JPS63169554A - Ultrasonic microscope lens - Google Patents

Ultrasonic microscope lens

Info

Publication number
JPS63169554A
JPS63169554A JP62002153A JP215387A JPS63169554A JP S63169554 A JPS63169554 A JP S63169554A JP 62002153 A JP62002153 A JP 62002153A JP 215387 A JP215387 A JP 215387A JP S63169554 A JPS63169554 A JP S63169554A
Authority
JP
Japan
Prior art keywords
ultrasonic
sample
film
film thickness
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62002153A
Other languages
Japanese (ja)
Other versions
JPH0518361B2 (en
Inventor
Noritaka Nakaso
教尊 中曽
Hirosuke Tsukahara
塚原 裕輔
Masao Saito
雅雄 斎藤
Katsumi Ohira
克己 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP62002153A priority Critical patent/JPS63169554A/en
Publication of JPS63169554A publication Critical patent/JPS63169554A/en
Publication of JPH0518361B2 publication Critical patent/JPH0518361B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To accurately find the film thickness of the film of a sample by making an ultrasonic wave incident on the same at the characteristic angle of incident that a combination of a cylindrical sample and liquid for ultrasonic wave propagation has, and finding the frequency at which its reflection factor is minimum. CONSTITUTION:The ultrasonic wave is made incident on the sample 10 at the characteristic angle theta of incidence that the combination of the cylindrical sample, a film, and liquid for ultrasonic wave propagation has. A conic lens 20 for transmission with a vertical angle 2theta is combined with a conic lens 30 for reception across the liquid for ultrasonic wave propagation and a piezoelectric body 22 for transmission and a piezoelectric body 32 for reception are provided on the surfaces of the lenses 20 and 30. Then the cylindrical sample 10 which has the film provided on its surface is inserted into the cavities in the centers of both lenses 20 and 30. Then the piezoelectric body 22 sends the ultrasonic wave to the sample 10 at the angle theta of incidence and the wave is reflected in the order of paths P, R, S, T, and (and received by the piezoelectric body 32. Then the frequency at which the intensity ratio between the reflected wave and incident wave, i.e. reflection factor is minimum is found. Then this frequency and the characteristic values of the sample, film, and liquid are used to calculate the film thickness from a specific expression. Thus, the film thickness can be measured accurately and speedily.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特開昭61−79157号公報記載の原理に
基づいて、円柱体、あるいは線状体等の被験体表面に形
成された膜の膜厚測定を、被験体の各部にわたって連続
的に測定する際に適した超音波顕微鏡レンズである。
Detailed Description of the Invention [Field of Industrial Application] The present invention is based on the principle described in Japanese Patent Application Laid-Open No. 61-79157, and is directed to a film formed on the surface of a test object such as a cylindrical body or a linear body. This ultrasonic microscope lens is suitable for continuously measuring film thickness across various parts of a subject.

〔従来の技術〕[Conventional technology]

近年開発された超音波顕微鏡は、圧電体に高周波電気パ
ルスを印加して超音波を発生させ、それを音響レンズに
よって収束させて試料表面に照射しながら音響レンズあ
るいは試料をX−Y走査して、その時の試料面からの反
射超音波あるいは試料を透過した透過超音波の強度ある
いは位相を音響レンズと圧電体で受信しX−Y走査と同
期して記録することにより、試料表面および試料の表面
直下の弾性的情報を画像として得るものである。
Ultrasonic microscopes that have been developed in recent years generate ultrasonic waves by applying high-frequency electric pulses to a piezoelectric material, converge them with an acoustic lens, and irradiate them onto the sample surface while scanning the acoustic lens or the sample in an X-Y manner. At that time, the intensity or phase of the reflected ultrasound from the sample surface or the transmitted ultrasound transmitted through the sample is received by an acoustic lens and a piezoelectric material, and recorded in synchronization with the X-Y scan. This is to obtain elastic information directly below as an image.

