JPS6316869A - Mag pulse welding method - Google Patents

Mag pulse welding method

Info

Publication number
JPS6316869A
JPS6316869A JP16271886A JP16271886A JPS6316869A JP S6316869 A JPS6316869 A JP S6316869A JP 16271886 A JP16271886 A JP 16271886A JP 16271886 A JP16271886 A JP 16271886A JP S6316869 A JPS6316869 A JP S6316869A
Authority
JP
Japan
Prior art keywords
frequency
welding
wire
speed
spatter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16271886A
Other languages
Japanese (ja)
Other versions
JPH0630816B2 (en
Inventor
Yoshio Kanbe
神戸 良雄
Hitoshi Kawabe
河辺 仁
Hiroshi Koyama
小山 汎司
Yoshihito Kawaguchi
川口 宜人
Yoshiro Awano
芳朗 粟野
Hitoshi Matsui
仁志 松井
Hiroshi Suzuki
弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Welding and Engineering Co Ltd
Toyota Motor Corp
Original Assignee
Nippon Steel Corp
Nippon Steel Welding and Engineering Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Welding and Engineering Co Ltd, Toyota Motor Corp filed Critical Nippon Steel Corp
Priority to JP61162718A priority Critical patent/JPH0630816B2/en
Publication of JPS6316869A publication Critical patent/JPS6316869A/en
Publication of JPH0630816B2 publication Critical patent/JPH0630816B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To realize the soundness for forming a bead, etc. by deriving a reference frequency characteristic from a correct frequency characteristic corresponding to a chemical component and a use condition, respectively, of a steel wire, and setting a pulse power source frequency, within a specific % range of this reference. CONSTITUTION:A natural frequency (correct frequency) in which the limiting arc length for generating not short circuit becomes the shortest exists by depending on a chemical component and a welding condition of a steel wire. Based on an expression I, a reference correct frequency F is derived from the sum of a correct frequency characteristic Fw depending on the chemical component of the wire and a correct frequency characteristic Fc depending on the welding condition, and a pulse power source frequency is set within a range of 90-110% of a reference characteristic F, by which welding is executed. According to this method, the pulse power source frequency for conforming with both the frequency characteristics of the chemical component and the welding condition of the wire can be set. Accordingly, a bead is formed soundly, and also, welding which has reduced the spatter quantity can be executed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、パルス電源を用いるMAG溶接において、ビ
ード形成性およびスパッタ発生の少ない高速溶接方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a high-speed welding method with good bead formation and less spatter generation in MAG welding using a pulsed power source.

(従来の技術) 比較的細径ワイヤを使用するガスメタルアーク溶接は、
電流密度が高く、アーク集中性が良いなどの理由から、
高速溶接に適した溶接法として、特に溶接ロボットと組
み合わせて利用されている。
(Conventional technology) Gas metal arc welding uses a relatively small diameter wire.
Due to its high current density and good arc concentration,
As a welding method suitable for high-speed welding, it is especially used in combination with welding robots.

溶接ロボットの普及に伴って溶接の高能率化、高速化の
傾向は高まり、安定した高速溶接の実現が要求されてい
る。
With the spread of welding robots, there is a growing trend toward higher efficiency and faster welding, and there is a demand for stable, high-speed welding.

しかしながら従来、高速溶接にはスパッタの発生とビー
ドの形成性という2つの大きな問題点があった。
However, conventionally, high-speed welding has had two major problems: spatter generation and bead formation.

スパッタは、母材や溶接トーチに付着して能率、シール
ド性を損なう等のほかロボットや周辺の装置、治工具に
侵入しその動作の円滑性を阻害するなどの原因となる。
Spatter not only adheres to the base metal and welding torch, impairing efficiency and shielding properties, but also invades robots, peripheral equipment, and jigs, and impairs their smooth operation.

このスパッタ発生要因には種々の要素が考えられるが、
最も影響が大きいのは溶滴が成長し溶融プールに移行す
る際に接触短絡しアークが再生する過程でのアーク力、
ピンチ力によって飛散するものである。
There are various factors that can be considered to cause this spatter, but
The biggest influence is the arc force during the process of contact short circuit and arc regeneration when the droplet grows and moves to the molten pool.
It scatters due to pinch force.

したがってスパッタの減少には、短絡が生じない程度に
アークを長く保つことが有効とされている。
Therefore, it is considered effective to reduce spatter by keeping the arc long enough to prevent short circuits.

一方、長いアーク長のまま溶接速度を高めていくと、ア
ンダーカットが発生し易くなり、さらに高速側ではハン
ピングビード、アークぎれ等ビード形成が不完全となる
On the other hand, if the welding speed is increased while maintaining a long arc length, undercuts are likely to occur, and furthermore, bead formation such as humping beads and arc breaks may occur at high speeds.

このようにビード形成性を確保しつつスパッタの発生を
抑えるためには、短絡の発生しない程度にアーク長を出
来る限り短くすることが必要である。
In order to suppress the occurrence of spatter while ensuring bead forming properties as described above, it is necessary to make the arc length as short as possible to the extent that short circuits do not occur.

