JPS63169333A - Production of chromium stainless steel strip of double phase structure having small intra-surface anisotropy and high ductility and high strength - Google Patents

Production of chromium stainless steel strip of double phase structure having small intra-surface anisotropy and high ductility and high strength

Info

Publication number
JPS63169333A
JPS63169333A JP61311960A JP31196086A JPS63169333A JP S63169333 A JPS63169333 A JP S63169333A JP 61311960 A JP61311960 A JP 61311960A JP 31196086 A JP31196086 A JP 31196086A JP S63169333 A JPS63169333 A JP S63169333A
Authority
JP
Japan
Prior art keywords
less
heat treatment
temperature
steel strip
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61311960A
Other languages
Japanese (ja)
Other versions
JPH07100821B2 (en
Inventor
Teruo Tanaka
照夫 田中
Katsuhisa Miyakusu
宮楠 克久
Hiroshi Fujimoto
廣 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP31196086A priority Critical patent/JPH07100821B2/en
Priority to CA000553958A priority patent/CA1305911C/en
Priority to ES87118421T priority patent/ES2043637T3/en
Priority to EP87118421A priority patent/EP0273278B1/en
Priority to DE87118421T priority patent/DE3787633T2/en
Priority to US07134874 priority patent/US4812176B1/en
Priority to CN87105993A priority patent/CN1010856B/en
Priority to BR8707111A priority patent/BR8707111A/en
Priority to KR1019870015472A priority patent/KR950013187B1/en
Publication of JPS63169333A publication Critical patent/JPS63169333A/en
Publication of JPH07100821B2 publication Critical patent/JPH07100821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a stainless steel strip of double phase structure having small intra-surface anisotroy and having high ductility and high strength by hot rolling a steel slab having a specific compsn. essentially consisting of Cr, then subjecting the slab to cold rolling including intermediate annealing and holding the rolled sheet in a specific temp. region in a continuous heat treatment furnace then subjecting the sheet to controlled cooling. CONSTITUTION:The slab of the steel consisting of <=0.15wt.% C, <=2.0% Si, <=1.0% Mn, <=0.040% P, <=0.030% S, <=0.60% Ni, 14.0-20.0% Cr, <=0.12% N, <=0.02% O, and the balance Fe and unavoidable impurities and satisfying the relation expressed by the formula is produced. Said slab is then subjected to hot rolling and >=2 passes of cold rolling including intermediate annealing under heating to the single phase region temp. of ferrite to the product sheet thickness. The rolled sheet is passed through the continuous heat treatment furnace where the sheet is held at the two-phase region temp. of ferrite + austenite of Ac1 point or above and <=1,100 deg.C within 10min and is then cooled at 1-500 deg.C/sec average cooling rate from the max. heating temp. down to 100 deg.C. The chromium stainless steel strip of double phase structure having >=200HV hardness, the small intra-surface anisotroy and the high ductility and high strength is obtd. by the above-mentioned finising heat treatment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、延性に優れ強度および延性の面内異方性の小
さい高強度複相組織クロムステンレス鋼帯の新規な工業
的製造法に関し、高強度が必要とされ且つプレス成形な
どの加工が施される成形用素材としての高強度高延性ス
テンレス鋼帯の製造法を堤供するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a new industrial manufacturing method for a high-strength multi-phase chromium stainless steel strip with excellent ductility and low in-plane anisotropy of strength and ductility. The present invention provides a method for manufacturing a high-strength, high-ductility stainless steel strip that is used as a forming material that requires high strength and is subjected to processing such as press forming.

〔この分野の背景〕[Background of this field]

クロムを主合金成分として含有するクロムステンレス鋼
にはマルテンサイト系ステンレス鋼とフェライト系ステ
ンレス鋼とがある。いずれも、クロムおよびニッケルを
主合金成分として含有するオーステナイト系ステンレス
鋼に比べて安価であり、そして強磁性を有し熱膨張係数
が小さいなどの物性面でオーステナイト系ステンレス鋼
には見られない特徴を有するので、単に経済的な理由の
みならず特性面からクロムステンレス鋼に限定される用
途も多い。特に近年の電子機器や精密機械部品などの分
野では、その需要拡大にともなってクロムステンレス鋼
板を使用する用途において加工成品の窩機能化、小型化
、一体化、高精度化並びに加工工程の簡略化に対する要
求が益々厳しくなってきている。このために、ステンレ
ス網木来の耐食性や上述のクロムステンレス鋼の特質に
加えて、クロムステンレス鋼板の素材面では、一層の強
度、加工性や精度が必要とされる。したがって5高強度
と高延性という相反する特性を兼備したもの、素材鋼板
時点での形状や板厚精度に優れたもの、加工後の形状精
度に優れるといった緒特性を合わせもつクロムステンレ
ス鋼板素材の出現が待たれている。
Chromium stainless steel containing chromium as a main alloy component includes martensitic stainless steel and ferritic stainless steel. Both are cheaper than austenitic stainless steels, which contain chromium and nickel as the main alloy components, and have physical properties that are not found in austenitic stainless steels, such as ferromagnetism and a small coefficient of thermal expansion. Therefore, there are many uses that are limited to chromium stainless steel not only for economic reasons but also for characteristics. Particularly in the fields of electronic equipment and precision mechanical parts in recent years, demand for chrome stainless steel sheets has increased, and in applications where chrome stainless steel sheets are used, processing products are becoming more functional, smaller, more integrated, more precise, and the processing process is simplified. requirements are becoming increasingly strict. For this reason, in addition to the corrosion resistance of stainless steel mesh and the above-mentioned characteristics of chrome stainless steel, the material of the chrome stainless steel plate is required to have even higher strength, workability, and precision. Therefore, the emergence of chromium stainless steel sheet materials that have the contradictory characteristics of high strength and high ductility, excellent shape and thickness accuracy at the time of raw steel sheet, and excellent shape accuracy after processing. is awaited.

〔従来の技術〕[Conventional technology]

従来のクロムステンレス鋼板素材について2強度の観点
から見ると、先ずマルテンサイト系ステンレス鋼が高強
度を有するクロムステンレス鋼として良く知られている
。例えばJIS G 4305の冷間圧延ステンレス鋼
板にはマルテンサイト系ステンレス鋼として7種の鋼が
規定されている。これらのマルテンサイト系ステンレス
鋼は、Cが0.08%以下(SUS410S)から0,
60〜0.75%(SO5440A)であり、フェライ
ト系ステンレス鋼に比べて同−Cr量レベルで見ると、
高いCを含有し、焼入れ処理または焼入れ焼もどし処理
により高強度を付与することができる。例えば、このJ
IS G 4305において、 0.26〜0.40%
のCおよび 12.00〜14.00%のCrを含有す
る5US420J2では、 980〜1040℃からの
急冷による焼入れ後、150〜400℃空冷の焼もどし
により HRC40以上の硬さが得られることが、そし
て、 0.60〜0.75%のCおよび16.00〜1
8.00%のCrを含有する5US440Aでは、 1
010〜1070℃からの急冷による焼入れ後、150
〜400℃空冷の焼もどしにより、同じ(HRC40以
上の硬さが得られることが示されている。
When looking at conventional chrome stainless steel sheet materials from the viewpoint of two strengths, firstly, martensitic stainless steel is well known as a chrome stainless steel having high strength. For example, JIS G 4305 stipulates seven types of steel as martensitic stainless steel for cold rolled stainless steel sheets. These martensitic stainless steels have carbon content ranging from 0.08% or less (SUS410S) to 0.
60 to 0.75% (SO5440A), compared to ferritic stainless steel at the same -Cr content level.
It contains high C and can be given high strength by hardening treatment or hardening and tempering treatment. For example, this J
In IS G 4305, 0.26-0.40%
In 5US420J2, which contains C and 12.00 to 14.00% Cr, it is possible to obtain a hardness of HRC40 or higher by quenching by rapid cooling from 980 to 1040°C and then tempering by air cooling at 150 to 400°C. and 0.60-0.75% C and 16.00-1
For 5US440A containing 8.00% Cr, 1
After quenching by rapid cooling from 010 to 1070℃, 150℃
It has been shown that the same hardness (HRC 40 or higher) can be obtained by air-cooling tempering at ~400°C.

一方、クロムステンレス鋼であるフェライト系ステンレ
ス鋼板では熱処理による硬化があまり期待できないので
1強度を上昇させる方法としては焼なまし後、さらに冷
間で調質圧延を行って加工硬化による強度上昇を図るこ
とが行われている。
On the other hand, ferritic stainless steel sheets, which are chromium stainless steels, cannot be expected to undergo much hardening through heat treatment, so one way to increase their strength is to perform cold temper rolling after annealing to increase strength through work hardening. things are being done.

しかし、フェライト系ステンレス鋼は元来が高強度を必
要とする用途にはあまり供されてはいないのが実状であ
る。
However, the reality is that ferritic stainless steels are not often used in applications that inherently require high strength.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

マルテンサイト系ステンレス鋼板では、焼入れまたは焼
入れ一焼もどし処理後の組織はその名称のごとく基本的
にはマルテンサイト組織であり。
In martensitic stainless steel sheets, the structure after quenching or quenching and tempering is basically a martensitic structure, as the name suggests.