ここで音響レンズの役割は圧電体によって発生された超
音波ビームを試料表面上の微小領域に収束させて超音波
顕微鏡画像の分離能を向上させることにある。この目的
のために用いられる音響レンズとしては、代表的にはサ
ファイア、石英ガラスなどの円柱上の一方の端面に圧電
体を密着させ、他方の端面に凹球面を設けたものがあり
、ここでは圧電体によって発生した超音波は円柱内を平
面波として進行し、凹球面に達するとそこで屈折して試
料表面の微小領域に収束する。また同様の円柱の一端面
に凹球面を設け、更にその面にそって圧電体を密着させ
て凹球面の圧電体を作り、これによって直接に収束球面
波を発生させることを目的とした超音波顕微鏡レンズも
発表されている。
Here, the role of the acoustic lens is to focus the ultrasonic beam generated by the piezoelectric material onto a minute area on the sample surface, thereby improving the resolution of the ultrasonic microscope image. Acoustic lenses used for this purpose are typically made of a cylinder made of sapphire, quartz glass, etc., with a piezoelectric material closely attached to one end surface and a concave spherical surface provided on the other end surface. The ultrasonic waves generated by the piezoelectric body propagate in the cylinder as plane waves, and when they reach the concave spherical surface, they are refracted there and converge on a minute area on the sample surface. In addition, a concave spherical surface is provided on one end surface of a similar cylinder, and a piezoelectric material is closely attached along that surface to create a piezoelectric material with a concave spherical surface, thereby creating an ultrasonic wave for the purpose of directly generating convergent spherical waves. Microscope lenses have also been announced.

これらはいずれも超音波ビームを試料表面の微小領域に
収束させて高分解能を得ることを目的としているが、超
音波顕微鏡による測定方法の一つであるいわゆるV (
Z)曲線法の際にも用いられる。
All of these aim to obtain high resolution by converging an ultrasound beam onto a minute area on the sample surface, but one of the measurement methods using an ultrasound microscope is the so-called V (
Z) Also used in the curve method.

これは、試料あるいは音響レンズをX−Y走査せずに試
料面上の一定位置に固定したまま試料面と音響レンズと
の距離を変化させてその時の試料2面からの反射超音波
の強度変化を記録すると、試料の材料に特有の周期で強
度が周期的に変化することが観察されることから、同方
法によって得られた記録の周期から試料表面および表面
直下の弾性的特徴を測定するものである。この反射強度
の周期的な変化は、凹球面レンズから発生した収束超音
波のうち、垂直入射成分といわゆるレーリー角度で試料
面に入射した成分との干渉によって生ずるものであり、
その周期は試料表面近傍のレーリー波の音速に依存する
This is done by changing the distance between the sample surface and the acoustic lens while fixing the sample or the acoustic lens at a fixed position on the sample surface without X-Y scanning, and changing the intensity of the reflected ultrasound from the two surfaces of the sample. When recording, it is observed that the intensity changes periodically with a period specific to the material of the sample, so this method measures the elastic characteristics of the sample surface and just below the surface from the recording period obtained by this method. It is. This periodic change in reflection intensity is caused by the interference between the vertically incident component and the component incident on the sample surface at the so-called Rayleigh angle of the convergent ultrasound generated from the concave spherical lens.
Its period depends on the sound speed of Rayleigh waves near the sample surface.

この様に、従来用いられてきた超音波顕微鏡用の音響レ
ンズは、球面収束超音波を発生させて試料表面に収束さ
せることに特徴があるものがほとんどである。
As described above, most conventional acoustic lenses for ultrasonic microscopes are characterized by generating spherically focused ultrasonic waves and converging them on the sample surface.

また、同一出願人に係る特開昭61−79157号公報
、特開昭61−79158号公報等があるが、これは特
開昭61−20803号公報に記載した膜厚測定法に基
づいて、基板上に形成された膜の厚さを測る場合、基板
、液体、および膜の物質によって決定されるある一定の
角度で超音波を試料に入射し、かつ、同一レンズでその
反射波を採取する事を目的として発明されたものであり
、特徴として、レンズの一端の平板状の圧電体から平行
超音波を発生させ、レンズの他端の7字溝あるいは円錐
状の凹みによって屈折させる事で被験体に対して、一定
の入射角をもった超音波を発生させるものである。
In addition, there are Japanese Patent Application Laid-open No. 61-79157 and Japanese Patent Application Publication No. 61-79158, which are based on the film thickness measurement method described in Japanese Patent Application Laid-Open No. 61-20803. When measuring the thickness of a film formed on a substrate, ultrasonic waves are incident on the sample at a certain angle determined by the substrate, liquid, and film material, and the reflected waves are collected using the same lens. It was invented for the purpose of It generates ultrasonic waves with a fixed angle of incidence on the body.

また、特開昭58−166258号公報記載の超音波レ
ンズがあるが、これは、円柱状遅延材一端の底面に圧電
体を張り、他端の底面に円錐形の溝をつくることで、圧
電体と垂直方向に直線状に収束させる事によって、超音
波探傷などにおいて、焦点深度を深く取る事を目的とし
ている。
Furthermore, there is an ultrasonic lens described in Japanese Patent Application Laid-Open No. 58-166258, which uses a piezoelectric material on the bottom of one end of a cylindrical delay material and a conical groove on the bottom of the other end. By converging in a straight line perpendicular to the body, the purpose is to obtain a deep depth of focus in ultrasonic flaw detection, etc.

この様に、これらの超音波レンズは、平面構成の被験体
に対して、垂直にレンズを位置させ、自ら発振した超音
波を、同一の圧電体で受信する様設計されているものが
ほとんどである。
In this way, most of these ultrasonic lenses are designed in such a way that the lens is positioned perpendicular to the flat object under test, and the ultrasonic waves it oscillates are received by the same piezoelectric material. be.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

特開昭61−20803号公報記載の膜厚測定原理に基
づいて、試料膜の表面に一定角度で超音波を入射し、反
射波を採取することで、膜厚を測定する膜厚測定方法に
おいて、被験体が、円柱状あるいは線状である場合、今
までの超音波顕微鏡レンズでは、被験体側面に直角以外
の一定の入射角で超音波を入射させる事が出来ず、さら
に、被験体の断面半径が小さい場合は、超音波の被照射
面が小さく、十分な照射強度とその反射強度を得ること
が困難であり、かつ、その反射波の位相が乱されるため
、円柱状の被験体側面に形成された膜の厚さを前記の測
定原理にもとづいて測定することが困難であった。
In a film thickness measurement method based on the film thickness measurement principle described in JP-A No. 61-20803, the film thickness is measured by injecting ultrasonic waves onto the surface of a sample film at a fixed angle and collecting reflected waves. When the object is cylindrical or linear, conventional ultrasound microscope lenses cannot make the ultrasonic wave incident on the side of the object at a fixed angle of incidence other than right angles. If the cross-sectional radius is small, the surface to be irradiated with ultrasonic waves is small, making it difficult to obtain sufficient irradiation intensity and its reflection intensity, and the phase of the reflected waves is disturbed. It was difficult to measure the thickness of the film formed on the side surface based on the measurement principle described above.

〔問題を解決する為の手段〕[Means to solve the problem]

本発明は、以上の如き問題点を解決する為、特開昭61
−20803号公報で定義された角度の二倍の20を円
錐の頂角にし、円錐底面以外の曲面状に正電位を位置さ
せ、かつ、その円錐中心線に円筒あるいは直線状体の被
験体の中心線を一致させた場合、圧電体によって発振さ
れた超音波が、被験体表面に向って高エネルギー密度に
収束され、かつ、被験体表面で一定の入射角で超音波を
入射させる事が出来る事を利用し、同様のレンズを発振
側レンズに相対する様位置させることで、これらレンズ
の中心線にあいた空洞を通して被験体を通過あるいは挿
入させることで、連続的に試料表面からの反射波を広い
面積で、かつ、位相のずれに起因する受信された信号の
周波数分布を観測した時の干渉による極小現象をおこす
こと無く、受信し、膜厚測定に十分な出力を得ることが
出来るレンズを提供するものである。
In order to solve the above-mentioned problems, the present invention
The apex angle of the cone is set to 20 times the angle defined in Publication No. 20803, a positive potential is placed on a curved surface other than the base of the cone, and a cylindrical or linear object is placed on the center line of the cone. When the center lines are aligned, the ultrasonic waves emitted by the piezoelectric material are focused toward the surface of the object with high energy density, and the ultrasonic waves can be incident on the surface of the object at a constant angle of incidence. Taking advantage of this fact, by positioning a similar lens opposite to the oscillation side lens, by passing or inserting the subject through the cavity opened at the center line of these lenses, the reflected waves from the sample surface can be continuously reflected. We have created a lens that can receive signals over a wide area and obtain sufficient output for film thickness measurement without causing minimum phenomena due to interference when observing the frequency distribution of the received signal due to phase shift. This is what we provide.

〔発明の詳細な 説明においては、特開昭61−20803号公報記載の
測定法を円柱状体あるいは線状体の側面の膜厚測定に応
用するに際し、超音波伝搬用の液体から、被験体の芯材
に入射する超音波の入射角が芯材、膜、液体の物質に固
有の値(θ)でかつ、超音波の波長と膜厚(d)の比が
、芯材、膜、および液体の物質に固有の値(H)の時、
超音波の反射率が低下する事を利用して、反射波の強度
が低下する超音波の波長(λ)を測定し、第6図参照下
記(A)式 %式%() によって膜厚を求める場合に使用する超音波顕微鏡レン
ズを圧電体を、頂角2θの円錐表面状に位置させ、その
円錐中心線に円柱あるいは線状の被験体の中心線が一致
する様に位置させる事により、被験体表面に、高エネル
ギー密度で、かつ、上記固有の入射角θで超音波を入射
させる事を可能とし、かつ、被験体が長い場合もそれら
レンズ中心線近傍に空洞を設は通過させる事で連続的に
、その膜厚を測定する事を可とする超音波顕微鏡レンズ
である。
[In the detailed description of the invention, when applying the measurement method described in JP-A-61-20803 to the measurement of the film thickness on the side surface of a cylindrical body or a linear body, The incident angle of the ultrasonic wave incident on the core material is a value (θ) specific to the core material, film, and liquid substance, and the ratio of the ultrasonic wavelength to the film thickness (d) is When the value (H) is specific to the liquid substance,
Utilizing the fact that the reflectance of ultrasonic waves decreases, measure the wavelength (λ) of the ultrasonic waves at which the intensity of the reflected waves decreases, and calculate the film thickness using the formula (A) below (% formula %) (see Figure 6). By positioning the piezoelectric substance on the surface of a cone with an apex angle of 2θ, and positioning the ultrasonic microscope lens used for the determination so that the center line of the cylindrical or linear object coincides with the center line of the cone, It is possible to make ultrasonic waves incident on the surface of the subject with high energy density and at the above-mentioned specific incident angle θ, and even if the subject is long, a cavity can be created near the center line of the lens to allow it to pass through. This is an ultrasonic microscope lens that allows continuous measurement of film thickness.

頂角2θの円錐形では、同じ高Vをもつ円上からの法線
は第2図に示す様に常に、中心線上v −1tanθで
収束する。この為、円錐形側面に圧電体を任意の広さで
張った場合も超音波は必らず円錐中心線上に収束し、か
つ、中心線に対して常にθの入射角をもつ。
In a conical shape with an apex angle of 2θ, normal lines from a circle having the same height V always converge at v −1 tanθ on the center line, as shown in FIG. Therefore, even if a piezoelectric material is stretched to an arbitrary width on the side surface of a cone, the ultrasonic waves always converge on the center line of the cone and always have an incident angle of θ with respect to the center line.

次に、円錐中心に沿って半径mの円柱体を設置した場合
も第3図に示す様に円錐裏面の圧電体から発した超音波
はこの円柱体表面に収束し、この時の超音波のエネルギ
ー密度は円錐形の側面でのエネルギー密度に対して爾/
2倍となる事がわかる。
Next, when a cylindrical body with radius m is installed along the center of the cone, the ultrasonic waves emitted from the piezoelectric material on the back of the cone converge on the surface of this cylindrical body, as shown in Figure 3, and the ultrasonic waves at this time The energy density is equal to the energy density at the side of the cone.
You can see that it is twice as much.

以上円錐形測面状に圧電体を配した場合において、一定
の入射角θで収束超音波を入射でき、かつ、高エネルギ
ー密度を得ることは遅延材を用いた場合も同様に成り立
つ、このとき、中心線を含んだ断面に於いては、中心線
をX軸とすると、圧電体の位置に相当する面は、 y = −tanθ−x+h  O≦x  O<y−■
で表わされる。又、遅延材の対物面26は、y = −
tanθ−x+k  O≦X O≦y”’■で表わされ
る。ここで、円錐形の中心線に沿って被験体10が通過
できるよう貫通した空洞部をもたせた場合、空洞部は、 x=t、O≠t<k・・・・・・・■ によって表わされる(第4図参照)、このようにレンズ
20.30を構成した場合、これと同様のレンズを相対
して位置させた場合、第1図に示すように発信用の圧電
体22上のP点から発信された超音波はP−R→S→T
→Uの経路を通り反射波を受信用圧電体32により受信
することができ、空洞部に通された被験体10を移動す
ることで、連続的に円筒表面各部の膜厚を測定できる。
As described above, when piezoelectric bodies are arranged in a conical shape, it is possible to make a focused ultrasonic wave incident at a constant angle of incidence θ and obtain a high energy density, which also holds true when a delay material is used. , in the cross section including the center line, if the center line is the X axis, the plane corresponding to the position of the piezoelectric body is y = -tanθ-x+h O≦x O<y-■
It is expressed as Also, the objective plane 26 of the delay material is y = −
tanθ−x+k O≦X O≦y”'■ Here, if a hollow section is provided along the center line of the cone so that the subject 10 can pass through, the hollow section is expressed as x=t , O≠t<k...■ (see Fig. 4). When the lens 20.30 is configured in this way, when similar lenses are positioned oppositely, As shown in FIG. 1, the ultrasonic wave emitted from point P on the piezoelectric body 22 for transmission is
→The reflected wave can be received by the receiving piezoelectric body 32 through the path U, and by moving the subject 10 passed through the cavity, the film thickness of each part of the cylindrical surface can be continuously measured.

さらに、受信用圧電体32を第5図に示すように分割し
て張れば円筒表面の円周方向の各部分の膜の厚さの分布
も測定が可能である。
Furthermore, if the receiving piezoelectric body 32 is divided and stretched as shown in FIG. 5, it is possible to measure the distribution of the film thickness at each portion of the cylindrical surface in the circumferential direction.

〔実  施  例〕〔Example〕

長いN−Fe42%合金の芯材の上に金のメッキ膜がし
である円筒状の被験体の金メツキ膜厚を測定するにおい
て、超音波伝搬材に水を使用した時の入射角θは31@
であった。このため、頂角62″の円錐形レンズを石英
で構成し、第1図に示す様に組み合わせ、圧電体22が
超音波を発振し、圧電体32を受信したところ、周波数
分布における極小値は70MHzであった(第6図参照
)、これによりA弐を用いて金の膜厚dを計算すると、
d=3.9μmであった。
When measuring the gold plating film thickness of a cylindrical test object with a gold plating film on a long N-Fe 42% alloy core material, the incident angle θ when water is used as the ultrasonic propagation material is 31@
Met. For this purpose, a conical lens with an apex angle of 62'' is made of quartz and is combined as shown in FIG. The frequency was 70MHz (see Figure 6). From this, when calculating the gold film thickness d using A2,
d=3.9 μm.

〔発明の効果〕〔Effect of the invention〕

本発明は以上の様な構成であるので、円柱あるいは、線
状の被験体の芯材及び膜の物質の組み合わせが定まり、
さらに超音波伝搬用液体が定まったら、それらのもつ固
有の入射角で超音波を照射して、その反射波の入射波に
対する強度の比すなわち、反射率が極小となる周波数を
周波数計測器で測定し周波数を求め、次にA式により、
被測定体の膜の膜厚を算出する測定方法に適用すれば、
円柱状体あるいは線状体測面に形成された膜の膜厚や、
その分布を被験体をレンズ中心線にそって移動するだけ
で、短時間に精度よく測定出来る様になる。さらに受信
側の圧電体を分割し、独立に電気信号を取り出せる様に
構成すれば補測定物周囲の膜厚分布を一括して得る事が
出来る。
Since the present invention has the above-described configuration, the combination of materials for the core material and membrane of the cylindrical or linear test object is determined.
Furthermore, once the ultrasonic propagation liquid has been determined, ultrasonic waves are irradiated at their specific angle of incidence, and the ratio of the intensity of the reflected wave to the incident wave, that is, the frequency at which the reflectance is minimum, is measured using a frequency measuring instrument. Find the frequency, then use formula A,
If applied to the measurement method to calculate the film thickness of the measured object,
The thickness of the film formed on the surface of a cylindrical body or linear body,
By simply moving the subject along the lens center line, the distribution can be measured quickly and accurately. Furthermore, if the piezoelectric body on the receiving side is divided and constructed so that electric signals can be extracted independently, the film thickness distribution around the auxiliary measurement object can be obtained all at once.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すものであって、第1図は本
発明の応用状態(液体16は取除く)を示す正面から見
た説明図、第2図、第3図、第4図はレンズの形状を示
す説明図、第5図は本発明の応用状態を示す斜視図、第
6図は受信用圧電体から得られる電気信号のスペクトル
分布図である。 また、第7図は従来より知られている超音波膜厚測定技
術の原理を示す説明図である。 10・・・被験体 12・・・測定すべき膜 14・・・芯材(又は基板) 16・・・ (超音波伝搬用)液体 20・・・発信用レンズ 22・・・ (発信用)圧電体 24・・・ (発信用の)遅延材 26・・・ (遅延材の)対物面 30・・・受信レンズ 32・・・ (受信用)圧電体 34・・・ (受信用の)遅延材 36・・・圧電体
The drawings show embodiments of the present invention, and FIG. 1 is an explanatory view from the front showing an applied state of the present invention (liquid 16 is removed), FIG. 2, FIG. 3, and FIG. 4. 5 is an explanatory diagram showing the shape of a lens, FIG. 5 is a perspective view showing an applied state of the present invention, and FIG. 6 is a spectral distribution diagram of an electric signal obtained from a receiving piezoelectric body. Further, FIG. 7 is an explanatory diagram showing the principle of a conventionally known ultrasonic film thickness measurement technique. 10... Subject 12... Membrane to be measured 14... Core material (or substrate) 16... (For ultrasound propagation) Liquid 20... Lens for transmission 22... (For transmission) Piezoelectric body 24... Delay material 26 (for transmission)... Objective surface 30 (of delay material)... Receiving lens 32... Piezoelectric material 34 (for reception)... Delay (for reception) Material 36...piezoelectric body

Claims (1)

【特許請求の範囲】 円筒状体あるいは線状体上に形成された膜の膜厚測定に
際し、超音波伝搬用の液体から被験体表面に入射する超
音波の入射角が芯材、液体および膜の物質の固有の値(
θ)で、かつ、超音波の波長(λ)と膜厚(d)の比が
芯材、液体および膜の物質の固有の値(H)の時、超音
波の波長(λ)を測定し、下記(A)式 d=λ・H・・・・・・・(A) によって膜厚を求める場合に使用する超音波顕微鏡レン
ズにおいて、遅延材は直行x、y空間で、h>k y=−tanθ・x+h 0≦x 0≦y・・・(1) y=−tanθ・x+k 0≦x 0≦y・・・(2) x=−t 0≠t<k・・・・・・・・・・・(3) 上記(1)、(2)、(3)式でかこまれる面をx軸の
回りに360°回転させて出来る立体で構成されるか、
あるいはその一部であって、かつ、(1)式をx軸の回
りに回転させて出来る面の表面にそって圧電体が形成さ
れており、その圧電体が形成されている面の法線と(2
)式をx軸の回りに回転させた面との交点がその遅延材
の表面上に存在することを特徴とする超音波顕微鏡レン
ズ。
[Claims] When measuring the film thickness of a film formed on a cylindrical body or a linear body, the incident angle of the ultrasonic wave incident on the surface of the subject from the liquid for ultrasonic propagation is determined by the angle of incidence between the core material, the liquid, and the membrane. The characteristic value of the substance (
θ), and when the ratio of the ultrasonic wavelength (λ) to the film thickness (d) is a value (H) specific to the core material, liquid, and film material, measure the ultrasonic wavelength (λ). In the ultrasonic microscope lens used to determine the film thickness using the following formula (A), d=λ・H... (A), the delay material is in orthogonal x, y space, and h>k y =-tanθ・x+h 0≦x 0≦y...(1) y=-tanθ・x+k 0≦x 0≦y...(2) x=-t 0≠t<k... ...(3) Is it composed of a solid formed by rotating the plane enclosed by equations (1), (2), and (3) above by 360° around the x-axis?
Or a part of it, in which a piezoelectric body is formed along the surface of the plane created by rotating equation (1) around the x-axis, and the normal of the plane on which the piezoelectric body is formed and (2
) and a plane rotated around the x-axis exist on the surface of the delay material.
JP62002153A 1987-01-08 1987-01-08 Ultrasonic microscope lens Granted JPS63169554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62002153A JPS63169554A (en) 1987-01-08 1987-01-08 Ultrasonic microscope lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62002153A JPS63169554A (en) 1987-01-08 1987-01-08 Ultrasonic microscope lens

Publications (2)

Publication Number Publication Date
JPS63169554A true JPS63169554A (en) 1988-07-13
JPH0518361B2 JPH0518361B2 (en) 1993-03-11

Family

ID=11521409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62002153A Granted JPS63169554A (en) 1987-01-08 1987-01-08 Ultrasonic microscope lens

Country Status (1)

Country Link
JP (1) JPS63169554A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239259A (en) * 2007-03-23 2008-10-09 Max Co Ltd Label printer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239259A (en) * 2007-03-23 2008-10-09 Max Co Ltd Label printer

Also Published As

Publication number Publication date
JPH0518361B2 (en) 1993-03-11

Similar Documents

Publication Publication Date Title
JPS589063A (en) Ultrasonic microscope
US4655083A (en) Surface ultrasonic wave interference microscope
Royer et al. Quantitative imaging of transient acoustic fields by optical heterodyne interferometry
US4694699A (en) Acoustic microscopy
JPS6035254A (en) Acoustic microscope
JPS63169554A (en) Ultrasonic microscope lens
JPS6036951A (en) Focusing ultrasonic transducer element
Weise et al. Examination of the two-dimensional pupil function in coherent scanning microscopes using spherical particles
JPH0518363B2 (en)
JPS6179158A (en) Ultrasonic microscope lens
JPH0376419B2 (en)
JPH0575267B2 (en)
CN108490080A (en) A kind of non-contact ultrasonic signal supervisory instrument and its method
Korkh et al. Scanning acoustic microscope for visualization of microflaws in solids
JPS6179157A (en) Ultrasonic microscope lens
JPH0429976B2 (en)
Chubachi et al. Scanning acoustic microscope with transducer swing along beam axis
JPH0731169Y2 (en) Ultrasonic probe
JPH0376418B2 (en)
Passler et al. Photoacoustic generation of x-waves and their application in a dual mode scanning acoustic microscope
JPH02251752A (en) Ultrasonic microscope lens and reflected wave collecting method using same
Scheer et al. Influence of an eccentric transducer on V (z) measurement
De Vadder et al. A New Ultrasonic Transducer Combining Three Modes: High Axial Resolution, High Transverse Resolution and Standard Modes
JPH07280781A (en) Ultrasonic microscopic apparatus
JPS61210943A (en) Ultrasonic microscope