非短絡でのアーク長は、移行粒滴径に依存することから
、溶滴移行回数を増加する手段が講じられており、シー
ルドガスとしてAr −CO□ (一般的には20%程
度のCO□比率)混合ガスでのパルス電源を用いるMA
Gパルス溶接によってかなりの効果があげられている。
Since the arc length without short circuit depends on the diameter of the transferred droplet, measures are taken to increase the number of droplet transfers, and Ar - CO□ (generally about 20% CO□) is used as a shielding gas. Ratio) MA using pulsed power supply with mixed gas
Considerable effects have been achieved by G-pulse welding.

しかしMAGパルス溶接においても非短絡域で良好なビ
ードが得られる溶接速度は50〜80cm/min程度
である。
However, even in MAG pulse welding, the welding speed at which a good bead can be obtained in a non-short circuit region is about 50 to 80 cm/min.

他方、短絡時のスパッタ発生量対策としては、溶接電源
二次側インダクタンスを調整する手段が特公昭4’14
1659号公報等に記載の技術で講じられているがパル
ス電源においては、パルス波形立ち上がり、立ち下がり
時間が大きくなることからインダクタンスの増加に制限
が生ずるため最小限になされているにすぎず、短絡時は
多大のスパッタが発生する。
On the other hand, as a measure against the amount of spatter generated in the event of a short circuit, a means of adjusting the secondary inductance of the welding power source was proposed in the Japanese Patent Publication No. 4'14.
Although this has been done in the technology described in Publication No. 1659, etc., in pulse power supplies, the rise and fall times of the pulse waveform become long, which limits the increase in inductance. At times, a large amount of spatter is generated.

以上詳述したように、高速溶接における2大問題である
ビード形成性とスパッタに関しては、個々に対策はなさ
れているもののいずれも不充分であり、ましてや両者を
同時に解決する手段はなされていなかった。
As detailed above, although individual measures have been taken to address the two major problems in high-speed welding, bead formation and spatter, none of them are sufficient, and even more so, no means have been taken to solve both at the same time. .

(発明が解決しようとする問題点) 本発明はこうした現状に鑑み、高速溶接におけるビード
形成性とスパッタの低減とを同時に達成するために、使
用する鋼ワイヤの成分とワイヤ送給速度、ワイヤ径など
の使用条件とパルス波形特性との関連について詳細な検
討を加えた結果、該ワイヤ成分に依存する制御パラメー
タと使用条件とに依存する制御パラメータにパルス電源
の周波数特性とをマツチングさせることによって、移行
粒滴径を小さくし、アーク長を最短に保つことを実現さ
せた。さらに、前記条件のもとで短絡時のピーク立ち上
がりを短絡終了後に行うことによって、短絡時のスパッ
タ量を抑制すると共に高速溶接性も同時に満足するMA
Gパルス溶接方法を提供するものである。
(Problems to be Solved by the Invention) In view of the current situation, the present invention aims to improve the composition of the steel wire used, the wire feeding speed, and the wire diameter in order to simultaneously achieve bead formation properties and reduction of spatter in high-speed welding. As a result of a detailed study on the relationship between the usage conditions such as , etc. and the pulse waveform characteristics, by matching the frequency characteristics of the pulse power source with the control parameters that depend on the wire component and the control parameters that depend on the usage conditions, By reducing the diameter of the transition droplet, we were able to keep the arc length to the shortest possible length. Furthermore, by performing the peak rise during a short circuit under the above conditions after the short circuit ends, MA can suppress the amount of spatter during a short circuit and satisfy high-speed weldability at the same time.
A G-pulse welding method is provided.

(問題点を解決するための手段) 本発明の要旨は、MAGパルス溶接方法において、次式
に示す網ワイヤ成分に依存の適正周波数特性(Fw)と
使用条件に依存の適正周波数特性(Fc)の和よりなる
適正周波数(F)を基準として、該Fの90〜110%
の範囲に整合するように、パルス電源の周波数を設定し
て行うことを特徴とするMAGパルス溶接方法にある。
(Means for Solving the Problems) The gist of the present invention is that in the MAG pulse welding method, an appropriate frequency characteristic (Fw) dependent on the mesh wire component and an appropriate frequency characteristic (Fc dependent on the usage conditions) shown in the following equation are obtained. 90 to 110% of F, based on the appropriate frequency (F) consisting of the sum of
The MAG pulse welding method is characterized in that the frequency of the pulse power source is set to match the range of .

Fw(Hz) −952×C−59×Si−67XMn
 +3820XS+2970xN−190xΩ ただし各元素記号は重量%を示す。
Fw (Hz) −952×C-59×Si-67XMn
+3820XS+2970xN-190xΩ However, each element symbol indicates weight%.

Fc(llz) = (φ/1.2)x (453Xl
og(訂/3) ) +33ただしφはワイヤ径(1■
”) 、 Wfはワイヤ送給速度(m/l1lin)を
示す、 F (Ilz) = Fiv + Pc以下に本発明溶
接方法の作用および構成について述べる。
Fc(llz) = (φ/1.2)x (453Xl
og (revised/3) ) +33 However, φ is the wire diameter (1■
”), Wf indicates the wire feeding speed (m/llin), F (Ilz) = Fiv + Pc The operation and configuration of the welding method of the present invention will be described below.