非常に高い強度および硬さが得られる反面、伸びは非常
に低い。そのため、焼入れまたは焼入れ焼もどし処理を
施したのではその後の加工が困難となる。特にプレス成
形などの加工は焼入れまたは焼入れ焼もどし後では不可
能である。したがって加工が施される場合には焼入れま
たは焼入れ焼もどし前に施される。すなわち、素材メー
カーからは焼なましだ状態、つまり、 JIS G 4
305の表16にも示されるように強度および硬さの低
い軟質な状態で出荷され、加工メーカーにおいて最終成
品にほぼ近い形状に加工された後、焼入れまたは焼入れ
焼もどし処理を施すのが通常である。この焼入れまたは
焼入れ焼もどし処理を施すことにより生成する表面の酸
化皮膜(スケール)は表面の美麗さが重要視されるステ
ンレス鋼では好ましくない場合が多く、その対策として
真空もしくは不活性ガス雰囲気による熱処理を施したり
、熱処理後に研磨などによりスケールを除去するなどの
工程が必要となる。いずれにしても、マルテンサイト系
ステンレス鋼板では高強度を得るためには加工メーカー
での熱処理工程が不可欠であるという加工メーカー側で
の負担増があり、またこのために最終製品のコストアン
プは避けられないという問題があった。
Although very high strength and hardness are obtained, elongation is very low. Therefore, if quenching or quenching and tempering treatment is performed, subsequent processing becomes difficult. In particular, processing such as press forming is not possible after quenching or quench-tempering. Therefore, when processing is performed, it is performed before quenching or quenching and tempering. In other words, the material manufacturer states that it is in an annealed state, that is, JIS G 4.
As shown in Table 16 of 305, it is usually shipped in a soft state with low strength and hardness, and after being processed into a shape almost similar to the final product at a processing manufacturer, it is quenched or quenched and tempered. be. The surface oxide film (scale) produced by this quenching or quenching and tempering treatment is often undesirable for stainless steel, where surface beauty is important, and as a countermeasure, heat treatment in a vacuum or inert gas atmosphere is recommended. This requires steps such as applying heat treatment and removing scale by polishing or the like after heat treatment. In any case, in order to obtain high strength with martensitic stainless steel sheets, a heat treatment process at the processing manufacturer is essential, which increases the burden on the processing manufacturer, and this increases the cost of the final product. The problem was that I couldn't do it.

一方、フェライト系ステンレス鋼板を調質圧延により強
度を上昇させた場合には、伸びの低下が著しくなって強
度−延性バランスが悪くなる結果。
On the other hand, when the strength of a ferritic stainless steel sheet is increased by temper rolling, the elongation decreases significantly and the strength-ductility balance deteriorates.

加工性に劣ることになる。そして、調質圧延による強度
上昇の程度は引張強さよりも耐力の方が著しく高い。こ
のために高圧延率になると耐力と引張強さの差が小さく
なり、降伏比(=耐力/引張強さ)が1に近くなって材
料の塑性加工域が非常に狭くなると共に、耐力が高いと
スプリングバックが大きくなってプレス加工などの後の
形状性が悪くなる。さらに調質圧延材は強度および伸び
の面内異方性が非常に大きく、軽度のプレス加工などで
も加工後の形状が悪くなる。また、圧延による加工歪み
は板の表面に近いほど大きいという特徴があるため、調
質圧延材では板厚方向のひずみ分布が不均一になること
が避けられない。これは残留応力の板厚方向の不均一分
布をもたらし、特に極薄鋼板では打抜き加工やフォトエ
ツチング処理による穴あけ加工後に板の反りなどの形状
変化を生ずる場合があり、電子部品などの高精度が必要
とされる用途では大きな問題となる。以上の材質特性面
での問題のみならず、調質圧延材はその製造性において
も多くの問題を抱えている。先ず強度の制御について見
ると、調質圧延は冷間圧延による加工硬化を利用してい
るため圧延率が強度を決定する最も重要な因子である。
This results in poor workability. The degree of increase in strength due to temper rolling is significantly higher in yield strength than in tensile strength. For this reason, when the rolling rate becomes high, the difference between proof stress and tensile strength becomes smaller, and the yield ratio (= proof stress / tensile strength) becomes close to 1, the plastic working area of the material becomes very narrow, and the yield strength becomes high. This increases the springback and deteriorates the shapeability after press working. Furthermore, the temper-rolled material has very large in-plane anisotropy in strength and elongation, and even light press processing results in poor shape after processing. Furthermore, since the processing strain caused by rolling is larger closer to the surface of the plate, it is inevitable that the strain distribution in the thickness direction of the temper-rolled material will become non-uniform. This results in non-uniform distribution of residual stress in the plate thickness direction, which may cause changes in shape such as warping of the plate after punching or photo-etching, especially in ultra-thin steel plates. This is a big problem in the applications where it is needed. In addition to the above-mentioned problems in terms of material properties, skin-pass rolled materials also have many problems in their manufacturability. First, regarding the control of strength, since temper rolling utilizes work hardening due to cold rolling, the rolling rate is the most important factor determining strength.

したがって。therefore.

成品として板厚精度に優れ且つ目標の強度レヘルを精度
よく安定して得るためには、圧延率の厳密な制御、具体
的には調質圧延前の初期板厚の厳密な管理が非常に重要
であることに加えて、調質圧延前の素材の強度レベルの
管理が必要となる。また形状制御の面では、いわゆるス
キンパス圧延やテンパーローリングと呼ばれる形状修正
を目的とした高々2〜3%の軽圧延率の調質圧延とは異
なリ、高強度化を目的とする調質圧延では圧延率が数十
パーセントにもおよぶ実質的な冷間圧延であるため、冷
延ままで形状性に優れた銅帯を得ることは困難である。
In order to achieve excellent plate thickness accuracy as a finished product and to stably obtain the target strength level with high accuracy, strict control of the rolling rate, specifically strict control of the initial plate thickness before temper rolling, is extremely important. In addition to this, it is necessary to control the strength level of the material before temper rolling. In addition, in terms of shape control, skin pass rolling and temper rolling, which have a light rolling rate of at most 2 to 3% for the purpose of shape correction, are different from skin pass rolling and temper rolling, which have a light rolling rate of at most 2 to 3%. Since this is essentially cold rolling with a rolling reduction of several tens of percent, it is difficult to obtain a copper strip with excellent shape properties as cold-rolled.

このため、形状修正を目的として材料の回復・再結晶温
度域よりも低く軟化しない温度域に加熱し、応力除去処
理を必要とする場合がある。このように調質圧延材は製
造性においても数々の問題がある。
Therefore, for the purpose of shape correction, it may be necessary to heat the material to a temperature range lower than the recovery/recrystallization temperature range at which it does not soften, and to perform stress relief treatment. As described above, temper-rolled materials have many problems in terms of manufacturability.

以上の調質圧延に起因する問題のみならず、フェライト
系ステンレス鋼板では本質的な欠点とも言えるリジング
の問題がある。リジングは通常。
In addition to the problems caused by the above-mentioned temper rolling, ferritic stainless steel sheets also have the problem of ridging, which can be said to be an essential drawback. Rigging is normal.

フェライト系ステンレス鋼の冷延焼鈍板にプレス成形な
どの加工を施した際に生ずる表面欠陥の一種であるが、
冷間圧延後においても一般に冷延リジングと呼ばれるリ
ジングを発生する場合があり。
It is a type of surface defect that occurs when a cold rolled annealed ferritic stainless steel plate is subjected to processing such as press forming.
Even after cold rolling, ridging, generally called cold rolling ridging, may occur.

表面の粗度が重視される用途ではやはり大きな問題とな
る。
This is still a big problem in applications where surface roughness is important.

〔問題点を解決する手段〕 前述のような問題は、適度な高強度を有し且つ所望の形
状に加工し得る良好な延性および加工性を具備し、異方
性が小さくリジング発生のないクロムステンレス鋼材料
が素材メーカー側で鋼板または鋼帯の形で提供できれば
解決し得る。そこで本発明者らはこの解決を目的として
化学成分並びに製造条件の両面からクロムステンレス鋼
について広範な研究を続けて来た。その結果、鋼成分を
適正に制御し、さらに製造条件として、熱間圧延のあと
、場合によっては更に熱延板焼鈍を行ったあと、フェラ
イト単相域での中間焼鈍を挟む皿回以上の冷間圧延を行
って製品板厚の冷延綱帯を製造し、この冷延鋼帯を、従
来のフェライト単相域温度での仕上焼鈍つまり鋼板また
は鋼帯成品に施す焼なまし処理ではなく、適正なフェラ
イト+オーステナイトニ相域への加熱とその後の急冷処
理からなる特定条件下での連続仕上熱処理を施すならば
、実質的に軟質なフェライト相と硬質なマルテンサイト
相が均一に混在した複相組織とすることができ、前記の
問題点の実質上すべてが解決できるという素晴らしい成
果を得ることができた。
[Means for solving the problem] The above-mentioned problem is solved by using chrome that has moderately high strength, good ductility and workability that can be processed into a desired shape, and has small anisotropy and does not cause ridging. This problem could be solved if stainless steel materials could be provided in the form of steel plates or steel strips by material manufacturers. In order to solve this problem, the present inventors have continued extensive research on chromium stainless steel from both the chemical composition and manufacturing conditions. As a result, we have properly controlled the steel composition, and as a manufacturing condition, after hot rolling and, in some cases, further hot-rolled sheet annealing, we have developed a method of cooling that is more than plate round with intermediate annealing in the ferrite single phase region. Instead of performing inter-rolling to produce a cold-rolled steel strip with the product thickness, and then final annealing the cold-rolled steel strip at a temperature in the conventional ferrite single phase region, that is, annealing that is applied to a steel plate or steel strip product, If continuous finishing heat treatment is performed under specific conditions consisting of heating to a proper ferrite + austenite dual phase region followed by rapid cooling, a complex state in which a soft ferrite phase and a hard martensite phase are uniformly mixed is obtained. We were able to obtain a remarkable result in that it was possible to obtain a phase structure, and virtually all of the above-mentioned problems could be solved.

かくして本発明は。Thus, the present invention.

重量%において。In weight%.

C:0.15%以下。C: 0.15% or less.

S i : 2.0%以下。Si: 2.0% or less.

Mn:1.0%以下。Mn: 1.0% or less.

P : 0.040%以下。P: 0.040% or less.

S : 0.030%以下。S: 0.030% or less.

N i : 0.60%以下。Ni: 0.60% or less.

Cr : 14.0%超え20.0%以下。Cr: More than 14.0% and less than 20.0%.

N:0.12%以下。N: 0.12% or less.

○: 0.02%以下。○: 0.02% or less.

を含有し、場合によっては、さらに0.20%以下のA
 e 、 0.0050%以下のB、1.0%以下のM
o、 0.10%以下のREV、0.20%以下のYの
一種または二種以上を含有し、残部がFeおよび不可避
的不純物からなる鋼であって、且つ 0.03%≦C+N≦0.20% の関係を満足する鋼のスラブを製造し、これを熱間圧延
して熱延鋼帯を製造する工程。
and, in some cases, further contain 0.20% or less of A.
e, B of 0.0050% or less, M of 1.0% or less
o, steel containing one or more types of REV of 0.10% or less and 0.20% or less of Y, with the balance consisting of Fe and unavoidable impurities, and 0.03%≦C+N≦0 A process of producing a steel slab that satisfies the .20% relationship and hot rolling it to produce a hot rolled steel strip.

フェライト単相域温度加熱の中間焼鈍を挟む2回以上の
冷間圧延によって製品板厚の冷延鋼帯を製造する工程、
そして。
A process of producing a cold-rolled steel strip of product thickness by two or more cold rollings sandwiching intermediate annealing in the ferrite single-phase region temperature heating;
and.

得られた冷延鋼帯を連続熱処理炉に通板して。The obtained cold rolled steel strip is passed through a continuous heat treatment furnace.

Ac+点℃点上以上100℃以下のフェライト+オース
テナイトの二相域温度に10分以内の保持のあと。
After maintaining the temperature in the two-phase region of ferrite + austenite from above the Ac+ point to 100°C for less than 10 minutes.

最高加熱温度から100℃までを平均冷却速度1℃/s
ec以上500℃/sec以下で冷却する仕上熱処理を
施す連続仕上熱処理工程。
Average cooling rate 1℃/s from maximum heating temperature to 100℃
Continuous finishing heat treatment step in which finishing heat treatment is performed by cooling at ec or more and 500° C./sec or less.

からなる、且つIIV 200以上の硬さを有する面内
異方性の小さい高延性高強度の複相組織(実質上フェラ
イトとマルテンサイトからなるm織)のクロムステンレ
ス鋼帯の製造法を提供するものである。
To provide a method for producing a chromium stainless steel strip having a high ductility and high strength multi-phase structure (m weave substantially consisting of ferrite and martensite) with small in-plane anisotropy and a hardness of IIV 200 or more. It is something.

本発明法によれば前述の問題点の実質上すべてが解決さ
れるのみならず、am成または仕上熱処理時の加熱温度
並びに冷却速度を制御することにより強度を自在に且つ
簡単に調整できるという点でクロムステンレス鋼板また
は銅帯素材の工業的製造にあたっての有利且つ新しい製
造技術を提供するものであり、従来より市場に出荷され
ているマルテンサイト系ステンレス鋼板または調帯やフ
エライト系ステンレス鋼板または調帯では存しない延性
と強度の両特性を兼備し且つ延性と強度の面内異方性の
少ない新規クロムステンレス鋼材料を市場に提供するも
のである。なお2本発明法によれば、最終の連続仕上熱
処理工程を経た成品は鋼帯の形態で工業的に製造される
ものであり、これが市場に出荷される場合には調帯のま
ま(コイル)か或いは鋼板に整形された状態となる。
According to the method of the present invention, not only can substantially all of the above-mentioned problems be solved, but also the strength can be freely and easily adjusted by controlling the heating temperature and cooling rate during AM formation or finishing heat treatment. It provides an advantageous and new manufacturing technology for the industrial production of chromium stainless steel sheets or copper strip materials, and it can be used to manufacture martensitic stainless steel sheets or strips or ferrite stainless steel sheets or strips that have been conventionally shipped on the market. The purpose is to provide the market with a new chromium stainless steel material that has both ductility and strength characteristics that do not exist in other materials, and has less in-plane anisotropy in ductility and strength. 2. According to the method of the present invention, the product that has undergone the final continuous finishing heat treatment process is industrially manufactured in the form of steel strip, and when it is shipped to the market, it is left as a strip (coil). Or it will be shaped into a steel plate.

従来より2例えばフェライト系ステンレス鋼の代表鋼種
である5US430においても二相域温度に加熱すれば
オーステナイトが生成し、このオーステナイトは急冷に
よってマルテンサイトに変態してフェライト+マルテン
サイトの二相組織になること自体は知られていた。しか
しながら、高温でオーステナイトを生成するフェライト
系ステンレス鋼帯の製造においては、冷延後の熱処理は
あくまでもフェライト単相域温度での焼なまし処理であ
り、マルテンサイトを生成するような高温の熱処理は延
性の低下などの材質上の劣下をもたらすものとして回避
することが常識であり、工業的な鋼帯の実際の製造面で
は全く顧みられなかった。
Conventionally, 2 For example, even in 5US430, which is a representative steel type of ferritic stainless steel, austenite is generated when heated to a temperature in the two-phase region, and this austenite is transformed into martensite by rapid cooling, resulting in a two-phase structure of ferrite + martensite. That itself was known. However, in the production of ferritic stainless steel strips that produce austenite at high temperatures, the heat treatment after cold rolling is only annealing at a temperature in the ferrite single phase region, and high-temperature heat treatment that produces martensite is not recommended. It is common sense to avoid this because it causes deterioration in material quality such as a decrease in ductility, and it has not been considered at all in the actual manufacturing of industrial steel strips.

したがって、クロムステンレス鋼の冷延工程後に本発明
のような連続熱処理を想定し且つフェライト+オーステ
ナイトニ相域に加熱する仕上熱処理を施した場合の加熱
温度と強度および延性の関係や延性および強度の異方性
などについて詳細に研究がなされた例もない0本発明は
、高強度クロムステンレス鋼帯の工業的製造法として従
来顧みられることのなかった全く新しい製造方法を提供
するものであり、その結果として従来のクロムステンレ
ス鋼板または調帯では有しなかった優れた特性をもつ新
規なりロムステンレス鋼板材料を提供するものである。
Therefore, assuming continuous heat treatment as in the present invention after the cold rolling process of chrome stainless steel, and performing finishing heat treatment to heat to the ferrite + austenite dual phase region, the relationship between heating temperature, strength and ductility, and the relationship between ductility and strength. There have been no detailed studies on anisotropy, etc. The present invention provides a completely new manufacturing method that has not been considered as an industrial manufacturing method for high-strength chromium stainless steel strips. As a result, a new chrome stainless steel sheet material with excellent properties not possessed by conventional chrome stainless steel sheets or belts is provided.

〔発明の詳述〕[Detailed description of the invention]

以下に9本発明で規制する鋼の化学成分値の範囲限定の
理由並びに本発明法で採用する各製造工程の内容を具体
的に詳述する。
Below, the reason for limiting the range of chemical composition values of steel regulated by the present invention and the content of each manufacturing process adopted by the method of the present invention will be specifically explained in detail.

まず1本発明法を適用するクロムステンレス鋼の成分の
含有量範囲(重量%)の限定理由は次のとおりである。
First, the reason for limiting the content range (wt%) of the components of the chromium stainless steel to which the method of the present invention is applied is as follows.

CおよびNは2強力なオーステナイト生成元素であると
共にマルテンサイト強化能の大きい元素であるから、連
続仕上熱処理後の強度の制御並びに高強度化に有効な元
素である。したがって、連続仕上熱処理工程後に10%
以上のマルテンサイトを含む複相組織としHv200以
上の十分な強度を得るには(C十N)量として少なくと
も0.03%以上を必要とする。しかし、CとN量があ
まり高いと連続仕上熱処理工程後に生成するマルテンサ
イト量が多くなり、場合によっては100%マルテンサ
イトとなると共にマルテンサイト相そのものの硬さも非
常に高くなるので高強度は得られるものの延性は低下す
る。したがって、(C+N)量とし70.20%以下と
し、 0.03%≦C+ N 50.20%の関係を満
足させることが必要であり、またC量としては0.15
%以下とする。
Since C and N are two strong austenite-forming elements and have a large ability to strengthen martensite, they are effective elements for controlling and increasing the strength after continuous finishing heat treatment. Therefore, after continuous finishing heat treatment process, 10%
In order to obtain a multi-phase structure containing the above martensite and sufficient strength of Hv200 or more, the amount (C + N) of at least 0.03% or more is required. However, if the C and N contents are too high, the amount of martensite generated after the continuous finishing heat treatment process will increase, and in some cases it will become 100% martensite, and the hardness of the martensite phase itself will become very high, so high strength will not be achieved. However, the ductility decreases. Therefore, it is necessary to set the (C+N) amount to 70.20% or less, and to satisfy the relationship 0.03%≦C+N 50.20%, and the C amount should be 0.15%.
% or less.

また、Nは溶解度の関係がら多量に添加することは困難
であると共に、多量の添加は表面欠陥の増加を招くため
0.12%以下とする。
Further, it is difficult to add a large amount of N due to its solubility, and addition of a large amount causes an increase in surface defects, so the amount is set to 0.12% or less.

Siはフェライト生成元素であると共にフェライトおよ
びマルテンサイトの両相に対し強力な固溶強化能を有す
る。したがってマルテンサイト量の制御および強度レベ
ルの制御に有効な元素である。しかしながら多量の添加
は熱間加工性や冷間加工性の低下を招くために2.0%
を上限とする。
Si is a ferrite-forming element and has a strong solid solution strengthening ability for both ferrite and martensite phases. Therefore, it is an effective element for controlling the amount of martensite and the strength level. However, adding a large amount leads to a decrease in hot workability and cold workability, so 2.0%
is the upper limit.

MnとNiは、オーステナイト生成元素であり。Mn and Ni are austenite forming elements.

連続仕上熱処理後のマルテンサイト量並びに強度の制御
に有効な元素である。しかし多量に添加すると製品が高
価となり1本発明鋼帯の特徴の−っである経済性に影響
を与える。したがって、in常許容されている限度のM
n ; 1.0%、Ni;0.6%をそれぞれ上限とす
る。
It is an effective element for controlling the amount of martensite and strength after continuous finishing heat treatment. However, if a large amount is added, the product becomes expensive, which affects the economy, which is one of the characteristics of the steel strip of the present invention. Therefore, the normally allowed limit of M
The upper limits are n: 1.0% and Ni: 0.6%.

Sは、高すぎると耐食性や熱間加工性に悪影響をおよぼ
すので低いほうが好ましく 、 0.030%を上限と
する。
If S is too high, it will adversely affect corrosion resistance and hot workability, so it is preferably lower, and the upper limit is 0.030%.

Pは、固溶強化能の大きい元素であるが、多量の添加は
靭性の低下を招く場合があるため2通常許容されている
程度の0.040%以下とする。
Although P is an element with a large solid solution strengthening ability, addition of a large amount may lead to a decrease in toughness.

Crは、ステンレス鋼の耐食性に対して最も重要に作用
する元素であり、十分な耐食性を得るためには14.0
%を超えて含有させるべきであるが。
Cr is the element that has the most important effect on the corrosion resistance of stainless steel, and in order to obtain sufficient corrosion resistance, 14.0
It should be contained in excess of %.

Crlが高いと、マルテンサイト相を生成させて高強度
を得るに必要なオーステナイト生成元素の量が多くなる
と共に製品が高価となるので、 20.0%を上限とす
る。
If the Crl content is high, the amount of austenite-forming elements necessary to generate a martensite phase and obtain high strength increases, and the product becomes expensive, so the upper limit is set at 20.0%.

0は、酸化物系の非金属介在物を形成し、鋼の清浄度を
低下させるので低い方が望ましく 、0.02%以下と
する。
0 forms oxide-based non-metallic inclusions and lowers the cleanliness of the steel, so a lower value is desirable, and it is set at 0.02% or less.

1Mは、脱酸に有効な元素であると共にプレス加工性に
悪影響を及ぼすA2系介在物を著減せしめる効果がある
。しかし、 0.20%を超えて含有させてもその効果
が飽和するばかりでなく表面欠陥の増加を招くなどの悪
影響をもたらすのでその上限を0.20%とする。
1M is an effective element for deoxidizing and has the effect of significantly reducing A2-based inclusions that adversely affect press workability. However, if the content exceeds 0.20%, the effect not only becomes saturated, but also brings about adverse effects such as an increase in surface defects, so the upper limit is set at 0.20%.

Bは、靭性改善に有効な成分であるが、極く微量でその
効果はもたらされ、 o、ooso%を超えるとその効
果が飽和するのでその上限をo、ooso%とする。
B is an effective component for improving toughness, but its effect is brought about in a very small amount, and the effect is saturated when it exceeds o, ooso%, so its upper limit is set at o,ooso%.

Moは、耐食性の向上に有効な元素であるが。Mo is an element effective in improving corrosion resistance.

多量に添加すると製品が高価となるために1.0%を上
限とする。
If added in large amounts, the product becomes expensive, so the upper limit is set at 1.0%.

REVおよびYは、熱間加工性の向上に有効な元素であ
る。また、耐酸化性の向上にも有効な元素である。高温
での連続仕上熱処理を施す本発明法においては酸化スケ
ールの発生を抑制してデスケール後に良好な表面肌を得
るのに有効に作用する。しかし、これらの効果は、RE
Mでは0.10%を超えると、またYでは0.20%を
超えると飽和するので、上限をREVは0.10%、Y
は0.20%とする。
REV and Y are elements effective in improving hot workability. It is also an effective element for improving oxidation resistance. The method of the present invention, which performs continuous finishing heat treatment at high temperatures, is effective in suppressing the generation of oxidized scale and obtaining a good surface texture after descaling. However, these effects
M saturates when it exceeds 0.10% and Y exceeds 0.20%, so the upper limit is 0.10% for REV and 0.10% for Y.
is 0.20%.

次に9本発明による複相組織鋼帯の各製造工程の内容に
ついて説明する。
Next, the contents of each manufacturing process of the multi-phase steel strip according to the present invention will be explained.

本発明法においては1以上の鋼成分範囲に調整したクロ
ムステンレス鋼のスラブを通常の製鋼鋳造技術によって
製造し、このスラブを通常の熱間圧延によって熱延鋼帯
を製造する。熱間圧延後は熱延板焼鈍とデスケールを行
なうのがよい。熱延板焼鈍は必ずしも実施する必要はな
いが、この焼鈍によって熱延鋼帯を軟質化させて冷延性
の向上を図ったり、熱延鋼帯に残有する変態相(高温で
オーステナイト相であった部分)をフェライト+炭化物
に変態・分解させることができるので、冷間圧延・連続
仕上熱処理後に均一な複相組織をもつ鋼帯とするうえで
望ましい。この熱延板焼鈍は連続焼鈍または箱焼鈍のい
ずれでもよい、またデスケール工程は通常の酸洗を行な
えばよい、ここまでのスラブ製造工程、熱間圧延工程、
熱延板焼鈍工程および脱スケール工程は従来のクロムス
テンレス鋼帯の製造技術をそのまま本発明法に適用する
ことができる。
In the method of the present invention, a slab of chromium stainless steel adjusted to one or more steel composition ranges is produced by conventional steel casting techniques, and this slab is produced by conventional hot rolling to produce a hot-rolled steel strip. After hot rolling, it is preferable to perform hot rolled sheet annealing and descaling. Although it is not necessary to carry out hot-rolled sheet annealing, it is possible to soften the hot-rolled steel strip and improve its cold-rollability, and to reduce the residual transformed phase (austenitic phase at high temperatures) in the hot-rolled steel strip. This is desirable for producing a steel strip with a uniform multi-phase structure after cold rolling and continuous finishing heat treatment. This hot-rolled sheet annealing may be either continuous annealing or box annealing, and the descaling step may be carried out by ordinary pickling.
For the hot-rolled sheet annealing process and the descaling process, conventional chrome stainless steel strip manufacturing techniques can be applied to the method of the present invention as they are.

次いで冷間圧延工程と連続仕上熱処理工程を経て複相組
織鋼帯を製造するのであるが、これらの工程は本発明法
において特徴的な工程であるので詳しく説明する。
Next, a dual-phase steel strip is manufactured through a cold rolling process and a continuous finishing heat treatment process, and these processes are characteristic of the method of the present invention and will be explained in detail.

「冷間圧延工程」 冷間圧延工程では、熱延鋼帯(熱延板焼鈍後の熱延鋼帯
)をフェライト単相域温度加熱の中間焼鈍を挟む2回以
上の冷間圧延によって製品板厚にまで圧延する工程であ
る。この中間焼鈍は連続仕上熱処理工程後の複用組!1
i鋼帯の延性の面内異方性を少なくする上で重要な役割
を果たす。これを代表的な試験結果に基づいて説明する
"Cold rolling process" In the cold rolling process, a hot rolled steel strip (a hot rolled steel strip after annealing a hot rolled sheet) is cold rolled two or more times with intermediate annealing at a temperature in the ferrite single phase range to form a product sheet. This is the process of rolling to a thick thickness. This intermediate annealing is a multiple set after the continuous finishing heat treatment process! 1
It plays an important role in reducing the in-plane anisotropy of the ductility of the steel strip. This will be explained based on typical test results.

第1表に示す化学成分を有する鋼A、BおよびCの鋼を
溶製し9通常の条件の熱間圧延にて板厚3.6mmの熱
延板とし、780℃×6時間加熱、炉冷の焼鈍を施した
あと酸洗を行った。この熱延板を用いて冷間圧延条件と
仕上熱処理条件を変えて試験を行った(第1図および第
2図のデータもこの試験結果を示したものであるが、そ
の内容については後述する)。
Steels A, B, and C having the chemical composition shown in Table 1 were melted and hot-rolled to a thickness of 3.6 mm under normal conditions, heated at 780°C for 6 hours, and heated in a furnace. After cold annealing, pickling was performed. Tests were conducted using this hot-rolled sheet by changing the cold rolling conditions and finishing heat treatment conditions (the data in Figures 1 and 2 also show the results of this test, the details of which will be described later). ).

下記の第2表は、第1表の鋼Bについて。Table 2 below is for steel B in Table 1.

(a)、冷間圧延のさいに中間焼鈍を挟む2回冷間圧延
を行なって仕上熱処理を施した複相m織材(以後、ZC
R材と呼ぶ)。
(a), a multi-phase m-woven material (hereinafter referred to as ZC
(referred to as R material).

山)、中間焼鈍を行なうことなく1回のみの冷間圧延を
行なって仕上熱処理を施した複相組織材(以後、ICR
材と呼ぶ)。
Yama), multi-phase structure material (hereinafter referred to as ICR
material).

(C1,ICR材およびZCR材と同等の強度を冷間圧
延によって付与した調質圧延材。
(C1, temper-rolled material that has the same strength as ICR material and ZCR material by cold rolling.

の3種の方法により製造した各鋼板の引張強さ(kgf
/mm”)および伸び(χ)を圧延方向の値(し)、圧
延方向に対して45°方向の値(D)および圧延方向に
対し90°方向の値(T)を示したものである。
The tensile strength (kgf
/mm”) and elongation (χ) in the rolling direction (shi), the value at 45° to the rolling direction (D), and the value at 90° to the rolling direction (T). .

なお、(a)の2CR材は前記の熱延板を冷間圧延によ
り板厚11とし、800℃×1分加熱、空冷の中間焼鈍
を行った後、さらに冷間圧延により板厚0.3m+nの
冷間圧延板とし、この冷間圧延板を970℃の温度で1
分間均熱したあとその温度から100℃までを平均冷却
速度20℃/secで冷却する仕上熱処理を施した。
For the 2CR material in (a), the above-mentioned hot-rolled plate was cold-rolled to a thickness of 11, and after intermediate annealing at 800°C for 1 minute and air-cooled, the plate was further cold-rolled to a thickness of 0.3m+n. This cold-rolled plate was heated to 970°C for 1
After soaking for a minute, finishing heat treatment was performed by cooling from that temperature to 100°C at an average cooling rate of 20°C/sec.

また(blのIRC材は前記の熱延板を中間焼鈍を施す
ことなく冷間圧延にて板厚0.3m+*とし、この冷間
圧延板を970℃の温度で1分間均熱したあとその温度
から100℃までを平均冷却速度20℃7secで冷却
する仕上熱処理を施した。
In addition, the IRC material (bl) is made by cold rolling the above-mentioned hot-rolled sheet to a thickness of 0.3m+* without intermediate annealing, and after soaking this cold-rolled sheet at a temperature of 970°C for 1 minute. Finishing heat treatment was performed by cooling from temperature to 100°C at an average cooling rate of 20°C and 7 seconds.

(C1O調質圧延材については、IC’R材およびzC
R材と同等の強度が板厚0.311!lの状態で得られ
るように、焼鈍後の熱延板を所定の板厚まで冷間圧延し
、焼鈍した後、所定の圧延率で調質圧延した。
(For C1O temper rolled materials, IC'R materials and zC
The same strength as R material with a plate thickness of 0.311! After the annealing, the hot rolled plate was cold rolled to a predetermined thickness, annealed, and then temper rolled at a predetermined rolling rate so as to obtain a state of 1.

第1表 第2表 第2表から明らかなように、ZCR材およびICR材と
もに複相Mi織材の伸びは、同等の硬さおよび強度レベ
ルの調質圧延材に比べて著しく優れており9強度−伸び
バランスに優れていることがわかる。また2面内異方性
について見ると、引張強さでは2CR材およびICR材
ともに複相&II織材は方向による引張強さの差、つま
り面内異方性が小さいのに対し、調質圧延材は引張強さ
の最も低いし方向と最も高いT方向の引張強さの差は1
7kgf/+am”以上もあり面内異方性が大きい、ま
た伸びについては、伸びが高い複相組織材は伸びが低い
調質圧延材よりも面内異方性も比較的小さく。
As is clear from Table 1 and Table 2, the elongation of the dual-phase Mi woven materials for both ZCR and ICR materials is significantly superior to that of temper-rolled materials with the same hardness and strength levels9. It can be seen that the strength-elongation balance is excellent. In addition, looking at the two-plane anisotropy, in terms of tensile strength, both the 2CR material and the ICR material have a small difference in tensile strength depending on the direction, that is, the in-plane anisotropy of the multiphase & II woven material. The material has the lowest tensile strength and the difference between the tensile strength in the T direction and the highest tensile strength is 1
The in-plane anisotropy is greater than 7 kgf/+am'', and in terms of elongation, the multi-phase structure material with high elongation also has relatively smaller in-plane anisotropy than the temper-rolled material with low elongation.

特にZCR材はICR材よりも面内異方性が更に小さい
ことがわかる。すなわち、中間焼鈍は複相組織材の伸び
の面内異方性を小さくする上で非常に重要であると言え
る。したがって、第2表の結果から1熱間圧延、熱延板
焼鈍、中間焼鈍を挟んだ冷間圧延を経て、複相組織とす
る仕上熱処理を施した場合には、延性に優れ且つ強度お
よび延性の面内異方性の小さい複相m織の高強度クロム
ステンレス鋼板が得られることが明らかである。
In particular, it can be seen that the ZCR material has even smaller in-plane anisotropy than the ICR material. In other words, it can be said that intermediate annealing is very important in reducing the in-plane anisotropy of elongation of the multiphase structure material. Therefore, from the results in Table 2, when finishing heat treatment is applied to create a multi-phase structure through hot rolling, hot-rolled sheet annealing, and cold rolling with intermediate annealing, the result is excellent ductility, strength, and ductility. It is clear that a high-strength chromium stainless steel sheet with a multi-phase m weave having a small in-plane anisotropy can be obtained.

この試験結果に見られるように、また後記の実施例でも
示すように2本発明に従う連続仕上熱処理を行ったあと
でもなお残有する複相組織材の伸びの面内異方性は、冷
間圧延工程を中間焼鈍を挟む2回以上の冷間圧延を実施
することによって小さくすることができる。したがって
、延性の面内異方性の小さい複相組織鋼帯を製造するう
えで。
As seen in the test results and as shown in the examples below, the in-plane anisotropy of the elongation of the multiphase structure material that remains even after the continuous finishing heat treatment according to the present invention is The process can be made smaller by performing two or more cold rollings with intermediate annealing in between. Therefore, in producing a dual-phase steel strip with small ductile in-plane anisotropy.

製品板厚までの板厚減少を2回以上の冷間圧延で行い、
その間に中間焼鈍を実施することが本発明法において重
要である。この中間焼鈍の加熱温度はフェライト単相域
温度、すなわちAc、意思下の温度である。また中間焼
鈍の前後の冷間圧延の冷間圧延率は各々少なくとも30
%以上とするのがよい。
The plate thickness is reduced to the product plate thickness by cold rolling two or more times,
It is important in the method of the present invention to perform intermediate annealing during that time. The heating temperature for this intermediate annealing is the ferrite single phase region temperature, that is, Ac, the intended temperature. In addition, the cold rolling ratios of cold rolling before and after intermediate annealing are each at least 30.
It is better to set it to % or more.

「連続仕上熱処理工程」 冷間圧延工程で得られた製品板厚の冷延鋼帯を次に連続
熱処理炉に通板して、Ac+点以上で1000℃以下の
フェライト十オーステナイトの二相域温度に10分以内
の保持のあと、最高加熱温度から100℃までを平均冷
却速度1℃/sec以上500℃/sec以下で冷却す
る連続仕上熱処理を施すのであるが。
"Continuous finishing heat treatment process" The cold-rolled steel strip with the product thickness obtained in the cold rolling process is then passed through a continuous heat treatment furnace, and the two-phase region temperature of ferrite decaustenite is higher than the Ac+ point and lower than 1000℃. After holding for 10 minutes or less, a continuous finishing heat treatment is performed in which the material is cooled from the maximum heating temperature to 100°C at an average cooling rate of 1°C/sec to 500°C/sec.

この連続仕上熱処理工程は本発明法の最も特徴とする工
程であり、この連続仕上熱処理条件は後記の実施例でも
示すとおり本発明において重要な意義を有している。こ
の連続仕上熱処理工程での加熱条件と冷却条件を規制し
た理由の概要を説明すると次のとおりである。
This continuous finishing heat treatment step is the most characteristic step of the method of the present invention, and the conditions for this continuous finishing heat treatment have an important meaning in the present invention, as will be shown in Examples below. An overview of the reasons for regulating the heating conditions and cooling conditions in this continuous finishing heat treatment step is as follows.

連続仕上熱処理時の加熱温度はフェライト+オーステナ
イトニ相域温度であることが絶対条件である。本発明法
の実施にあたって連続熱処理炉で低温から加熱した場合
にオーステナイトが生成し始める温度(つまりAc+点
の温度)の近傍では温度変化に対するオーステナイト量
の変動が大きく急冷後に安定した硬さが得られない場合
がある。
It is an absolute condition that the heating temperature during the continuous finishing heat treatment is in the ferrite + austenite dual phase region temperature. When carrying out the method of the present invention, when heating from a low temperature in a continuous heat treatment furnace, near the temperature at which austenite begins to form (that is, the temperature at the Ac+ point), the amount of austenite fluctuates greatly in response to temperature changes, and stable hardness cannot be obtained after rapid cooling. There may be no.

しかし9本発明が対象とする鋼成分範囲においては、 
Ac、点より100℃以上の高温域に加熱した場合には
このような硬さの変動が実質上止じないことがわかった
。したがって、連続仕上熱処理時の加熱温度はAct点
+100℃以上とするのがよい。
However, in the steel composition range targeted by the present invention,
It has been found that when heated to a high temperature range of 100° C. or more from the point Ac, such fluctuations in hardness do not substantially stop. Therefore, the heating temperature during the continuous finishing heat treatment is preferably set to Act point +100°C or higher.

より具体的には900℃以上、さらに好ましくは950
℃以上とするのがよい。一方、加熱温度の上限について
は、あまり高温では強度上昇が飽和するのみならず、場
合によっては低下することもあり。
More specifically, 900°C or higher, more preferably 950°C
It is better to keep the temperature above ℃. On the other hand, regarding the upper limit of the heating temperature, if the temperature is too high, the increase in strength not only becomes saturated, but also decreases in some cases.

また製造コストの面でも不利となるので1100℃を上
限とするのがよい。
Further, since it is disadvantageous in terms of manufacturing cost, it is preferable to set the upper limit to 1100°C.

本発明法における連続仕上熱処理時のフェライト+オー
ステナイトニ相域加熱の冶金的意義として、■CrCr
炭化物化窒化物溶、■オーステナイト相の生成、■生成
したオーステナイト中へのCおよびNの濃縮の3点を挙
げることができる。
The metallurgical significance of heating in the ferrite + austenite two-phase region during continuous finishing heat treatment in the method of the present invention is as follows: ■CrCr
Three points can be mentioned: carbide-nitride dissolution, (1) generation of austenite phase, and (2) concentration of C and N in the generated austenite.

本発明法で対象とするクロムステンレス鋼帯の場合には
、これらの現象はいずれも短時間のうちにほぼ平衡状態
に達するので1本発明における連続仕上熱処理時の上記
二相温度域での加熱時間は短時間、おおむね10分間以
内の加熱でよい、この短時間加熱でよいことは本発明法
の実際操業の点でも生産効率、製造コストの面から非常
に有利である0以上の加熱条件および保持時間によって
以後の冷却によって生成するマルテンサイト量が20容
量%以上となるに必要なオーステナイトを生成させるこ
とができる。
In the case of the chromium stainless steel strip targeted by the method of the present invention, all of these phenomena reach an almost equilibrium state within a short time. The heating time may be short, approximately 10 minutes or less. This short heating time is very advantageous in terms of production efficiency and manufacturing cost in the actual operation of the method of the present invention. Depending on the holding time, it is possible to generate austenite necessary for the amount of martensite generated by subsequent cooling to be 20% by volume or more.

仕上熱処理時の冷却速度についてはマルテンサイト相と
軟質なフェライト相との複相組織を得るうえから1℃/
sec以上の冷却速度とする必要があるが、500℃/
secを超える冷却速度を得るのは実質上困難である。
The cooling rate during finishing heat treatment is set at 1°C/1°C in order to obtain a multi-phase structure of martensitic phase and soft ferrite phase.
It is necessary to set the cooling rate to sec or more, but the cooling rate is 500℃/
It is virtually difficult to obtain cooling rates in excess of sec.

したがって2本発明において二相温度域加熱からの冷却
は1〜b の冷却速度で実施する。この冷却速度は最高加熱温度か
ら100℃までの平均冷却速度とするが、オーステナイ
トがマルテンサイトに変態してしまった後の冷却過程で
は必ずしもこの冷却速度を採用する必要はない。この冷
却速度と冷却終点温度は前述の加熱条件によって高温で
生成したオーステナイトがマルテンサイトに変態するに
十分なものである。冷却の方法としては気体および/ま
たは液体の冷却媒体を調帯に吹き付ける強制冷却方式ま
たは水冷ロールによるロール冷却方式などを適用できる
。このような条件での連続加熱と冷却はコイル巻戻し機
から巻取り機に至る間に加熱均熱帯域と急冷帯域を有す
る連続熱処理炉を用いて実施することができる。
Therefore, in the present invention, cooling from two-phase temperature range heating is performed at a cooling rate of 1 to b. This cooling rate is an average cooling rate from the maximum heating temperature to 100°C, but this cooling rate does not necessarily need to be adopted in the cooling process after austenite has been transformed into martensite. This cooling rate and cooling end point temperature are sufficient for the austenite produced at high temperature under the above-mentioned heating conditions to transform into martensite. As a cooling method, a forced cooling method in which a gas and/or liquid cooling medium is sprayed onto the belt, a roll cooling method using water-cooled rolls, etc. can be applied. Continuous heating and cooling under such conditions can be carried out using a continuous heat treatment furnace having a heating soaking zone and a quenching zone between the coil unwinding machine and the winding machine.

第1図は、前記第1表の各鋼について、既に説明した方
法で製造した熱延板(熱延板焼鈍および酸洗後の熱延板
)を、冷間圧延により板厚IIIIlとし、800℃×
1分加熱・空冷の中間焼鈍を行ったあと、さらに冷間圧
延により板厚0.3mmの冷間圧延板とし、そして、こ
の冷間圧延板を800〜1150℃の間の各温度で1分
間均熱したあと、その温度から100℃までを平均冷却
速度20℃/secで冷却する仕上熱処理を施した場合
に得られた仕上熱処理材のマルテンサイト量(容量%)
と硬さくHV)を。
FIG. 1 shows hot-rolled sheets (hot-rolled sheets after hot-rolled sheet annealing and pickling) manufactured by the method already described for each steel in Table 1 above, which are cold-rolled to a thickness of 800 mm. ℃×
After performing intermediate annealing by heating and air cooling for 1 minute, the cold rolled plate is further cold rolled to a thickness of 0.3 mm, and this cold rolled plate is heated at each temperature between 800 and 1150°C for 1 minute. Amount of martensite (volume %) in finished heat-treated material obtained when finishing heat treatment is performed by soaking and then cooling from that temperature to 100 °C at an average cooling rate of 20 °C/sec
and hard HV).

仕上熱処理時の加熱温度の関′係で示したものである(
図中のA、B、Cは第1表の各鋼を表す)。
This is shown in relation to the heating temperature during finishing heat treatment (
A, B, and C in the figure represent each steel in Table 1).

第1図から明らかなように、加熱温度が800℃を超え
てフェライト+オーステナイトニ相域になると2仕上熱
処理後にマルテンサイトが出現し。
As is clear from FIG. 1, when the heating temperature exceeds 800°C and enters the ferrite + austenite dual phase region, martensite appears after the second finishing heat treatment.

加熱温度の上昇とともにマルテンサイト量は急激に増加
するが900〜950℃を超えるとその増加の程度は小
さくなって次第に飽和する傾向を示す。
The amount of martensite increases rapidly as the heating temperature rises, but when the temperature exceeds 900 to 950°C, the degree of increase decreases and it tends to gradually become saturated.

硬さの挙動もマルテンサイト量の変化に対応して同様の
傾向を示し、またマルテンサイト量が多いほど硬さは高
い、この第1図の結果は仕上熱処理を連続熱処理ライン
で行なう上での重要な意義を存している。すなわち、連
続熱処理ラインでは成る程度の温度変動はやむを得ず、
特に鋼帯の長さ方向での変動、および目標温度は同じで
あっても通板チャンスの違いによる熱処理温度の違いは
The behavior of hardness also shows a similar tendency in response to changes in the amount of martensite, and the higher the amount of martensite, the higher the hardness. It has important significance. In other words, a certain degree of temperature fluctuation is unavoidable in a continuous heat treatment line.
In particular, there are variations in the lengthwise direction of the steel strip, and differences in heat treatment temperature due to differences in threading opportunities even if the target temperature is the same.

実ラインでの操業では目標温度に対して±20℃程度の
変動を見込む必要がある。第1図は、冷却速度をほぼ一
定にし且つ硬さ変動の小さい熱処理温度域を採用するな
らば、連続熱処理ラインにおいて多少の温度変動があっ
たとしても、硬さすなわち強度の変動の小さい銅帯が製
造できることを示している。そして1強度レベルの制御
は前記のような成分制御によって行えば目標とする強度
は安定して得ることができ、鋼帯の全長にわたって強度
変動の小さい、また調帯間での強度差の小さい高強度素
材が既存の連続熱処理ラインを用いて容易且つ安価に製
造できる。
In actual line operation, it is necessary to allow for fluctuations of about ±20°C with respect to the target temperature. Figure 1 shows that if the cooling rate is kept almost constant and a heat treatment temperature range with small hardness fluctuations is adopted, even if there is some temperature fluctuation in the continuous heat treatment line, the hardness, that is, the strength, of the copper strip will be small. This shows that it can be manufactured. If one strength level is controlled by component control as described above, the target strength can be stably obtained, and strength fluctuations over the entire length of the steel strip are small, and strength differences between strips are small. Strong materials can be manufactured easily and inexpensively using existing continuous heat treatment lines.

第2図は2本発明で規制する範囲の鋼成分と製造条件内
でマルテンサイト量の異なる複相組織材を幾つか作りそ
の硬さと伸び(3方向の重みつき平均値)の相関を調べ
、これをiIl質圧延圧延材関と比較して示したもので
ある。なお複相組織材の製造は第1図で説明したのと同
じであり仕上熱処理の加熱温度は900℃以上である。
Figure 2 shows the correlation between hardness and elongation (weighted average value in three directions) of several multiphase materials with different amounts of martensite made within the range of steel composition and manufacturing conditions regulated by the present invention. This is shown in comparison with the II quality rolled material. Note that the production of the multi-phase structure material is the same as that explained in FIG. 1, and the heating temperature in the finishing heat treatment is 900° C. or higher.

また調質圧延材は冷延後に焼鈍を行ったあと図中の添字
で示す調質圧延率を変えることによって硬さを変えたも
のである。
Further, the temper-rolled material is obtained by annealing after cold rolling, and then changing the hardness by changing the temper rolling rate indicated by the subscript in the figure.

第2図から明らかなように、調質圧延材は調質圧延率の
上昇に伴う硬さの上昇につれて伸びは急激に低下する。
As is clear from FIG. 2, the elongation of the temper-rolled material sharply decreases as the hardness increases as the temper rolling rate increases.

これに対して複相組織材は硬さが上昇しても伸びの低下
は緩やかである。特に、複相組織材の伸びがm延圧延材
に比べて優るのは硬さの高い領域、具体的にはHv 2
00以上の領域において顕著となる。すなわち複相&l
I織材とすることによる高延性化はHν200以上の領
域で一段と顕著に発揮されるのであり、そのためには前
述の第1図からもわかるように、約10容量%以上のマ
ルテンサイト量のところである。このように硬さがHv
200以上での高延性が図れる点に調質圧延材では達成
できない本発明法による複相組織材の特徴があり、この
強度−伸びバランスが良好なことから本発明法によって
得られた複相組織鋼帯はプレス成形性などの加工性につ
いても調質圧延では得られない特質をもつことになる。
On the other hand, even if the hardness of the multiphase structure material increases, the elongation decreases slowly. In particular, the elongation of the multiphase structure material is superior to that of the m-rolled material in the region of high hardness, specifically in the Hv 2
This becomes noticeable in the region of 00 or more. That is, multiphase &l
The increase in ductility achieved by using an I-woven material becomes even more remarkable in the region of Hv200 or more, and for this purpose, as can be seen from the above-mentioned Figure 1, it is necessary to increase the ductility at a martensite content of about 10% by volume or more. be. In this way, the hardness is Hv
The multi-phase structure material obtained by the present invention method is characterized by the ability to achieve high ductility of 200% or higher, which cannot be achieved with temper-rolled materials. The steel strip also has properties such as press formability that cannot be obtained by temper rolling.

第3図は、第1表のw4Bを第2表の(atの方法で製
造した場合の金属組織写真である。写真中の白っぽく見
える領域がフェライト、より色の濃い灰色に見える領域
がマルテンサイトである。この写真かられかるように、
この材料は微細なフェライトおよびマルテンサイトが均
一に混在した複相組織を有している。
Figure 3 is a photo of the metallographic structure when w4B in Table 1 is manufactured using the method (at in Table 2).The whitish area in the photo is ferrite, and the darker gray area is martensite. As you can see from this photo,
This material has a multi-phase structure in which fine ferrite and martensite are uniformly mixed.

以上に説明したように1強度並びに延性の異方性の小さ
い高延性高強度の調帯材料が得られたのは、熱間圧延、
熱延板焼鈍、中間焼鈍を挟む2回以上の冷間圧延のあと
にフェライト十オーステナイトの二相域に加熱し急冷す
る仕上熱処理によって、微細なフェライトと急冷によっ
てオーステナイトから変態して生成したマルテンサイト
とが均一に混在した複相組織としたことで達成し得たも
のである。すなわち5硬質なマルテンサイトによる強度
(硬さ)を得、軟質なフェライトにより延性を得たもの
であり、そして両相を微細且つ均一に混在させたことに
より強度と延性の面内異方性を小さくし得たものである
。なお、仕上熱処理後の組織はX線的な調査では微量の
残留オーステナイトが検出される場合がある。
As explained above, the high ductility and high strength belt material with low strength and ductility anisotropy was obtained by hot rolling.
After hot-rolled plate annealing and two or more cold rollings with intermediate annealing in between, finishing heat treatment involves heating to a two-phase region of ferrite and ten austenite and rapidly cooling, resulting in fine ferrite and martensite that is transformed from austenite by rapid cooling. This was achieved by creating a multi-phase structure with a uniform mixture of In other words, 5 hard martensite provides strength (hardness), soft ferrite provides ductility, and the in-plane anisotropy of strength and ductility is achieved by finely and uniformly mixing both phases. It could have been made smaller. Note that a trace amount of retained austenite may be detected in X-ray examination of the structure after finishing heat treatment.

以下に9本発明法を実施した実施例を挙げて。Below are nine examples in which the method of the present invention was implemented.

本発明法で得られた複相組織鋼帯の特性を比較例と対比
しながら具体的に示す。
The characteristics of a multi-phase steel strip obtained by the method of the present invention will be specifically shown in comparison with a comparative example.

実施例 第3表に示す化学成分を有する鋼を溶製してスラブを製
造した。そしていずれも板厚3.61に熱間圧延後、7
80℃×6時間加熱・炉冷の熱延板焼鈍を行い、酸洗の
あと、第4表に示す冷延条件で冷間圧延して板厚0.3
mmの冷延鋼帯とし、第4表に示した仕上熱処理条件の
もとて連続熱処理炉にて連続仕上熱処理を施した。なお
冷間圧延工程での中間焼鈍の均熱時間はいずれも1分で
あり、また連続仕上熱処理工程での均熱時間もいずれも
1分である。仕上熱処理後の鋼帯の材料特性を第4表に
併記した。
Example Slabs were manufactured by melting steel having the chemical components shown in Table 3. After hot rolling to a plate thickness of 3.61,
The hot-rolled plate was annealed by heating at 80°C for 6 hours and cooling in a furnace, and after pickling, it was cold-rolled under the cold-rolling conditions shown in Table 4 to obtain a plate with a thickness of 0.3.
A cold-rolled steel strip having a thickness of 1.5 mm was prepared and subjected to continuous finish heat treatment in a continuous heat treatment furnace under the finish heat treatment conditions shown in Table 4. The soaking time for intermediate annealing in the cold rolling process is 1 minute, and the soaking time for the continuous finishing heat treatment process is also 1 minute. The material properties of the steel strip after finishing heat treatment are also listed in Table 4.

第4表から明らかなように1本発明法によればいずれも
高い引張強さと硬さおよび良好な伸びを有した複相#A
織鋼帯が得られたことがわかる。また5本発明法による
調帯は、0.2%耐力、引張強さおよび伸びの異方性が
小さいことが明らかであり、また破断後の引張試験片に
もリジングの発生が見られない。
As is clear from Table 4, according to the method of the present invention, both multiphase #A had high tensile strength, hardness, and good elongation.
It can be seen that a woven steel strip was obtained. Furthermore, it is clear that the band prepared by the method of the present invention has small anisotropy in 0.2% proof stress, tensile strength, and elongation, and no ridging is observed in the tensile test piece after fracture.

これに対し比較例Nllでは製造条件は本発明で規定す
る範囲であるが、綱のC,N@が本発明鋼の条件である
(C+N)20.03%より低い、(C++ N)  
−0,021%の鯛(第3表の嵐8の鋼)の18Cr@
であるため、高温でもオーステナイトが生成しないので
連続仕上熱処理後もフェライト雄和鋼である。このため
1強度および硬さが低い。
On the other hand, in Comparative Example Nll, the manufacturing conditions are within the range specified by the present invention, but the C and N@ of the steel are lower than the conditions for the present invention steel (C+N) of 20.03%, (C++N).
-0,021% 18Cr of sea bream (Arashi 8 steel in Table 3)
Therefore, austenite does not form even at high temperatures, so it remains a ferritic Yuwa steel even after continuous finishing heat treatment. Therefore, the strength and hardness are low.

比較例光2では、やはり製造条件は本発明の範囲内にあ
るが、gのClが本発明で規定するC量(C50,15
%)よりも高いC−0,155%の鋼(第3表の磁9の
tit)であり、また(C十N)量も本発明で規定する
0、20%を超えているので、連続仕上熱処理後のマル
テンサイト量が100%となり。
In Comparative Example Light 2, the manufacturing conditions are still within the scope of the present invention, but the Cl in g is higher than the amount of C defined in the present invention (C50,15
%), the steel has a C-0.155% (tit of Magnetic 9 in Table 3), and the amount of (C-N) also exceeds the 0.20% stipulated in the present invention, so continuous The amount of martensite after finishing heat treatment is 100%.

強度は高いものの1伸びが非常に低い6比較例隆3では
連続仕上熱処理での加熱温度が低く、この加熱温度では
1IN12の鋼はフェライト+オーステナイトニ相域に
ならず、したがって仕上熱処理後□の金属組織はマルテ
ンサイトの存在しないフェライト単相&l織であり、伸
びは高いものの強度および硬さが低い。
In Comparative Example 3, which has high strength but very low elongation, the heating temperature in the continuous finish heat treatment is low, and at this heating temperature, the 1IN12 steel does not enter the ferrite + austenite dual phase region, so after the finish heat treatment, the □ The metal structure is a single-phase ferrite weave with no martensite, and has high elongation but low strength and hardness.

比較例患4は、仕上熱処理を箱型炉で行ない。Comparative Example No. 4 was subjected to finishing heat treatment in a box furnace.

その冷却も炉冷によるため冷却速度が0.03℃/se
cと非常に低いので熱処理後にマルテンサイトが生成し
ておらず、比較例患3と同様に伸びは高いものの1強度
および硬さが低い。
Since the cooling is also by furnace cooling, the cooling rate is 0.03℃/se
c, which is very low, so no martensite is generated after heat treatment, and like Comparative Example No. 3, the elongation is high, but the strength and hardness are low.

比較例患5は、 tm’を圧延材であり1本発明のもの
に比較して伸びが著しく低い、また引張強さに対する0
、2%耐力の比、すなわち降伏比が高いと共に、0,2
%耐力、引張強さ、伸びの異方性が大きい、したがって
本発明法によって得られた調帯に比べて加工性並びに加
工後の形状性に劣ることが明らかである。
Comparative Example No. 5 is a rolled material made of tm', which has significantly lower elongation than that of the present invention, and has a tensile strength of 0.
, 2% proof stress ratio, that is, the yield ratio is high, and 0,2
It is clear that the anisotropy of % proof stress, tensile strength, and elongation is large, and therefore the processability and shape after processing are inferior to the toning belt obtained by the method of the present invention.

比較例−6は、連続仕上熱処理前の冷間圧延において中
間焼鈍を行っていないので1強度が高く伸びも優れてい
るものの、伸びの面内異方性が中間焼鈍を施した本発明
例のものに比べると大きくなっている。
Comparative Example 6 has high strength and excellent elongation because no intermediate annealing was performed during cold rolling before continuous finishing heat treatment, but the in-plane anisotropy of elongation was lower than that of the present invention example that underwent intermediate annealing. It's bigger compared to the others.

なお、比較例Nll、3.4および5の綱帯については
、破断後の引張試験片でいずれもリジングの発生が見ら
れたの対し9本発明例の複相&IIm鋼帯はリジングの
発生が見られず、プレス成形などの加工が良好に行える
ことがわかる。
In addition, for the comparative examples Nll, 3.4 and 5, the occurrence of ridging was observed in the tensile test specimens after rupture, whereas the multi-phase &IIm steel strip of the present invention example 9 showed no occurrence of ridging. It can be seen that processing such as press molding can be performed satisfactorily.

以上のように1本発明法によれば、高延性と高強度を兼
備し9強度と延性の面内異方性が小さく且つ低耐力、低
降伏比の複相組織鋼帯が提供される。クロムステンレス
鋼板の分野において、従来かような良好な加工性を兼備
したHν200以上の高強度素材が鋼板または銅帯の形
で市場に出荷された例は見ない。したがって1本発明は
従来のクロムステンレス鋼板分野に新規素材鋼板または
調帯を提供するものである0本発明に従う材料は電子部
品、精密機械部品などへの加工性が要求される高強度材
として特に有用であり、この分野において多大の成果が
発渾され得る。
As described above, according to the method of the present invention, a dual-phase steel strip having both high ductility and high strength, small in-plane anisotropy of strength and ductility, low proof stress, and low yield ratio is provided. In the field of chrome stainless steel sheets, there has never been an example of such a high-strength material with Hv200 or higher combined with good workability being shipped to the market in the form of a steel sheet or copper strip. Therefore, the present invention provides a new material steel sheet or belt for the conventional chrome stainless steel sheet field. The material according to the present invention is particularly useful as a high-strength material that requires workability into electronic parts, precision mechanical parts, etc. It is useful and much work can be done in this field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2本発明に従う仕上熱処理の加熱温度とマルテ
ンサイト量および硬さとの関係を示した図。 第2図は本発明に従う仕上熱処理材と調質圧延材につい
て硬さ−伸びの相関関係を示した図。 第3図は本発明に従う連続仕上熱処理を施したクロムス
テンレス鋼帯の金属組織を示した顕微鏡写真である。
FIG. 1 is a diagram showing the relationship between the heating temperature of the finishing heat treatment, the amount of martensite, and the hardness according to the present invention. FIG. 2 is a diagram showing the correlation between hardness and elongation for finish heat-treated materials and temper-rolled materials according to the present invention. FIG. 3 is a micrograph showing the metallographic structure of a chromium stainless steel strip subjected to continuous finishing heat treatment according to the present invention.

Claims (6)

【特許請求の範囲】[Claims] (1)重量%において、 C:0.15%以下、 Si:2.0%以下、 Mn:1.0%以下、 P:0.040%以下、 S:0.030%以下、 Ni:0.60%以下、 Cr:14.0%超え20.0%以下、 N:0.12%以下、 O:0.02%以下、 を含有し、残部がFeおよび不可避的不純物からなる鋼
であって、且つ 0.03%≦C+N≦0.20% の関係を満足する鋼のスラブを製造し、これを熱間圧延
して熱延鋼帯を製造する工程、 フェライト単相域温度加熱の中間焼鈍を挟む2回以上の
冷間圧延によって製品板厚の冷延鋼帯を製造する工程、
そして、 得られた冷延鋼帯を連続熱処理炉に通板して、Ac_1
点以上1100℃以下のフェライト+オーステナイトの
二相域温度に10分以内の保持のあと、最高加熱温度か
ら100℃までを平均冷却速度1℃/sec以上500
℃/sec以下で冷却する仕上熱処理を施す連続仕上熱
処理工程、 からなる、HV200以上の硬さを有する面内異方性の
小さい高延性高強度の複相組織クロムステンレス鋼帯の
製造法。
(1) In weight%, C: 0.15% or less, Si: 2.0% or less, Mn: 1.0% or less, P: 0.040% or less, S: 0.030% or less, Ni: 0 Steel containing: .60% or less, Cr: more than 14.0% and 20.0% or less, N: 0.12% or less, O: 0.02% or less, with the balance consisting of Fe and inevitable impurities. A process of manufacturing a steel slab that satisfies the relationship of 0.03%≦C+N≦0.20%, and hot rolling it to produce a hot rolled steel strip, intermediate of ferrite single phase region temperature heating. A process of producing a cold-rolled steel strip of product thickness by cold rolling two or more times with annealing in between;
Then, the obtained cold rolled steel strip was passed through a continuous heat treatment furnace to obtain Ac_1
After maintaining the ferrite + austenite two-phase region temperature of 1100°C or higher for less than 10 minutes, the average cooling rate from the maximum heating temperature to 100°C is 1°C/sec or more and 500°C.
A method for producing a highly ductile, high-strength, multi-phase structure chromium stainless steel strip with a hardness of HV200 or more and a small in-plane anisotropy, the method comprising: a continuous finishing heat treatment process in which finishing heat treatment is performed by cooling at a temperature of 0.degree. C./sec or less.
(2)連続仕上熱処理工程における加熱温度はAc_1
点+100℃以上で1100℃以下である特許請求の範
囲第1項記載の製造法。
(2) The heating temperature in the continuous finishing heat treatment process is Ac_1
The manufacturing method according to claim 1, wherein the temperature is +100°C or higher and 1100°C or lower.
(3)連続仕上熱処理工程における加熱温度は900℃
以上1100℃以下である特許請求の範囲第1項記載の
製造法。
(3) The heating temperature in the continuous finishing heat treatment process is 900℃
The manufacturing method according to claim 1, wherein the temperature is above 1100°C.
(4)重量%において、 C:0.15%以下、 Si:2.0%以下、 Mn:1.0%以下、 P:0.040%以下、 S:0.030%以下、 Ni:0.60%以下、 Cr:14.0%超え20.0%以下、 N:0.12%以下、 O:0.02%以下、 および、0.20%以下のAl、0.0050%以下の
B、1.0%以下のMo、0.10%以下のREM、0
.20%以下のYの一種または二種以上を含有し、残部
がFeおよび不可避的不純物からなる鋼であって、且つ
0.03%≦C+N≦0.20% の関係を満足する鋼のスラブを製造し、これを熱間圧延
して熱延鋼帯を製造する工程、 フェライト単相域温度加熱の中間焼鈍を挟む2回以上の
冷間圧延によって製品板厚の冷延鋼帯を製造する工程、
そして、 得られた冷延鋼帯を連続熱処理炉に通板して、Ac_1
点以上1100℃以下のフェライト+オーステナイトの
二相域温度に10分以内の保持のあと、最高加熱温度か
ら100℃までを平均冷却速度1℃/sec以上500
℃/sec以下で冷却する仕上熱処理を施す連続仕上熱
処理工程、 からなる、HV200以上の硬さを有する面内異方性の
小さい高延性高強度の複相組織クロムステンレス鋼帯の
製造法。
(4) In weight%, C: 0.15% or less, Si: 2.0% or less, Mn: 1.0% or less, P: 0.040% or less, S: 0.030% or less, Ni: 0 .60% or less, Cr: over 14.0% and 20.0% or less, N: 0.12% or less, O: 0.02% or less, and Al of 0.20% or less, 0.0050% or less B, 1.0% or less Mo, 0.10% or less REM, 0
.. A steel slab containing 20% or less of one or more types of Y, with the remainder consisting of Fe and unavoidable impurities, and which satisfies the relationship 0.03%≦C+N≦0.20%. A process of producing a hot-rolled steel strip by hot-rolling the product, and a process of producing a cold-rolled steel strip of product thickness by cold rolling two or more times with intermediate annealing in the ferrite single-phase range temperature heating. ,
Then, the obtained cold rolled steel strip was passed through a continuous heat treatment furnace to obtain Ac_1
After maintaining the ferrite + austenite two-phase region temperature of 1100°C or higher for less than 10 minutes, the average cooling rate from the maximum heating temperature to 100°C is 1°C/sec or more and 500°C.
A method for producing a high-ductility, high-strength, multi-phase structure chromium stainless steel strip having a hardness of HV200 or more and a small in-plane anisotropy, the method comprising: a continuous finishing heat treatment step of performing a finishing heat treatment by cooling at a temperature of not more than 0.degree. C./sec.
(5)連続仕上熱処理工程における加熱温度はAc_1
点+100℃以上で1100℃以下である特許請求の範
囲第4項記載の製造法。
(5) The heating temperature in the continuous finishing heat treatment process is Ac_1
The manufacturing method according to claim 4, wherein the temperature is +100°C or higher and 1100°C or lower.
(6)連続仕上熱処理工程における加熱温度は900℃
以上1100℃以下である特許請求の範囲第4項記載の
製造法。
(6) The heating temperature in the continuous finishing heat treatment process is 900℃
The manufacturing method according to claim 4, wherein the temperature is above 1100°C.
JP31196086A 1986-12-30 1986-12-30 Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy. Expired - Fee Related JPH07100821B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP31196086A JPH07100821B2 (en) 1986-12-30 1986-12-30 Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
CA000553958A CA1305911C (en) 1986-12-30 1987-12-10 Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as well as reduced plane anisotropy
ES87118421T ES2043637T3 (en) 1986-12-30 1987-12-11 A PROCEDURE FOR THE PRODUCTION OF A STAINLESS STEEL STRAP TO DOUBLE STRUCTURE CHROME, UNDERSTANDING SUBSTANTIALLY FERRITE AND MARTENSITE HAVING HIGH STRENGTH AND ELONGATION, AS WELL AS FLAT ANISTROPY REGARDING STRENGTH AND STRENGTH.
EP87118421A EP0273278B1 (en) 1986-12-30 1987-12-11 Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as well as reduced plane anisotropy
DE87118421T DE3787633T2 (en) 1986-12-30 1987-12-11 Process for producing stainless steel strips with duplex structure, high strength and elongation and reduced even anisotropy.
US07134874 US4812176B1 (en) 1986-12-30 1987-12-18 Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as well as reduced plane antisotrophy
CN87105993A CN1010856B (en) 1986-12-30 1987-12-29 Process for production of double structure stainless cr-steel band having high strength, high ductility and low degree aeolotropy
BR8707111A BR8707111A (en) 1986-12-30 1987-12-29 PROCESSES FOR THE PRODUCTION OF A CHROME STAINLESS STEEL
KR1019870015472A KR950013187B1 (en) 1986-12-30 1987-12-30 Process for the production of a strip of a chromium staimless steel of a duplex structure having high strength and elong tion as wellas reduced plane anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31196086A JPH07100821B2 (en) 1986-12-30 1986-12-30 Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.

Publications (2)

Publication Number Publication Date
JPS63169333A true JPS63169333A (en) 1988-07-13
JPH07100821B2 JPH07100821B2 (en) 1995-11-01

Family

ID=18023506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31196086A Expired - Fee Related JPH07100821B2 (en) 1986-12-30 1986-12-30 Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.

Country Status (1)

Country Link
JP (1) JPH07100821B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277744A (en) * 1990-03-28 1991-12-09 Nippon Steel Corp Ferritic stainless steel excellent in toughness and corrosion resistance after brazing
JP2007197837A (en) * 2001-09-27 2007-08-09 Hitachi Metals Ltd Oxidation resistant steel and component for solid-oxide type fuel cell obtained by using the same
EP3098330A4 (en) * 2014-01-24 2017-03-01 JFE Steel Corporation Material for cold-rolled stainless steel sheet and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277744A (en) * 1990-03-28 1991-12-09 Nippon Steel Corp Ferritic stainless steel excellent in toughness and corrosion resistance after brazing
JP2007197837A (en) * 2001-09-27 2007-08-09 Hitachi Metals Ltd Oxidation resistant steel and component for solid-oxide type fuel cell obtained by using the same
JP4524760B2 (en) * 2001-09-27 2010-08-18 日立金属株式会社 Oxidation resistant steel and solid oxide fuel cell parts using the same
EP3098330A4 (en) * 2014-01-24 2017-03-01 JFE Steel Corporation Material for cold-rolled stainless steel sheet and method for producing same
US10000824B2 (en) 2014-01-24 2018-06-19 Jfe Steel Corporation Material for cold-rolled stainless steel sheet and production method therefor

Also Published As

Publication number Publication date
JPH07100821B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
KR950013188B1 (en) Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as will as reduced plane anisotropy
US7794552B2 (en) Method of producing austenitic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity
KR100324892B1 (en) High-strength, high-strength superstructure tissue stainless steel and its manufacturing method
KR950013187B1 (en) Process for the production of a strip of a chromium staimless steel of a duplex structure having high strength and elong tion as wellas reduced plane anisotropy
JPH01172524A (en) Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength
US5178693A (en) Process for producing high strength stainless steel of duplex structure having excellent spring limit value
JPH10219394A (en) Cold rolled steel sheet excellent in deep drawability and aging resistance, and hot rolled steel strip for cold rolled steel sheet
WO2016035235A1 (en) Material for cold-rolled stainless steel sheets
JPH04154921A (en) Manufacture of high strength stainless steel strip having excellent shape
JP2000144258A (en) Production of titanium-containing ferritic stainless steel sheet excellent in ridging resistance
JP3363590B2 (en) High-strength duplex stainless steel and method for producing the same
JP3602201B2 (en) Method for producing high-strength duplex stainless steel strip or steel sheet
EP2309013A1 (en) Cold-rolled steel sheet, process for production of same, and backlight chassis
JPS63169331A (en) Production of chromium stainless steel strip of high strength double phase structure having excellent ductility
JPS63169334A (en) Production of chromium stainless steel strip of double phase structure having small intra-surface anisotropy and high ductility and high strength
JPS63169330A (en) Production of chromium stainless steel strip of high-strength double phase structure having excellent ductility
JPH08176735A (en) Steel sheet for can and production thereof
JPS63169333A (en) Production of chromium stainless steel strip of double phase structure having small intra-surface anisotropy and high ductility and high strength
JP2004124123A (en) Low yield ratio type high strength cold rolled steel sheet having excellent workability and shape fixability, and production method therefor
JP2001303175A (en) Ferritic thin steel sheet excellent in shape freezability and its producing method
JPS63169335A (en) Production of chromium stainless steel strip of double phase structure having small ntra-surface anisotropy and high ductility and high strength
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP2995526B2 (en) Manufacturing method of cold rolled steel sheet which has excellent formability, has paint bake hardenability, and has little fluctuation in paint bake hardenability in the width direction
JPH0317244A (en) High strength hot rolled steel plate high having excellent workability and weldability and its manufacture
JPS63169332A (en) Production of chromium stainless steel strip of double phase structure having small intra-surface anisotropy and high ductility and high strength

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees