic measuring device based on the above-mentioned JIS method, and as a result, the following findings were made.

即ち。That is.

■JIS法では発色試薬を添加した後発色が安定するま
でに1o分間を要し、これでは分析時間の要求を満足で
きない。
(2) In the JIS method, it takes 10 minutes for color development to stabilize after adding a coloring reagent, which does not satisfy the analysis time requirements.

これに対し、反応温度を10〜40℃の範囲で変化させ
ながら吸光度の時間的変化を調べたところ、後述するよ
うに常温では10分間を要するが、40℃では3分間で
発色反応が完了することを見い出した。但し、感度低下
を生ずるが、起動排水の測定においては感度余裕が大き
く、大量希釈を行なうので問題はない、一方、JISで
は温度管理の必要性は述べられていない。
On the other hand, when we investigated the change in absorbance over time while changing the reaction temperature in the range of 10 to 40°C, we found that the coloring reaction takes 10 minutes at room temperature, but completes in 3 minutes at 40°C, as described below. I discovered that. However, although this results in a decrease in sensitivity, there is no problem since there is a large sensitivity margin in the measurement of start-up wastewater and a large amount of dilution is performed.On the other hand, JIS does not mention the necessity of temperature control.

■上記■の条件では発色反応に3分間を要するが、バッ
チ法によって測定を行なう場合にはこの他に反応容器へ
のサンプル水及び試薬の注入時間、反応後の液の排出時
間及び反応容器の洗浄時間を要し、これらを加えると更
に2分以上が必要となるため、5分以上の間隔でしか分
析できない、これに対し、サンプル水及び試薬の混合部
と反応部とを別体とし、混合後の液を反応部に送り、反
応部で反応させている間に混合部の洗浄を行ない、次の
サンプル水を受は入れられるようにしておけば上記時間
を短縮することができ、3分程度の間隔で分析を行なう
ことができることを見い出した。
■ Under the conditions of ■ above, the color reaction takes 3 minutes, but when measuring by batch method, the time required to inject sample water and reagents into the reaction container, the time to drain the liquid after the reaction, and the time required to drain the reaction container. Washing time is required, and if these are added, an additional 2 minutes or more is required, so analysis can only be performed at intervals of 5 minutes or more.In contrast, the sample water and reagent mixing section and the reaction section are separated, The above time can be shortened by sending the mixed solution to the reaction section and cleaning the mixing section while it is being reacted in the reaction section so that it can receive the next sample water. It has been found that analysis can be performed at intervals of about minutes.

■■のように混合部と反応部とを別体にする場合、反応
部は混合液で共洗いをすることになるので1反応部は共
洗いし易い構造とし、かつ混合部及び反応部内の混合液
を加温し、例えば40℃に保持する。また、吸光度測定
セルをフローセルとし、これも共洗いが容易に行なえる
構造にする。
When the mixing part and the reaction part are separated as in ■■, the reaction part will be co-washed with the mixed liquid, so one reaction part should have a structure that makes it easy to wash together, and the inside of the mixing part and reaction part should be The mixed solution is heated and maintained at, for example, 40°C. In addition, the absorbance measurement cell is a flow cell, which also has a structure that allows easy co-washing.

更に、このフローセルに希望する測定時間間隔で作動す
る定量ポンプを連結し、この定量ポンプの作動によって
混合液を混合部から反応部へ移送して反応を続行、終了
させた後、次回の定量ポンプの作動により反応部からフ
ローセルにこのフローセルを共洗いしつつ混合液を移送
し、フローセルにて吸光度測定を行なうようにすること
、この場合混合部内の液量を反応部の容量より大きく、
反応部の容量を定量ポンプの一単位動作による吐出量と
ほぼ等しく、かつ反応部の容量をフローセルの容量の5
倍以上に形成することにより、反応部、フローセルの共
洗いが良好に行なわれ、正確な分析が行なわれることを
見い出した。
Furthermore, a metering pump that operates at the desired measurement time interval is connected to this flow cell, and the operation of this metering pump transfers the mixed liquid from the mixing section to the reaction section to continue and complete the reaction, and then the next metering pump is activated. The mixed liquid is transferred from the reaction part to the flow cell while washing the flow cell together with the flow cell, and the absorbance is measured in the flow cell.In this case, the liquid volume in the mixing part is made larger than the capacity of the reaction part.
The capacity of the reaction section is approximately equal to the discharge amount per unit operation of the metering pump, and the capacity of the reaction section is 5 times the capacity of the flow cell.
It has been found that by making the size more than double the size, the reaction section and the flow cell can be washed together well, and accurate analysis can be performed.

即ち、混合液を加温し、例えば40℃に保持すること、
混合部と反応部とを別体に形成すること。
That is, heating the liquid mixture and maintaining it at, for example, 40°C;
The mixing section and the reaction section are formed separately.

混合部1反応部、フローセル及び定量ポンプを順次連結
すると共に、これらの容量を上述した関係とすることに
より、ヒドラジン濃度をJIS法によって正確かつ短時
間(例えば3分間という短い間隔)で測定できることを
知見したものである。
By sequentially connecting the mixing section 1 reaction section, the flow cell, and the metering pump and setting their capacities in the above-mentioned relationship, it has been shown that the hydrazine concentration can be measured accurately and in a short time (for example, at short intervals of 3 minutes) using the JIS method. This is what I found out.

従って、本発明は、ヒドラジンを含むサンプル液、希釈
液及びヒドラジンと反応して発色する発色試薬が注入、
混合される混合容器並びにこの混合容器内の被検液を加
温状態に保持する保温機構を備えた混合セルと、内部を
被検液が流通する反応管及びこの反応管内の被検液を加
温状態に保持する保温機構を備えた反応セルと、内部に
被検液流路を有し、この流路を流れる被検液の吸光度を
測定するフローセルと、定量ポンプとを順次連結してな
り、この定量ポンプを所定時間間隔で作動することによ
り上記混合容器中の被検液を反応管及びフローセルに順
次移送させると共に、上記混合容器内の液11t V 
M、反応管の容量VR、フローセルの被検液流路の容量
Vc及び定量ポンプの一単位動作による吐出量■Pを下
記式(1)%式%(1) で示される関係に設定したことを特徴とするヒドラジン
濃度測定装置を提供することを目的とする。
Therefore, in the present invention, a sample solution containing hydrazine, a dilution solution, and a coloring reagent that develops color by reacting with hydrazine are injected,
A mixing cell to be mixed, a mixing cell equipped with a heat retention mechanism to keep the test liquid in the mixing container in a heated state, a reaction tube through which the test liquid flows, and a reaction tube to heat the test liquid in the reaction tube. It consists of a reaction cell equipped with a heat retention mechanism that maintains the temperature, a flow cell that has a flow path for the test liquid inside and measures the absorbance of the test liquid flowing through this flow path, and a metering pump that are connected in sequence. By operating this metering pump at predetermined time intervals, the test liquid in the mixing container is sequentially transferred to the reaction tube and the flow cell, and the liquid in the mixing container 11t V
M, the capacity VR of the reaction tube, the capacity Vc of the sample liquid flow path of the flow cell, and the discharge amount by one unit operation of the metering pump ■P are set in the relationship shown by the following formula (1)% formula % (1) An object of the present invention is to provide a hydrazine concentration measuring device characterized by the following.

作ル 本発明装置においては、混合セル及び反応セル内の混合
液を加温状態、例えばほぼ40℃に保温するようにした
ので、発色反応時間が例えば3分間という短時間に短縮
される上、混合セルと反応セルとを別体に形成し1反応
セルで反応が行なわれている間に混合セルの洗浄等を行
なうことができるようにしたので、これらに要する時間
を節約することができ、従って、短時間の測定周期でヒ
ドラジン濃度を正確に測定し得るものである、次に実施
例を示し、本発明を具体的に説明するが、本発明は下記
実施例に制限されるものではなし111 1庭舛 第1図は本発明の一実施例に係るヒドラジン濃度測定装
置を示すものである。
In the apparatus of the present invention, the mixed liquid in the mixing cell and the reaction cell is kept in a heated state, for example at approximately 40°C, so that the color development reaction time is shortened to a short time of, for example, 3 minutes. Since the mixing cell and the reaction cell are formed separately so that the mixing cell can be cleaned while the reaction is being carried out in one reaction cell, the time required for these steps can be saved. Therefore, it is possible to accurately measure the hydrazine concentration in a short measurement cycle.The present invention will be specifically explained by referring to Examples, but the present invention is not limited to the following Examples. 111 1 Figure 1 shows a hydrazine concentration measuring device according to an embodiment of the present invention.

図中1は略筒形の水シャケブト2内に混合容器3が挿入
されてなる混合セルで、この混合セル1の混合容器3内
にはサンプル水流人管4、希釈/洗浄水流入管5及び発
色試薬流入管6の一端部がそれぞれ連通しており、制御
部(図示せず)の制御によって混合容器3内にサンプル
水、希釈/洗浄水及び発色試薬(p−ジメチルアミノベ
ンズアルデヒド)がそれぞれ注入されるようになってい
る。なお、7は先端部が混合容器3内に挿入された攪拌
捧、8はこの攪拌捧7に連結された回転モータ、9は混
合容器3下端の排出口3aに連結された排出管、10は
この排出管9に介装された電磁バルブである。
In the figure, 1 is a mixing cell in which a mixing container 3 is inserted into a substantially cylindrical water tank 2. The mixing container 3 of this mixing cell 1 contains a sample water flow pipe 4, a diluting/washing water inflow pipe 5, and a coloring water container 3. One end of the reagent inflow tubes 6 are in communication with each other, and sample water, dilution/washing water, and coloring reagent (p-dimethylaminobenzaldehyde) are respectively injected into the mixing container 3 under the control of a control unit (not shown). It has become so. In addition, 7 is a stirring bar whose tip is inserted into the mixing container 3, 8 is a rotary motor connected to this stirring bar 7, 9 is a discharge pipe connected to the discharge port 3a at the lower end of the mixing container 3, and 10 is a stirring bar connected to the stirring bar 7. This is a solenoid valve installed in the discharge pipe 9.

また、11は筒状水ジヤケツト12内に内径2〜3m程
度のフッ素樹脂系チューブをコイル状に形成してなる反
応管13を配置した反応セルで、上記反応管13の流入
端13aにはその一端が上記混合容器3に連通した連絡
管14の他端が連結されている。
Reference numeral 11 denotes a reaction cell in which a reaction tube 13 formed by coiling a fluororesin tube with an inner diameter of about 2 to 3 m is disposed inside a cylindrical water jacket 12, and an inflow end 13a of the reaction tube 13 has an inlet end 13a. One end of the communication pipe 14 communicates with the mixing container 3, and the other end of the communication pipe 14 is connected to the mixing vessel 3.

なお、15及び16はそれぞれ上記混合セル1の水ジャ
ケット2と反応セル11の水ジャケット12とを連通ず
る第1及び第2循環パイプで、これらのうち第1循環パ
イプ15には恒温水槽17及び循環ポンプ18がそれぞ
れ介装されており、ポンプ18の作動により第1循環パ
イプ15、反応セル11の水ジャケット12、第2循環
パイプ16及び混合セル1の水ジャケット2からなる循
環流路Aを恒温水槽17により所定温度に調整された保
温水が循環し、混合容器3及び反応管13内をそれぞれ
ほぼ40℃に保つようになっている。
Note that 15 and 16 are first and second circulation pipes that communicate the water jacket 2 of the mixing cell 1 and the water jacket 12 of the reaction cell 11, respectively. Circulation pumps 18 are interposed in each case, and the operation of the pumps 18 opens the circulation channel A consisting of the first circulation pipe 15, the water jacket 12 of the reaction cell 11, the second circulation pipe 16, and the water jacket 2 of the mixing cell 1. Insulated water adjusted to a predetermined temperature by a constant temperature water tank 17 is circulated to maintain the inside of the mixing container 3 and the reaction tube 13 at approximately 40°C.

また、19は内部に被検液流路2oが形成され。Further, 19 has a test liquid flow path 2o formed therein.

この流路20を流れる被検液の吸光度を測定する吸光度
測定用フローセルで、このフローセル19の上記被検液
流路20の流入端20aにはその一端が上記反応セル1
1の反応管13の流出端13bに連通した連絡管21の
他端が連結されている。
This flow cell for measuring absorbance measures the absorbance of the test liquid flowing through the flow path 20, and one end thereof is connected to the inflow end 20a of the test liquid flow path 20 of this flow cell 19.
The other end of the communicating tube 21 is connected to the outlet end 13b of the first reaction tube 13.

更に、22は一端が上記フローセル19の被検液流路2
0の流出端20bに連通された排出管で、この排出管2
2には一対のバルブ体23a、23bを有する逆止弁2
3が介装されていると共に、上記バルブ体23a、23
b間には連結パイプ24を介して定量ポンプ(分析間隔
時間と等しい時間毎に動作し、その一単位動作による吐
出量が正確なシリンジポンプ)25が連結され、この定
量ポンプ25の一単位動作毎に上記混合容器3内の被検
液が反応管13.フローセル19に順次移送され、更に
排出管22を通って排出されるようになっている。
Further, 22 has one end connected to the test liquid flow path 2 of the flow cell 19.
This discharge pipe 2 is connected to the outflow end 20b of 0.
2 includes a check valve 2 having a pair of valve bodies 23a and 23b.
3 is interposed, and the valve bodies 23a, 23
A metering pump 25 (a syringe pump that operates at intervals equal to the analysis interval time and whose discharge amount per unit operation is accurate) is connected between b and a connecting pipe 24. Each time, the test liquid in the mixing container 3 is transferred to the reaction tube 13. The liquid is sequentially transferred to the flow cell 19 and further discharged through the discharge pipe 22.

ここで、上記装置において、混合容器3内の液量VM、
反応管13の容量VR、フローセル19の被検液流路2
0の容量Vc及び定量ポンプの一単位動作による吐出量
vPは上記(1)式、即ちV M > V p 磯V 
R≧5■c  ・旧・・(1)で示される関係に設定さ
れている。なお、ポンプの一単位動作による吐出量VP
については、その量をポンプの1回の動作で吐出する場
合と複数回の動作で吐出する場合とがあるが、いずれの
場合も一単位の動作と考えるものである。
Here, in the above device, the liquid amount VM in the mixing container 3,
Capacity VR of reaction tube 13, test liquid flow path 2 of flow cell 19
0 capacity Vc and the discharge amount vP by one unit operation of the metering pump are expressed by the above formula (1), that is, V M > V p Iso V
R≧5■c - Old: The relationship shown in (1) is set. In addition, the discharge amount VP due to one unit operation of the pump
There are cases where the amount is discharged in one operation of the pump and cases where it is discharged in multiple operations, but in either case, it is considered as one unit operation.

上記ヒドラジン濃度測定装置によって火力発電所ボイラ
の起動排水中のヒドラジン濃度を測定する場合、上記循
環ポンプ18を作動させて混合セル1の水ジャケット2
及び反応セル11の水ジャケット12に保温水を流通さ
せると共に、サンプル水流人管4、希釈/洗浄水流人管
5及び発色試薬流入管6から混合容器3内にサンプリン
グした起動排水、希釈水及び発色試薬(p−ジメチルア
ミノベンズアルデヒド)をそれぞれ所定量を注入する。
When measuring the hydrazine concentration in the startup wastewater of a thermal power plant boiler using the hydrazine concentration measuring device, the circulation pump 18 is operated and the water jacket 2 of the mixing cell 1 is
Insulating water is passed through the water jacket 12 of the reaction cell 11, and sampled startup wastewater, dilution water, and coloring water are supplied into the mixing container 3 from the sample water flow pipe 4, dilution/wash water flow pipe 5, and coloring reagent inflow pipe 6. A predetermined amount of each reagent (p-dimethylaminobenzaldehyde) is injected.

なお、これらの液は攪拌捧7によって攪拌される。Note that these liquids are stirred by a stirring rod 7.

この場合、本装置においては、比色法の吸光特性がヒド
ラジン濃度3■4以下において直線性を有することに着
目し、サンプル水の希釈はサンプル水中のヒドラジン濃
度が0〜20■Δの時は10倍、20〜200■への時
は100倍に自動希釈する方式を採用している。なお、
希釈水としては、溶存酸素の酸化によるヒドラジン濃度
減少を防止するため、脱塩水に塩酸を加えたものを用い
ることが好ましいが、脱塩水のみでも実用上は問題ない
In this case, in this device, we focused on the fact that the absorption characteristics of the colorimetric method have linearity at a hydrazine concentration of 3.4 or less, and the dilution of the sample water is performed when the hydrazine concentration in the sample water is 0 to 20. A method is adopted that automatically dilutes 10 times and 100 times when diluting from 20 to 200. In addition,
As the dilution water, it is preferable to use demineralized water to which hydrochloric acid has been added in order to prevent a decrease in the hydrazine concentration due to oxidation of dissolved oxygen, but demineralized water alone may be used without any practical problems.

上記混合容器3内の混合液は、水ジャケット2の作用で
40℃に保持されると共に、第1回目の定量ポンプ25
の作動により連絡管14゛を通って反応セル11の反応
管13にこの反応管13を共洗いしつつ流入し、水ジャ
ケット12によって40℃に保持された状態で反応管1
3に滞留する間に発色反応が完了する。
The mixed liquid in the mixing container 3 is maintained at 40°C by the action of the water jacket 2, and the liquid mixture in the mixing container 3 is maintained at 40°C by the action of the water jacket 2.
The reaction tube 13 of the reaction cell 11 flows into the reaction tube 13 of the reaction cell 11 through the communication tube 14' by the operation of
The coloring reaction is completed during the stay at 3.

その後1次の定量ポンプ25の動作タイミングにこの混
合液が連絡管21を通ってフローセル19の被検液流路
20にこの流路2oを共洗いしつつ流入し、ここで吸光
度が測定された後、次のポンプ25の動作タイミングに
排出管22を通って排出されるものである。
Thereafter, at the timing of operation of the primary metering pump 25, this mixed liquid passed through the communication pipe 21 and flowed into the test liquid flow path 20 of the flow cell 19 while washing this flow path 2o, and the absorbance was measured here. Thereafter, it is discharged through the discharge pipe 22 at the next timing when the pump 25 operates.

一方、上記反応セル11で発色反応が行なわれている間
に、まず混合容器3内の余剰の液が排出管9から排出さ
れ、次いで混合容器3内に希釈/洗浄水流人管5から洗
浄水が注入されて容器3が洗浄された後、この洗浄水が
排出管9から排出され、これにより混合容器3が次のサ
ンプル水を受は入れ可能な状態となる。そして、新たな
サンプル水、希釈液及び試薬が上記と同様に混合容器3
内に注入され、定量ポンプ25の一定時間毎の動作によ
り同様に反応セル11、フローセル19に送られて測定
が行なわれるものである。
On the other hand, while the coloring reaction is being carried out in the reaction cell 11, the excess liquid in the mixing container 3 is first discharged from the discharge pipe 9, and then washing water is poured into the mixing container 3 from the dilution/washing water flow pipe 5. After the water is injected and the container 3 is washed, this washing water is discharged from the discharge pipe 9, and the mixing container 3 becomes ready to receive the next sample water. Then, new sample water, diluent and reagent are added to the mixing container 3 in the same manner as above.
The metering pump 25 operates at regular intervals to send the sample to the reaction cell 11 and flow cell 19 for measurement.

従って、上記装置によれば、混合容器3及び反応管13
内の混合液を40℃に保温するようにしたので、発色反
応が3分間で完了する上、混合セル1と反応セル11と
を別体に形成し、第2図に示すように発色と混合・洗浄
とを並行して行なう方式、即ち第2図に示す3つの部分
で順送りに液の移動を行ないつつ次々と新しいサンプル
を取り入れる方式を採用したので、混合、洗浄に要する
時間を節約でき、このため反応時間とほぼ等しい時間間
隔、即ち、約3分間の測定周期で迅速かつ正確にヒドラ
ジン濃度の測定を行なうことができる。また、混合容器
3、反応管13.フローセル19の流路2o及びポンプ
25の各容量を上記(1)式の関係に設定したこと、即
ち混合容器3内の液量を反応管13の容量よりも大きく
、反応管13の容量をポンプ25の一単位動作による吐
出量とほぼ等しく、かつ反応管13の容量をフローセル
流路20の容量の5倍以上に設定したことにより、連続
測定を行なう場合、反応管13内及びフローセル流路2
oが新しい混合液によって充分に共洗いされるので、反
応管13内及びフローセル流路20が新しい混合液に完
全に置き換えられ、従って前の混合液の影響を受けるこ
となく誤差のない測定を行なうことができるものである
Therefore, according to the above device, the mixing container 3 and the reaction tube 13
Since the mixed liquid inside the chamber was kept at 40°C, the color reaction was completed in 3 minutes, and the mixing cell 1 and reaction cell 11 were formed separately to allow color development and mixing as shown in Figure 2. - By adopting a method in which washing and cleaning are performed in parallel, that is, a method in which new samples are taken in one after another while moving the liquid sequentially in the three parts shown in Figure 2, the time required for mixing and washing can be saved. Therefore, the hydrazine concentration can be measured quickly and accurately at a time interval approximately equal to the reaction time, that is, at a measurement period of approximately 3 minutes. Also, a mixing container 3, a reaction tube 13. The capacity of the flow path 2o of the flow cell 19 and the pump 25 are set to the relationship expressed by the above equation (1), that is, the liquid volume in the mixing container 3 is larger than the capacity of the reaction tube 13, and the capacity of the reaction tube 13 is set to be larger than the capacity of the reaction tube 13. By setting the capacity of the reaction tube 13 to be approximately equal to the discharge amount by one unit operation of 25 and at least five times the capacity of the flow cell channel 20, when performing continuous measurement, the inside of the reaction tube 13 and the flow cell channel 2 are
o is sufficiently co-washed with the new mixed solution, the inside of the reaction tube 13 and the flow cell flow path 20 are completely replaced with the new mixed solution, and therefore measurement without error can be performed without being affected by the previous mixed solution. It is something that can be done.

なお、上記装置においては混合容器3及び反応管13を
保温するために水ジャケットを用いたが。
Note that in the above apparatus, a water jacket was used to keep the mixing container 3 and reaction tube 13 warm.

保温機構はこれに限られず、他の機構を採用してもよい
。また、反応管13として内径2〜3mm程度のフッ素
樹脂系チューブによりコイル状に形成したものを用いた
が、他の材質、形状のものを使用してもよく、その他の
構成についても本発明の要旨を逸脱しない範囲で種々変
更して差支えない。
The heat retention mechanism is not limited to this, and other mechanisms may be adopted. Further, although a coiled fluororesin tube with an inner diameter of approximately 2 to 3 mm was used as the reaction tube 13, other materials and shapes may be used, and other configurations may also be used. Various changes may be made without departing from the gist.

次に、実験例により本発明の効果を具体的に示す。Next, the effects of the present invention will be specifically illustrated by experimental examples.

去1u1L ヒドラジンを含む試料液にp−ジメチルアミノベンズア
ルデヒドを添加した場合における吸光度の経時変化を1
0℃、20℃、30℃、40℃の各反応温度についてそ
れぞれ調べた。結果を第3図に示す。
The change in absorbance over time when p-dimethylaminobenzaldehyde was added to a sample solution containing 1μ1L of hydrazine was calculated by
Each reaction temperature of 0°C, 20°C, 30°C, and 40°C was investigated. The results are shown in Figure 3.

その結果、反応温度を40℃にした場合約3分間で発色
反応が完了し、従って混合容器3及び反応管13を40
℃に保温するようにした実施例の装置によれば、迅速に
測定を行なえることが認められる。
As a result, when the reaction temperature was set to 40°C, the coloring reaction was completed in about 3 minutes.
It is recognized that the apparatus of the example, which is kept at a temperature of .degree. C., allows rapid measurement.

ヌ】u」Δ 第1図に示した装置において、フローセル19に吸光度
2程度の液を満たすと共に1反応管13に清水を満たし
、定量ポンプ25の作動でこの清水をフローセル19に
流しつつ吸光度を測定したところ、フローセル19の液
量に対する通過量倍率と吸光度との関係は第4図に示し
たようになった。
u''Δ In the apparatus shown in FIG. 1, the flow cell 19 is filled with a liquid having an absorbance of about 2, and one reaction tube 13 is filled with clean water, and the metering pump 25 is operated to flow this clean water into the flow cell 19 while adjusting the absorbance. As a result of measurement, the relationship between the magnification of the amount of liquid passed through the flow cell 19 and the absorbance was as shown in FIG. 4.

第4図の結果より、上記倍率が5倍であればフローセル
19が充分に共洗いされて前のサンプルのキャリーオバ
ーがなくなり、従って装置各部の容量関係を前記(1)
式のように設定した実施例の分析装置によれば、前のサ
ンプルの影響を受けることのない正確な測定ができるこ
とが認められる。なお、混合容器3内の液量vMと反応
管13の容量vRとの関係は、単に余裕液量があればよ
いので、vMをvRよりも大きく、特に2倍以上にすれ
ば問題ない。
From the results shown in FIG. 4, if the above magnification is 5 times, the flow cell 19 will be sufficiently co-washed and there will be no carryover of the previous sample.
It is recognized that the analyzer of the example set as shown in the formula can perform accurate measurements without being influenced by the previous sample. It should be noted that the relationship between the liquid volume vM in the mixing container 3 and the capacity vR of the reaction tube 13 only requires that there is a surplus liquid volume, so there is no problem if vM is made larger than vR, especially twice or more.

末暮族ユ 第1図に示す装置の実用計器としての適用性を判断する
ため、火力発電所の起動排水を用いて測定を行なった。
In order to judge the applicability of the device shown in Figure 1 as a practical instrument, measurements were carried out using start-up wastewater from a thermal power plant.

結果を第5図に示す。The results are shown in Figure 5.

測定結果は直線性、再現性ともに良好であり、また手分
析ともよく一致していることが認められる。
The measurement results were found to have good linearity and reproducibility, and were in good agreement with manual analysis.

15Iυ弧果 以上説明したように、本発明のヒドラジン濃度測定装置
は、サンプル液中のヒドラジン濃度をJISに規定され
た比色法に基いて迅速かつ正確に連続自動測定できるも
ので、火力発電所ボイラユニットの起動排水処理装置人
出口における起動排水中のヒドラジン濃度の測定に有効
に使用され。
As explained above, the hydrazine concentration measuring device of the present invention is capable of rapidly and accurately continuously automatically measuring the hydrazine concentration in a sample liquid based on the colorimetric method specified in JIS. It is effectively used to measure the hydrazine concentration in the start-up wastewater at the exit of the start-up wastewater treatment equipment of a boiler unit.

起動排水処理装置の適切な運用管理に寄与するものであ
る。
This contributes to appropriate operational management of the startup wastewater treatment equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るヒドラジン濃度測定装
置を示す概略図、第2図は同装置による測定のフロー図
、第3図はヒドラジン含有液に発色試薬を添加した場合
の種々反応温度における吸光度の経時変化を示すグラフ
、第4図は実験例において共洗いの効果を調べた結果を
示すグラフ、第5図は第1図に示す装置による測定値と
手分析値との相関を示すグラフである。 1・・・混合セル、2・・・水ジャケット、3・・・混
合容器、4・・・サンプル水流入管5・・・希釈/洗浄
水流入管。 6・・・発色試薬流入管、 11・・・反応セル、12・・・水ジャケット、13・
・・反応管、19・・・測定用フローセル、20・・・
被検液流路、25・・・定量ポンプ。 出願人  中部電力 株式会社(ほか1名)代理人  
弁理士  小 島 隆 司 時  間  (分) 01234’567 通過液量倍率 第5図 0 40  so  120 160 200手分析値
(■/l >
Fig. 1 is a schematic diagram showing a hydrazine concentration measuring device according to an embodiment of the present invention, Fig. 2 is a flow diagram of measurement by the same device, and Fig. 3 shows various reactions when a coloring reagent is added to a hydrazine-containing liquid. A graph showing the change in absorbance over time at different temperatures. Figure 4 is a graph showing the results of investigating the effect of co-washing in an experimental example. Figure 5 shows the correlation between the values measured by the device shown in Figure 1 and the manual analysis values. This is a graph showing. DESCRIPTION OF SYMBOLS 1...Mixing cell, 2...Water jacket, 3...Mixing container, 4...Sample water inflow pipe 5...Dilution/washing water inflow pipe. 6... Coloring reagent inflow tube, 11... Reaction cell, 12... Water jacket, 13...
...Reaction tube, 19...Measurement flow cell, 20...
Test liquid flow path, 25... metering pump. Applicant Chubu Electric Power Co., Ltd. (and 1 other person) Agent
Patent Attorney Takashi Kojima Time (minutes) 01234'567 Passage liquid volume magnification Figure 5 0 40 so 120 160 200 Manual analysis value (■/l >

Claims (1)

【特許請求の範囲】 1、ヒドラジンを含むサンプル液、希釈液及びヒドラジ
ンと反応して発色する発色試薬が注入、混合される混合
容器並びにこの混合容器内の被検液を加温状態に保持す
る保温機構を備えた混合セルと、内部を被検液が流通す
る反応管及びこの反応管内の被検液を加温状態に保持す
る保温機構を備えた反応セルと、内部に被検液流路を有
し、この流路を流れる被検液の吸光度を測定するフロー
セルと、定量ポンプとを順次連結してなり、この定量ポ
ンプを所定時間間隔で作動することにより上記混合容器
中の被検液を反応管及びフローセルに順次移送させると
共に、上記混合容器内の液量V_M、反応管の容量V_
R、フローセルの被検液流路の容量V_C及び定量ポン
プの一単位動作による吐出量V_Pを下記式(1) V_M>V_P≠V_R≧5V_C・・・・・・(1)
で示される関係に設定したことを特徴とするヒドラジン
濃度測定装置。
[Scope of Claims] 1. A mixing container into which a sample solution containing hydrazine, a diluent solution, and a coloring reagent that develops color by reacting with hydrazine are injected and mixed, and a test solution in this mixing container are maintained in a heated state. A mixing cell equipped with a heat retention mechanism, a reaction tube through which a test liquid flows, a reaction cell equipped with a heat retention mechanism that maintains the test liquid in the reaction tube in a heated state, and a test liquid flow path inside. A flow cell for measuring the absorbance of the test liquid flowing through this flow path and a metering pump are sequentially connected, and by operating the metering pump at predetermined time intervals, the test liquid in the mixing container is is sequentially transferred to the reaction tube and flow cell, and the liquid volume V_M in the mixing container and the capacity V_ of the reaction tube are
R, the capacity V_C of the flow cell sample liquid flow path and the discharge amount V_P per unit operation of the metering pump are expressed by the following formula (1) V_M>V_P≠V_R≧5V_C... (1)
A hydrazine concentration measuring device characterized by being set to the relationship shown in the following.
JP136087A 1987-01-07 1987-01-07 Hydrazine concentration measuring device Expired - Lifetime JPH0672874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP136087A JPH0672874B2 (en) 1987-01-07 1987-01-07 Hydrazine concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP136087A JPH0672874B2 (en) 1987-01-07 1987-01-07 Hydrazine concentration measuring device

Publications (2)

Publication Number Publication Date
JPS63169557A true JPS63169557A (en) 1988-07-13
JPH0672874B2 JPH0672874B2 (en) 1994-09-14

Family

ID=11499327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP136087A Expired - Lifetime JPH0672874B2 (en) 1987-01-07 1987-01-07 Hydrazine concentration measuring device

Country Status (1)

Country Link
JP (1) JPH0672874B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112179967A (en) * 2020-09-30 2021-01-05 宜宾海丰和锐有限公司 Online detection method for hydrazine hydrate in production process of ketazine process hydrazine hydrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6121294B2 (en) * 2013-09-09 2017-04-26 三菱日立パワーシステムズ株式会社 Steam property monitoring apparatus and method for geothermal power generation, geothermal power generation system, and control method for geothermal power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112179967A (en) * 2020-09-30 2021-01-05 宜宾海丰和锐有限公司 Online detection method for hydrazine hydrate in production process of ketazine process hydrazine hydrate

Also Published As

Publication number Publication date
JPH0672874B2 (en) 1994-09-14

Similar Documents

Publication Publication Date Title
US7556773B2 (en) Analyzer device and method
US8236567B2 (en) Method and apparatus for automated determining of chemical oxygen demand of a liquid sample
GB1585035A (en) Sample generating system
KR100825069B1 (en) Cod testing apparatus and testing method of cod
US3488154A (en) Pressurized flow system
JPH04500555A (en) Method and apparatus for determining oxidizable water-containing substances in aqueous sample liquids
JPS63169557A (en) Hydrazine concentration measuring instrument
CN213517098U (en) Power plant water quality on-line instrument evaluation test device
US3442623A (en) Method of determining the fat content of milk and related products
CN112129909A (en) Power plant water quality on-line instrument evaluation test device and test method
JPH11118782A (en) Ammoniacal nitrogen measuring apparatus
CN112305036B (en) Method for determining a measurement point of the chemical intake capacity of a process medium and measurement point
CA3189919A1 (en) Automated online mineral slurry and process water ph analyzer, quantitative volumetric titration analyzer, and liquid hardness analyzer
JP2001318057A (en) Residual chlorine measuring method and its device
JP2894237B2 (en) Continuous water quality measuring device and continuous water quality measuring method
KR101432473B1 (en) Apparatus for Analyzing Chemical Oxygen Demand Automatically
SE468011B (en) PROCEDURE AND DEVICE FOR NITRITIVE DISPOSAL WATER TREATMENT AND ANALYTICAL DEVICE FOR ELECTRICAL RECORDING OF THE NITRITE PRECISION.
JP3813006B2 (en) Titration control method
US6322261B1 (en) Photographic developer with automated mixing and replenishing
IL22522A (en) Automatic determination and/or control of the hydroxide:nitrite ratio in nitrite solutions
JP2003164852A (en) Apparatus and method of automatically measuring concentration of treating agent in water system and control method
Abicht Controlled dynamic titrator
JP3667033B2 (en) Iron analyzer
JP6982477B2 (en) Flow injection analysis method and equipment
US3652223A (en) Method and apparatus for continuously measuring the concentration of a reactant in a liquid carrier