(作 用) 第1図は、第1表に示す2種の鋼ワイヤ(直径=1.2
鶴φ)と従来のパルス電源を用いて、シールドガス^r
−20%CO,、溶接電流:21OA。
(Function) Figure 1 shows the two types of steel wires shown in Table 1 (diameter = 1.2
Using Tsuru φ) and a conventional pulse power source, shielding gas ^r
-20% CO, welding current: 21OA.

チップ母材間距離:18龍の各条件で、溶接電圧を両ワ
イヤとも短絡の発生しない最短のアーク長(今後限界ア
ーク長と呼ぶ)になるように設定して、水平すみ肉溶接
(板厚4.5 mat)を行った場合の溶接速度と採取
したスパッタ量の関係を示した図である。なおパルス周
波数は電流、電圧の変化を記録したオシログラフから読
み取ったところ約21011zとほぼ一定であった。
Distance between tip and base metals: Under each condition of 18 dragons, the welding voltage was set to the shortest arc length (hereinafter referred to as the limit arc length) without causing a short circuit for both wires, and horizontal fillet welding (plate thickness 4.5 mat) is a diagram showing the relationship between the welding speed and the amount of spatter collected. The pulse frequency was approximately constant at about 21011z as read from an oscilloscope that recorded changes in current and voltage.

同図から、溶接速度の増加にともないスバッタ量がやや
増加している傾向は両ワイヤとも一致しているが、スパ
ッタ量レベルおよび良好なビードが得られる限界速度に
は大きな差があり、いずれもワイヤaが優れている。
The figure shows that both wires agree that the amount of spatter increases slightly as the welding speed increases, but there are large differences in the amount of spatter and the critical speed at which a good bead can be obtained. Wire a is superior.

このようなワイヤ間の違いを、ワイヤ成分の点から解決
すべく種々の成分系ワイヤを用い、各々ワイヤの短絡の
生じない最小電圧を求めた上で、第1図と同一の検討を
行ったところ、ワイヤaを越える性能のものは得られな
いばかりでなく、ワイヤ成分とスパッタ量およびビード
形状良好な限界速度との間には明瞭な相関関係が認めら
れなかった。
In order to resolve these differences between wires from the point of view of wire components, we used various component wires, determined the minimum voltage that would not cause a short circuit in each wire, and then conducted the same study as in Figure 1. However, not only was it not possible to obtain a performance superior to that of wire a, but there was also no clear correlation between the wire components, the amount of sputtering, and the critical speed for good bead shape.

本発明者らはこれらの結果の得られた理由をワイヤとパ
ルス波形条件の不適合にあると考えた。
The inventors attributed these results to the incompatibility of the wire and pulse waveform conditions.

即ち、従来のパルス電源でのパルス周波数は、溶接電流
(またはワイヤ送給速度)と一元化されており、この条
件を一定に保てばほぼ固定されている。従ってアーク長
を比較的長く保つ低速度で行う通常の溶接では、ワイヤ
の種類によるアーク長の差があっても溶接結果にそれ程
大きな影響を与えることなく、はぼ一定の周波数によっ
て多くのワイヤの溶接が可能である。
That is, the pulse frequency in a conventional pulse power source is unified with the welding current (or wire feeding speed), and is almost fixed if this condition is kept constant. Therefore, in normal welding performed at low speeds where the arc length is kept relatively long, even if there are differences in arc length depending on the type of wire, the welding result will not be affected that much, and the welding result will be Welding is possible.

ところが、アーク長のわずかの差がそのまま溶接結果に
直結する高速溶接では、アーク長を出来る限り短くする
こと、即ちワイヤ成分に適したパルス波形条件の選択が
必須の条件となる。
However, in high-speed welding where a slight difference in arc length directly affects the welding result, it is essential to make the arc length as short as possible, that is, to select pulse waveform conditions suitable for the wire components.

そこで同一ワイヤ送給速度において、はぼ周波数が固定
されている従来電源に比べて広範囲に周波数調整が可能
なインバータ制御パルス電源を用いて、第1図と同じワ
イヤ、シールドガスと組み合わせて、周波数と短絡を生
じない限界アーク長との検討結果を定性的に示したのが
第2図である。
Therefore, at the same wire feeding speed, we used an inverter-controlled pulse power source that can adjust the frequency over a wider range than conventional power sources with a fixed frequency, and in combination with the same wire and shielding gas as shown in Figure 1, Figure 2 qualitatively shows the results of the study on the arc length and the limit arc length that does not cause a short circuit.

なお、この場合、ワイヤ送給速度は7 m/n+in、
溶接速度は80cm/min、 Ext  (チップ母
材開路M)は18m5、下向(Bead on pla
te) 、電流は210〜220Aである。
In this case, the wire feeding speed is 7 m/n+in,
Welding speed is 80cm/min, Ext (chip base metal open circuit M) is 18m5, downward direction (Bead on pla
te), the current is 210-220A.

いずれのワイヤについても限界アーク長の最も短くなる
周波数へ点が存在し、この周波数前後では限界アーク長
は長くなる。このへ点の周波数はワイヤによって異なっ
ており、ワイヤaでは215H2%ワイヤbでは250
Hz程度であった。
For any wire, there is a point at the frequency where the critical arc length is the shortest, and the critical arc length becomes longer around this frequency. The frequency of this point differs depending on the wire; wire a has a 215H2% wire b has a frequency of 250H.
It was about Hz.

限界アーク長は、移行する溶滴径に律せられると考えら
れる。従って適正周波数においては最小渚滴径、即ち最
多溶滴数の移行・・・1溶滴/1パルス移行・・・がお
こなわれており、適正周波数より低周波数領域ではn溶
滴/lパルス、高周波数領域では1m滴/nパルスの移
行が行われていると考えられる。
It is thought that the critical arc length is determined by the diameter of the migrating droplet. Therefore, at the appropriate frequency, the minimum droplet diameter, that is, the maximum number of droplets, shifts to 1 droplet/1 pulse, and in the frequency range lower than the appropriate frequency, n droplets/1 pulse, It is considered that a transition of 1 m drop/n pulse occurs in the high frequency region.

はぼ周波数が固定されている従来電源を用いて行った第
1図の結果で、ワイヤaがワイヤbに比ベスパッタ量、
高速性において共に優れていたのは、この時の周波数(
約210Hz)がたまたまワイヤaの最適周波数に近く
、ワイヤbでは限界アーク長の長い低周波数側で比較し
た結果であり、ワイヤbの最適な周波数で比較したとこ
ろ、ワイヤbがワイヤaよりむしろ良好な成績を示した
The results shown in Figure 1 were obtained using a conventional power source with a fixed frequency, and the amount of sputtering for wire a was smaller than that for wire b.
What was superior in terms of high speed was the frequency (
210Hz) happened to be close to the optimum frequency of wire a, and wire b was compared at the low frequency side where the critical arc length is long, and when comparing the optimum frequency of wire b, wire b was better than wire a. showed excellent results.

多くの場合適正周波数は、従来電源の固定された周波数
よりかなり高周波数側にあり、ワイヤbでは約40Hz
高かった。
In most cases, the appropriate frequency is much higher than the fixed frequency of conventional power supplies, approximately 40Hz for wire b.
it was high.

このように、短絡の生じない限界アーク長が最短となる
固有の周波数(今後適正周波数と呼ぶ)がワイヤ毎に存
在する。
In this way, each wire has its own unique frequency (hereinafter referred to as appropriate frequency) at which the critical arc length at which no short circuit occurs is the shortest.

第3図は、第1表のワイヤbで溶接条件を変化した場合
の適正周波数Fを示したもので、(1)が第2図と同一
条件、(2)がワイヤ送給速度5m/min %(3)
はワイヤ径1.0mmφ、(4)はExtが30鶴、(
5)は溶接速度50 cm/minの場合であり、その
他の条件は+11と同じ条件であり、〔〕はスパッタ量
を示す。
Figure 3 shows the appropriate frequency F when welding conditions are changed for wire b in Table 1, where (1) is the same condition as in Figure 2, and (2) is when the wire feed speed is 5 m/min. %(3)
(4) has a wire diameter of 1.0 mmφ, (4) has an Ext of 30 cranes, (
5) is a case where the welding speed is 50 cm/min, other conditions are the same as +11, and [ ] indicates the amount of spatter.

適正周波数は、第2図および第3図の結果からワイヤ成
分に依存するばかりでなく、溶接条件にも依存しており
、この両方の周波数特性にマツチングするようにパルス
電源の周波数を設定することによって、スパッタ発生量
が少なくかつビード形状良好な高速溶接が可能となった
From the results shown in Figures 2 and 3, the appropriate frequency not only depends on the wire components but also on the welding conditions, and the frequency of the pulse power source should be set to match both of these frequency characteristics. This makes it possible to perform high-speed welding with a small amount of spatter and a good bead shape.

パルス溶接は、ワイヤの溶融、溶滴の離脱、移行特性と
パルスにより与えられる電気的、熱的なバランスによっ
て行われるものであるから、適正周波数(第2図のへ点
)においてパルス周波数と同期して安定した溶滴移行が
なされているとすれば、適正周波数は溶滴の物性が関与
しワイヤ成分と一定の関係があると考えられる。
Pulse welding is performed by wire melting, droplet detachment, transition characteristics, and the electrical and thermal balance provided by the pulse, so it is necessary to synchronize with the pulse frequency at the appropriate frequency (point 2 in Figure 2). If stable droplet transfer is achieved, the appropriate frequency is considered to be related to the physical properties of the droplet and to have a certain relationship with the wire components.

また適正周波数を高めることは溶滴を細粒化さ廿7−り
長をより短くでき、ひいては欠陥の発生しない溶接速度
の拡大につながると考えた。
It was also believed that increasing the appropriate frequency would make the droplets finer and the length shorter, which would lead to an increase in welding speed without defects.

そこで種々の成分系のワイヤを用い、第2図の場合と同
じ溶接条件により適正周波数を求めた結果、ワイヤ成分
と適正周波数との関係を示す(11式を得た。ワイヤ送
給速度(訂)が7m/minの条件における適正周波数
f7は以下の通りである。
Therefore, as a result of using wires of various component systems and determining the appropriate frequency under the same welding conditions as in the case of Fig. 2, we obtained Equation 11, which shows the relationship between the wire components and the appropriate frequency. ) is 7 m/min, the appropriate frequency f7 is as follows.

f、(Hz) =952×C−59×Si−67XMn
+3820XS十2970×N−190XO+200 
・・・・−・(11式各元素記号は重量%を示す。(以
下同様)この+1)式によって、ワイヤの種類が異なっ
ても常に適正周波数を得る事が可能となった。しかし+
11式は、ワイヤ送給速度(Wf)が7111/ll1
inの場合のものである。
f, (Hz) =952×C-59×Si-67XMn
+3820XS 12970×N-190XO+200
(Formula 11 Each element symbol indicates weight %. (The same applies hereinafter) This +1) formula makes it possible to always obtain an appropriate frequency even if the type of wire is different. But+
Type 11 has a wire feeding speed (Wf) of 7111/ll1
This is for the case of in.

いかなる電流条件においても適正周波数での溶接を可能
にするためには、ワイヤ送給速度と適正周波数の関係を
明らかにしなければならない。
In order to enable welding at an appropriate frequency under any current conditions, the relationship between wire feeding speed and appropriate frequency must be clarified.

適正周波数とワイヤ送給速度との関係は、ワイヤ成分系
によりかなり複雑な変化を示すが、多くのワイヤにより
検討の結果、その変化の程度は、次の式(2)式で返信
出来る事が分かった。
The relationship between the appropriate frequency and wire feeding speed shows quite complex changes depending on the wire component system, but after examining many wires, it was found that the degree of change can be expressed using the following equation (2). Do you get it.

Δf =453Xlog(訂)  (tlz) =−・
+21式従って、ワイヤ径が1.2fiφの条件のもと
でワイヤ送給速度(電流)を変えた場合の適正周波数は
、+11式と(2)式を実用上の限界ワイヤ送給速度3
m /minを基準にして、次の(3)式で与えられる
Δf =453Xlog (edited) (tlz) =-・
+21 formula Therefore, the appropriate frequency when changing the wire feeding speed (current) under the condition that the wire diameter is 1.2fiφ is the practical limit wire feeding speed 3 using +11 formula and (2) formula.
Based on m 2 /min, it is given by the following equation (3).

f(fiz) =952×C−59×Si−67XMn
+3820×S+2970×N−190XΩ+453 
X log(訂/3}+33・・・・・・ (3)式 またさらに同様にしてワイヤ径が異なった場合の適正周
波数との関係を検討した結果、同一ワイヤ送給速度のも
とではワイヤ径(φ)にほぼ比例して適正周波数が変化
することがわかり、(4)式で適正周波数を与える事が
可能となった。
f(fiz) =952×C-59×Si-67XMn
+3820×S+2970×N-190XΩ+453
X log(revised/3}+33... Formula (3) and in the same way, we investigated the relationship with the appropriate frequency when the wire diameter is different, and found that under the same wire feeding speed, the wire It was found that the appropriate frequency changes almost in proportion to the diameter (φ), and it became possible to give the appropriate frequency using equation (4).

F(llz)=952×C−59XS1 67XMn+
3B20XS+2970x N−190xQ+(φ/1
.2) X (453Xlog(Wf/3)) +33  ・−
・・141式なお、溶接施工条件の因子としてExt 
 (チップ母材間距離)、溶接速度、溶接電圧等がある
。Extの変化に対して適正周波数は逆比例の関係で変
化し、しかもその程度はワイヤ送給速度によって異なる
複雑な影響を受ける。
F(llz)=952×C-59XS1 67XMn+
3B20XS+2970x N-190xQ+(φ/1
.. 2) X (453Xlog(Wf/3)) +33 ・-
・・Type 141 In addition, as a factor of welding construction conditions, Ext.
(distance between chip base metal), welding speed, welding voltage, etc. The appropriate frequency changes in inverse proportion to the change in Ext, and the degree of this change is affected in a complex manner that varies depending on the wire feeding speed.

しかし適正周波数の変化幅は、Extが10〜30mX
Wfが7±411I/ll1inの範囲で±1011z
程度と少ないことから、実用上は周波数微調整ダイヤル
等で十分調整が可能である。
However, the appropriate frequency change range is 10 to 30mX for Ext.
±1011z in the range of Wf 7±411I/ll1in
Since the frequency is small, in practice it can be adjusted sufficiently using a frequency fine adjustment dial or the like.

溶接速度変化に対しても、適正周波数は逆比例関係にあ
るが、その程度は50〜100 an/minで10H
z程度である。
The appropriate frequency is also inversely proportional to changes in welding speed, but the degree of this is 50 to 100 an/min and 10H.
It is about z.

非短絡域のアーク長から、電圧を下げてアーク長を短く
してゆくと、ついには短絡が発生し始め、電圧の低下に
伴って短絡数は増加する。
As the voltage is lowered to shorten the arc length from the non-short circuit region, short circuits eventually begin to occur, and the number of short circuits increases as the voltage decreases.

短絡域では、アーク長が短いことから良好なと一ド形状
の得られる限界溶接速度が大きくなり、ビード形成性は
向上する反面スパνりは多発する。
In the short circuit region, since the arc length is short, the limit welding speed at which a good single weld shape can be obtained becomes large, and although bead formation is improved, spars occur frequently.

この関係を示したのが第4図である。本図は、板厚2m
mtの水平すみ内継手を第1表のワイヤb(1,2mW
φ)を用いて、シールドガスはAr−20%CO,、ワ
イヤ送給速度は7m/win −、Extは18龍、ト
ーチ角は水平角45°、前進角を0°とした条件におけ
る溶接電圧と良好なビードが得られる限界溶接速度(a
lとスパッタ量(blの関係を示したものであり、(イ
)は周波数215Hz、  (n)は周波数250Hz
(適正周波数)の場合である。良好なビードが得られる
溶接速度は、(U)の場合が全体的に高速側にあるもの
の、短絡の発生し始める25V以下では共に高速性も良
好となる。
FIG. 4 shows this relationship. This drawing shows a board with a thickness of 2m.
mt horizontal corner joint with wire b (1,2mW
φ), the shielding gas was Ar-20% CO, the wire feeding speed was 7 m/win -, the Ext was 18 dragons, the torch angle was 45° horizontally, and the welding voltage was under the conditions that the advance angle was 0°. The limit welding speed (a
It shows the relationship between l and sputtering amount (bl), where (a) is a frequency of 215Hz, (n) is a frequency of 250Hz.
(appropriate frequency). Although the welding speed at which a good bead can be obtained is generally on the high speed side in case (U), the high speed performance is also good in both cases below 25 V, where short circuits begin to occur.

しかしスパッタ量は(イ)の場合、低電圧側で急激に増
加するが、適正周波数で行った(0)の条件では電圧の
低下により若干増加傾向はあるものの、はぼ一定の低い
レベルにある。
However, in the case of (a), the amount of spatter increases rapidly on the low voltage side, but under the condition of (0) conducted at an appropriate frequency, although there is a slight tendency to increase due to the decrease in voltage, it remains at a constant low level. .

このように適正周波数「(4)式」で溶接を行った場合
には電圧の広い範囲でビード形成性、スパッタ量共に優
れた高速溶接が可能となる。
In this way, when welding is performed using the appropriate frequency "formula (4)", high-speed welding with excellent bead formation properties and spatter amount is possible over a wide voltage range.

ところで(4)式から得られる適正周波数は点で与えら
れる。実際の溶接施工では、全く同一条件で行われるこ
とは考えられず板厚、溶接姿勢、開先形状など各々の条
件の組み合わせにより、溶接電流、電圧、Ext 、速
度などを選定したとしても、部材形状、開先隙間などで
条件は刻々と変化する。
By the way, the appropriate frequency obtained from equation (4) is given as a point. In actual welding, it is unlikely that welding will be performed under exactly the same conditions, and even if welding current, voltage, Ext, speed, etc. are selected depending on the combination of each condition such as plate thickness, welding posture, groove shape, etc. Conditions change constantly depending on shape, groove gap, etc.

またワイヤについても、今日の商用温材の最高管理技術
下のスペックにおいても、当然ロンド間のワイヤ成分、
性状のバラツキは避けられないものである。
Regarding the wire, even in the specifications under the highest control technology of today's commercial thermal materials, the wire composition between the ronds,
Variations in properties are unavoidable.

この様々の変化に対して、各々周波数条件を完全にマツ
チングさせることは、制御上および実用上からも不可能
に近いものである。
It is nearly impossible from a control and practical standpoint to perfectly match each frequency condition to these various changes.

従って、適正周波数が実用上どの程度許容出来うるかの
裕度を求める事は極めて重要な要素である。
Therefore, it is an extremely important factor to determine the tolerance of the appropriate frequency that can be tolerated in practice.

第5図は適正周波数が20011zおよび300Hzの
条件で溶接した時のスパッタ量に対して、設定周波数を
適正周波数に対して変化させた場合のスパッタ量の比の
関係を示したものである。
FIG. 5 shows the relationship between the ratio of the amount of spatter when the set frequency is changed with respect to the appropriate frequency with respect to the amount of spatter when welding is performed under conditions where the appropriate frequency is 20011z and 300 Hz.

いずれの適正周波数条件でも、周波数変化率が10%以
内ではスパッタ変化が小さいが、これを越えると急激に
増加する傾向があり、本発明では周波数変化幅を適正周
波数の90〜110%の範囲に定めた。
Under any appropriate frequency conditions, the spatter change is small when the frequency change rate is less than 10%, but when it exceeds this, it tends to increase rapidly.In the present invention, the frequency change width is set in the range of 90 to 110% of the appropriate frequency. Established.

(4)式の適正周波数は、ワイヤ成分に依存する周波数
項F (wire)、溶接条件に依存する周波数項F(
cond、)および定数項Cとから成っている。
The appropriate frequency in equation (4) is a frequency term F (wire) that depends on the wire component and a frequency term F (wire) that depends on the welding conditions.
cond, ) and a constant term C.

パルス電源の周波数特性をマツチングさせるには、ワイ
ヤ送給速度変化(例えばワイヤ送給モータの命令電圧)
と電源パルス周波数発振回路間に演算回路を設け、さら
にワイヤ径を選択するスイッチ信号を演算回路に入力し
、ワイヤ送給速度と周波数F c” F (cond、
) + Cの関係になるように設定しておき、F w(
F wire)だけ周波数をシフトする機能を付加し、
F=Fw+Fcなる周波数が出力されることにより行う
事が出来る。第6図には、この関係をブロック図で一例
として示す。
To match the frequency characteristics of the pulse power supply, change the wire feed speed (for example, the command voltage of the wire feed motor).
An arithmetic circuit is provided between the power supply pulse frequency oscillation circuit and a switch signal for selecting the wire diameter is input to the arithmetic circuit, and the wire feeding speed and frequency F (cond,
) + C, and set it so that the relationship is F w (
Added a function to shift the frequency by F wire),
This can be done by outputting a frequency of F=Fw+Fc. FIG. 6 shows this relationship as an example in a block diagram.

以上、詳述したように本発明の溶接方法の構成とは、種
々成分の鋼ワイヤと使用条件で変化する最適周波数との
関係にパルス電源特性をマツチングさせることによって
、非短絡域のみならず短絡域でのMAGパルス溶接にお
いてビード形成性、スバッタ量共に優れた高速溶接が可
能な新規なMAGパルス溶接にある。
As described in detail above, the configuration of the welding method of the present invention is to match the pulse power characteristics to the relationship between steel wires of various compositions and the optimal frequency that changes depending on the usage conditions. This is a new MAG pulse welding method that enables high-speed welding with excellent bead formation and spatter amount in MAG pulse welding in the area.

なお、パルス周波数以外のパルス波形条件はパルスピー
ク電流(Ip>は450A、ベース電流(Ib)は50
Aである。これらip、Ibが変われば当然適正周波数
がシフトすることが考えられる。
The pulse waveform conditions other than the pulse frequency are pulse peak current (Ip> of 450A, base current (Ib) of 50A).
It is A. If these ip and Ib change, it is naturally possible that the appropriate frequency will shift.

例えばIpが増減すれば適正周波数は逆方向に増減する
が、これらは設定した条件によって(4)式から与えら
れる周波数を若干修正すれば何等問題なく、本発明の範
囲に含まれるべきものである。
For example, if Ip increases or decreases, the appropriate frequency increases or decreases in the opposite direction, but these should be included in the scope of the present invention as long as the frequency given from equation (4) is slightly modified according to the set conditions. .

以下に実施例によって本発明の効果を具体的に説明する
The effects of the present invention will be specifically explained below using Examples.

(実施例) 第1表に示すワイヤaを用いて、第2表に示す溶接条件
で板厚’lx*tの横向重ねすみ肉溶接をおこない、ビ
ード形状およびスパッタ量を測定した結果を第2表に併
せて示す。
(Example) Wire a shown in Table 1 was used to perform lateral lap fillet welding of plate thickness 'lx*t under the welding conditions shown in Table 2, and the results of measuring the bead shape and amount of spatter were reported in the second table. It is also shown in the table.

条件Nal〜1hlOは本発明例で、それぞれのワイヤ
径、ワイヤ送給速度の条件での最適周波数近傍にパルス
周波数を設定したもので、いずれもスフ バッタ量は0.6 gr/min以下と少なく、ビード
形状も良好であり、ビード形成性、スパッタ量ともに良
好な高速溶接が達成されている。条件11kLi1〜隘
20は比較例で、隘11〜l1h13はワイヤ径1゜0
寵φの場合で、隘11はワイヤ送給速度(訂)が5.8
 m/min 、パルス周波数を適正周波数より約30
Hz低く設定した条件でおこなったもので、スパッタ量
が著しく増加し、またビード形状もやや劣っている。
Conditions Nal to 1hlO are examples of the present invention, in which the pulse frequency was set near the optimum frequency under the conditions of each wire diameter and wire feeding speed, and in all cases, the amount of fluff was as small as 0.6 gr/min or less. The bead shape is also good, and high-speed welding with good bead formability and spatter amount is achieved. Conditions 11kLi1 to 20 are comparative examples, and 11 to l1h13 are wire diameters of 1°0.
In the case of φ, the wire feeding speed (rev.) of 11 is 5.8.
m/min, the pulse frequency is approximately 30% lower than the appropriate frequency.
This was done under conditions where the Hz was set low, and the amount of spatter increased significantly, and the bead shape was also slightly inferior.

以下11h12〜1lh20共に、それぞれの条件での
周波数を適正周波数より20〜40%増減させて設定し
たもので、いずれもスパッタ量が著しく多く、ビード形
成性も若干劣る結果となっている。
For the following samples 11h12 to 1lh20, the frequency under each condition was set to be increased or decreased by 20 to 40% from the appropriate frequency, and in all cases, the amount of sputtering was significantly large and the bead formation properties were slightly inferior.

このように本発明の範囲外にある溶接方法では、いずれ
もスパッタ量、ビード形成性を同時に満足することは出
来ないものである。
As described above, any of the welding methods outside the scope of the present invention cannot satisfy both the amount of spatter and the bead forming property at the same time.

(発明の効果) 以上のごとく、本発明の溶接方法においては、広範囲な
ワイヤ成分および溶接条件に対応でき、かつ溶接条件お
よびワイヤロフト間のバラツキに対しても裕度を有し、
健全など一ド形成性は勿論のこと、スパッタ量の極めて
少ない溶接が可能となった。
(Effects of the Invention) As described above, the welding method of the present invention can accommodate a wide range of wire components and welding conditions, and has tolerance for variations in welding conditions and wire lofts.
Not only is it possible to form a single weld that is sound, but it is also possible to weld with an extremely small amount of spatter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶接速度とスパッタ量の関係を示す図、第2図
は非短絡域に於ける周波数と最短アーク長の関係を定性
的に示すグラフ、第3図は溶接条件と適正周波数の関係
を示すグラフ、第4図は溶接電圧と溶接速度およびスパ
ッタ量の関係を示すグラフ、第5図は周波数変化率とス
パッタ量変化率の関係を示すグラフ、第6図は周波数を
設定するための一例を示すブロック図である。 ン容袴を度(αン勤1n) 150     200     250     3
0θ同う支敷CHx ) 溶接電圧(7) aOqo    100    /10    /20
用ン皮数変イヒ渾(%)
Figure 1 is a graph showing the relationship between welding speed and spatter amount, Figure 2 is a graph qualitatively showing the relationship between frequency and shortest arc length in the non-short circuit region, and Figure 3 is a graph showing the relationship between welding conditions and appropriate frequency. Figure 4 is a graph showing the relationship between welding voltage, welding speed, and amount of spatter. Figure 5 is a graph showing the relationship between rate of change in frequency and rate of change in amount of spatter. Figure 6 is a graph showing the relationship between welding voltage, welding speed, and amount of spatter. FIG. 2 is a block diagram showing an example. 150 200 250 3
0θ Same support CHx) Welding voltage (7) aOqo 100 /10 /20
Number of changes in use (%)

Claims (1)

【特許請求の範囲】 MAGパルス溶接方法において、次式に示す鋼ワイヤの
化学成分に依存の適正周波数特性(Fw)と使用条件に
依存の適正周波数特性(Fc)の和よりなる適正周波数
(F)を基準として、該Fの90〜110%の範囲に整
合するように、パルス電源の周波数を設定しておこなう
ことを特徴とするMAGパルス溶接方法。 Fw(Hz)=952×C−59×Si−67×Mn+
3820×S+2970×N−190×O ただし各元素記号は重量%を示す。 Fc(Hz)=(φ/1.2)×{453×log(W
f/3)}+33ただしφはワイヤ径(mm)、Wfは
ワイヤ送給速度(m/min)を示す。 F(Hz)=Fw+Fc
[Claims] In the MAG pulse welding method, an appropriate frequency (F A MAG pulse welding method characterized in that the frequency of the pulse power source is set so as to match the range of 90 to 110% of F with F as a reference. Fw (Hz)=952×C-59×Si-67×Mn+
3820xS+2970xN-190xO However, each element symbol indicates weight%. Fc (Hz) = (φ/1.2) × {453 × log (W
f/3)}+33 where φ indicates the wire diameter (mm) and Wf indicates the wire feeding speed (m/min). F (Hz) = Fw + Fc
JP61162718A 1986-07-10 1986-07-10 MAG pulse welding method Expired - Fee Related JPH0630816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61162718A JPH0630816B2 (en) 1986-07-10 1986-07-10 MAG pulse welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61162718A JPH0630816B2 (en) 1986-07-10 1986-07-10 MAG pulse welding method

Publications (2)

Publication Number Publication Date
JPS6316869A true JPS6316869A (en) 1988-01-23
JPH0630816B2 JPH0630816B2 (en) 1994-04-27

Family

ID=15759967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61162718A Expired - Fee Related JPH0630816B2 (en) 1986-07-10 1986-07-10 MAG pulse welding method

Country Status (1)

Country Link
JP (1) JPH0630816B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022529241A (en) * 2019-04-10 2022-06-20 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Double pulse welding method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719177A (en) * 1980-07-08 1982-02-01 Mitsubishi Electric Corp Pulse arc welding device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719177A (en) * 1980-07-08 1982-02-01 Mitsubishi Electric Corp Pulse arc welding device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022529241A (en) * 2019-04-10 2022-06-20 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Double pulse welding method

Also Published As

Publication number Publication date
JPH0630816B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
US9457420B2 (en) Gas tungsten arc welding with cross AC arcing twin wires
US8993926B2 (en) Method for arc welding
US20070210048A1 (en) Pulsed arc welding method
JP4334930B2 (en) Arc length control method for pulse arc welding
US6051807A (en) Pulse arc welding apparatus
JP2009507646A (en) MIG / MAG WELDING CONTROL METHOD AND WELDING DEVICE USED FOR THE METHOD
JP4538520B2 (en) Gas shield arc brazing method for steel sheet
JP2006122957A (en) Output control method for welding source
JPH079149A (en) Gas shielded arc welding method for galvanized steel sheet, welding machine therefor and galvanized steel sheet product welding by the welding method and the machine
JP2013233592A (en) Narrow bevel welding method of steel
JPS6316869A (en) Mag pulse welding method
CN110405322B (en) Welding power supply and control method thereof
Yamamoto et al. The development of welding current control systems for spatter reduction
JPH0342997B2 (en)
KR20160105901A (en) One-side submerged arc welding method for multielectrode and method for producing welded product
JP5236337B2 (en) Solid wire for pulse MAG welding of thin steel sheet
KR100649053B1 (en) Laser-mig hybrid welding method
Mita Spatter reduction-power source considerations
JPH0451276B2 (en)
JP3528715B2 (en) C02 gas shield pulse arc welding machine
JPS6339349B2 (en)
JP3097188B2 (en) MIG arc welding control device
US3659073A (en) Method of dc constant potential submerged arc welding
JPH0351506B2 (en)
JPS617089A (en) Steel wire for high-speed gas shielded arc welding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees