JPS63168512A - Flow rate measuring apparatus - Google Patents

Flow rate measuring apparatus

Info

Publication number
JPS63168512A
JPS63168512A JP13887A JP13887A JPS63168512A JP S63168512 A JPS63168512 A JP S63168512A JP 13887 A JP13887 A JP 13887A JP 13887 A JP13887 A JP 13887A JP S63168512 A JPS63168512 A JP S63168512A
Authority
JP
Japan
Prior art keywords
light
flow path
casing
fluid
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13887A
Other languages
Japanese (ja)
Inventor
Hideaki Kobayashi
英明 小林
Tatsuo Washisaki
龍夫 鷲崎
Takeo Nishida
西田 武夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13887A priority Critical patent/JPS63168512A/en
Publication of JPS63168512A publication Critical patent/JPS63168512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To accurately measure a flow rate, by receiving a spherical flowing body formed of a substance having specific gravity the same or analogous to that a liquid in a doughnut-shaped flow passage and arranging a light emitting member and a light receiving member to a casing. CONSTITUTION:A flow rate measuring apparatus has a casing 11 and an induction projection 12 having an almost conical shape is provided to the interior of the casing 11 in a protruding state to form an almost doughnut-shaped flow passage 13 in the casing. A light emitting member 17 is provided at such a position where the light emitted from said member 17 traverses the flow passage 13, for example, at the position contacting with the upper wall of the casing 11. In this case, the liquid flowing in the flow passage 13 from an inflow port 14 goes around in the flow passage 13 to flow out to the outside from an outflow port 15 but the light emitted from the light emitting member 17 is blocked by a flowing body 16 at each time when the flowing body 16 passes between the light emitting member 17 and a light receiving member 18 and a signal is intermittently outputted from the light receiving member 18. Therefore, when the cycle of said signal and a pulse per unit time are measured by an operation circuit 19, the flow rate of the passing liquid can be accurately measured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、液体等の流量を計測する流量測定装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a flow rate measuring device for measuring the flow rate of liquid or the like.

(従来の技術) 第2図は従来の流量測定装置の構成を示すもので、1は
中心部に略円錐状の誘導突起2を突設して略ドーナツ状
の流路3を内部に形設したケーシング、4は流路3に対
してドーナツ状の円の接線方向に設けた流入口、5は流
路3に対してドーナツ状の円の垂直方向に設けた流出口
、6は強磁性体等の外周をシリコンゴム等で被覆した球
状の流動体で、この流動体6は、流路3の中に移動自在
に収容できるように、外径が流路3の内径よりも若干小
さく成形されている。7は流路3に磁界をかけると共に
、この磁界の磁束密度の変化をホール素子等で検知する
検知部、8は検知部7から出力されたパルス状の信号に
基づいて流路3に流入した液体の流量を算出する演算回
路である。
(Prior Art) Fig. 2 shows the configuration of a conventional flow rate measuring device, in which 1 has a generally conical guide protrusion 2 protruding from the center and a roughly donut-shaped flow path 3 formed inside. 4 is an inlet provided in the tangential direction of the donut-shaped circle with respect to the flow path 3, 5 is an outlet provided in the perpendicular direction of the donut-shaped circle with respect to the flow path 3, and 6 is a ferromagnetic material. A spherical fluid whose outer periphery is coated with silicone rubber or the like, and this fluid 6 is shaped so that its outer diameter is slightly smaller than the inner diameter of the flow path 3 so that it can be accommodated in the flow path 3 in a movable manner. ing. 7 is a detection unit that applies a magnetic field to the flow path 3 and detects changes in the magnetic flux density of this magnetic field using a Hall element, etc., and 8 is a detection unit that applies a magnetic field to the flow path 3 and detects changes in the magnetic flux density of this magnetic field, and 8 is a detection unit that applies a magnetic field to the flow path 3. This is a calculation circuit that calculates the flow rate of liquid.

このように構成された従来例では、流入口4から流路3
に流入した液体は、流路3を周回して、流出Lコ5から
外部に流出するが、その間、流路3の中に収容されてい
る流動体6は、流路3の中を液体と共に流れて、流路3
の中での周回を繰り返す。このため、流動体6が検知部
7によって磁界がかけられている場所を通過する毎に、
その磁界の磁束密度が変化して、検知部7から信号が間
欠的に出力されるので、演算回路8においてその信号の
周期、単位時間当りのパルス数等を計測すれば、流路3
を通過する液体の流量を算出することができる。
In the conventional example configured in this way, the flow path 3 is connected from the inlet 4 to the flow path 3.
The liquid flowing into the flow path 3 circulates around the flow path 3 and flows out from the outflow L column 5. During this time, the fluid 6 contained in the flow path 3 flows through the flow path 3 together with the liquid. Flow, channel 3
Repeat the rotation inside. Therefore, every time the fluid 6 passes through a place where a magnetic field is applied by the detection unit 7,
Since the magnetic flux density of the magnetic field changes and a signal is intermittently output from the detection unit 7, if the period of the signal, the number of pulses per unit time, etc. are measured in the arithmetic circuit 8, the flow path 3
The flow rate of liquid passing through can be calculated.

(発明が解決しようとする問題点) ところが、検知部7の磁界は周辺の電磁気の影響で磁束
密度が変化して、流動体6の検出に雑音が入り易いので
、演算回路8での計測が正確でなくなって、流路3を通
過する液体の流量が必ずしも正確に測定できないという
問題があった。
(Problem to be Solved by the Invention) However, the magnetic flux density of the magnetic field of the detection unit 7 changes due to the influence of surrounding electromagnetism, and noise tends to enter the detection of the fluid 6. There was a problem in that the flow rate of the liquid passing through the flow path 3 could not necessarily be accurately measured.

又1強磁性体で形成されている流動体6の比重が、液体
の比重より重いので、流路3内の液体の流れに対する追
従性が悪くて、流量の測定誤差を生じ易いという問題が
あった。
Furthermore, since the specific gravity of the fluid 6 made of a ferromagnetic material is higher than that of the liquid, there is a problem in that it has a poor ability to follow the flow of the liquid in the flow path 3 and is likely to cause errors in measuring the flow rate. Ta.

更に1強磁性体で形成されている流動体6は、液体等に
よって浸食されるのを防止するために。
Furthermore, the fluid 6 is made of a ferromagnetic material to prevent it from being eroded by liquid or the like.

その外周をシリコンゴム等で被覆しなければならないの
で、流動体6の製造に手間が掛かると共に。
Since the outer periphery must be covered with silicone rubber or the like, manufacturing the fluid 6 is time-consuming.

製造原価が高くなるという問題があった。There was a problem that manufacturing costs were high.

本発明は、このような問題に鑑みてなされたもので、流
量が正確に測定できると共に、流動体の材質が自由に選
択できる流量測定装置を提供することを目的としている
The present invention has been made in view of these problems, and an object of the present invention is to provide a flow rate measuring device that can accurately measure the flow rate and can freely select the material of the fluid.

(問題点を解決するための手段) 本発明は、全部或いは一部が透明なケーシングの中の略
ドーナツ状の流路に、比重が液体の比重と同一か或いは
類似している物質で形成した球状の流動体を収容すると
共に、流路を挟むように発光部材及び受光部材を対向さ
せてケーシングに設置するか、或いは、発光部材からの
光を流動体で反射した光の光路上に受光部材が位置する
ように発光部材及び受光部材をケーシングに設置したも
のである。
(Means for Solving the Problems) The present invention provides a substantially donut-shaped flow path in a casing that is completely or partially transparent, and is made of a material whose specific gravity is the same as or similar to that of the liquid. A light-emitting member and a light-receiving member are installed in a casing that houses a spherical fluid and face each other so as to sandwich a flow path, or a light-receiving member is placed on the optical path of the light from the light-emitting member reflected by the fluid. The light-emitting member and the light-receiving member are installed in the casing so that

(作用) 発光部材から射出された光を、液体の流れに乗って流路
の中を周回する流動体で遮断したり、減光させたり、反
射させたりして、流動体の通過を受光部材で検知するよ
うにしているので、電界、磁界等の外部の影響を全く受
けずに流動体の通過を検知できると共に、比重が液体の
比重と同一か或いは類似するような材質で流動体を形成
することができるので、流路の中の液体の流れに対する
流動体の追従性がよくなり、液体の流量が正確に測定で
きるようになる。又、流動体は、比重が液体の比重と同
一か或いは類似するような材質でありさえすればよいの
で、流動体の材質が自由に選択できるようになる。
(Function) The light emitted from the light-emitting member is blocked, attenuated, or reflected by the fluid circulating in the channel along with the flow of the liquid, and the passage of the fluid is blocked by the light-receiving member. Since the sensor detects the passage of the fluid without being affected by external influences such as electric fields or magnetic fields, the fluid is made of a material whose specific gravity is the same or similar to that of the liquid. This improves the ability of the fluid to follow the flow of liquid in the channel, making it possible to accurately measure the flow rate of the liquid. Further, since the fluid only needs to be made of a material whose specific gravity is the same as or similar to that of the liquid, the material of the fluid can be freely selected.

(実施例) 以下、図面を参照しながら、本発明の実施例を詳細に説
明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の構成を示すもので、11は
中心部に略円錐状の誘導突起12を突設して略ドーナツ
状の流路13を内部に形設したケーシングで、このケー
シング11は全体が透明な合成樹脂等で形成されている
。14は流路13に対して接線方向に設けた流入口、1
5は流路13に対して垂直方向に設けた流出口、16は
遮光性を有すると共に、比重が液体の比重と同一か或い
は近似している合成樹脂、例えば液体が水であれば、ポ
リプロピレン等の合成樹脂で形成した球状の流動体で、
この流動体16は、流路13の中に移動自在に収容でき
るように、外径が流路13の内径よりも若干小さく成形
されている。17は発光ダイオード等からなる発光部材
で、この発光部材17は発光部材17から射出した光が
流路13を横切るような位置1例えばケーシング11の
上壁に接して設けられている。18はフォトトランジス
タ、硫化カドミウム(CdS)等からなる受光部材で、
この受光部材18は流路13を挟んで発光部材17と対
向した位置、例えばケーシング11の底壁に接して設け
られている。19は受光部材18から出力されたパルス
状の信号に基づいて流路13に流入した液体の流量を算
出する演算回路である。
FIG. 1 shows the configuration of an embodiment of the present invention, in which 11 is a casing having a generally conical guide protrusion 12 protruding from the center and a generally donut-shaped flow path 13 formed inside; The entire casing 11 is made of transparent synthetic resin or the like. 14 is an inlet provided tangentially to the flow path 13;
5 is an outlet provided perpendicularly to the flow path 13; 16 is a synthetic resin that has a light shielding property and has a specific gravity that is the same as or similar to that of the liquid; for example, if the liquid is water, a synthetic resin such as polypropylene; A spherical fluid made of synthetic resin.
The fluid 16 is formed to have an outer diameter slightly smaller than the inner diameter of the flow path 13 so that it can be accommodated in the flow path 13 in a movable manner. Reference numeral 17 denotes a light emitting member such as a light emitting diode, and the light emitting member 17 is provided at a position 1, for example, in contact with the upper wall of the casing 11, such that the light emitted from the light emitting member 17 crosses the flow path 13. 18 is a phototransistor, a light receiving member made of cadmium sulfide (CdS), etc.;
The light receiving member 18 is provided at a position opposite to the light emitting member 17 with the flow path 13 in between, for example, in contact with the bottom wall of the casing 11. Reference numeral 19 denotes an arithmetic circuit that calculates the flow rate of the liquid flowing into the flow path 13 based on the pulse-like signal output from the light receiving member 18.

このように構成された従来例では、流入口14から流路
13に流入した液体は、流路13を周回して、流出口1
5から外部に流出するが、その間、流路13の中に収容
されている流動体16は、液体と共に流路13の中を流
れて、流路13の中での周回を繰り返す。このため、流
動体16が発光部材17と受光部材18との間を通過す
る毎に1発光部材17から射出された光が流動体16に
よって遮断されて、受光部材18から信号が間欠的に出
力されるので、演算回路19においてその信号の周期、
単位時間当りのパルス数等を計測すれば、流路13を通
過する液体の流量を算出することができる。
In the conventional example configured in this way, the liquid that has flowed into the flow path 13 from the inlet 14 circulates around the flow path 13 and reaches the outlet 1.
During this period, the fluid 16 contained in the channel 13 flows through the channel 13 together with the liquid and repeats the circulation in the channel 13. Therefore, each time the fluid 16 passes between the light emitting member 17 and the light receiving member 18, the light emitted from one light emitting member 17 is blocked by the fluid 16, and a signal is intermittently output from the light receiving member 18. Therefore, in the arithmetic circuit 19, the period of the signal,
By measuring the number of pulses per unit time, etc., the flow rate of the liquid passing through the flow path 13 can be calculated.

尚1本実施例では、発光部材から射出された光を流動体
で遮断することによって、流動体の通過を検知する例で
説明したが、発光部材から射出された光を流動体で減光
させたり、反射させることにより、流動体の通過を検知
するようにしてもよい。
1. In this embodiment, passage of the fluid is detected by blocking the light emitted from the light emitting member with the fluid. However, it is also possible to attenuate the light emitted from the light emitting member with the fluid. Passage of the fluid may also be detected by reflecting or reflecting the fluid.

又、本実施例では、ケーシング11全体を透明にする例
で説明したが、発光部材と受光部材との間において光が
横切る部分だけ透明にしてもよい。
Further, in this embodiment, an example has been described in which the entire casing 11 is made transparent, but only the portion where light crosses between the light emitting member and the light receiving member may be made transparent.

更に、本実施例では、流動体16を合成樹脂で形成する
例で説明したが、液体と流動体16との比重が同一か或
いは近似するようなものであれば、流動体16の材質は
合成樹脂に限定されるものではなし)。
Furthermore, in this embodiment, the fluid 16 is made of synthetic resin, but if the specific gravity of the liquid and the fluid 16 are the same or similar, the material of the fluid 16 may be synthetic. (It is not limited to resin).

更に1本実施例では、流動体16を球状に成形する例で
説明したが、流路13の中を液体の流れに乗って移動で
きる形状であれば、流動体16の形状は球に限定される
ものではない。
Furthermore, in this embodiment, the fluid 16 is formed into a spherical shape, but the shape of the fluid 16 is limited to a sphere as long as it can move along with the flow of the liquid in the channel 13. It's not something you can do.

(発明の効果) 以上説明したように、本発明によれば、発光部材から射
出された光を、液体の流れに乗って流路の中を周回する
流動体で遮断したり、減光させたり5反射させたりして
、流動体の通過を受光部材で検知するようにしているの
で、電界、磁界等の外部の影響を全く受けずに流動体の
通過を検知できると共に、流動体はその比重が液体の比
重と同一か或いは類似するような材質で自由に形成する
ことができるので、流動体を流路の中の液体の流れに対
する流動体の追従性がよくなり、液体の流量が正確に測
定できるようになる。又、流動体の通過を光で検知して
いるため、被検知体としての流動体の材質が自由に選択
できるようになって、液体によって浸食されたり、錆び
ない材質の単体で流動体を形成できるので、流動体の製
造に手間が掛からなくなると共に、製造原価が安くなる
という効果がある。
(Effects of the Invention) As explained above, according to the present invention, the light emitted from the light emitting member can be blocked or attenuated by the fluid circulating in the flow path along with the flow of the liquid. 5. Since the passage of the fluid is detected by the light receiving member by reflecting the fluid, it is possible to detect the passage of the fluid without being affected by external influences such as electric fields and magnetic fields, and the fluid has its specific gravity. The fluid can be freely formed of a material with the same or similar specific gravity to the liquid, which improves the ability of the fluid to follow the flow of the liquid in the channel, making it possible to accurately control the flow rate of the liquid. Be able to measure. In addition, since the passage of the fluid is detected using light, the material of the fluid to be detected can be freely selected, and the fluid can be formed from a single material that will not be corroded or rusted by the fluid. This has the effect of not only requiring less time and effort to produce the fluid, but also reducing production costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示す断面図、第2図
は従来の流量測定装置の構成を示す断面図である。 11・・・ケーシング、12・・・誘導突起、13・・
・流路、14・・・流入口、15・・・流出口、16・
・・流動体、17・・・発光部材、18・・・受光部材
、19・・・演算回路。 特許出願人  松下電器産業株式会社 第1図 17・・・発も#ヤ村 旧・・・4L九矛1?U ム′ジ 2 ロ
FIG. 1 is a sectional view showing the structure of an embodiment of the present invention, and FIG. 2 is a sectional view showing the structure of a conventional flow rate measuring device. 11...Casing, 12...Guiding protrusion, 13...
・Flow path, 14... Inlet, 15... Outlet, 16.
... Fluid, 17... Light emitting member, 18... Light receiving member, 19... Arithmetic circuit. Patent applicant: Matsushita Electric Industrial Co., Ltd. Figure 1 17...From #Yamura old...4L nine spears 1? U Music 2 B

Claims (2)

【特許請求の範囲】[Claims] (1)中心部に誘導突起を突設して略ドーナツ状の流路
を内部に形設すると共に、前記流路に対して接線方向に
流入口を設け、且つ、前記流路に対して垂直方向に流出
口を設けた、全体或いは一部が透明なケーシングと、前
記流路の中の液体の流れに乗って前記流路の中を周回す
るように、外径を前記流路の内径よりも若干小さくした
流動体と、射出した光の光路が前記流路を横切るように
前記ケーシングに設置した発光部材と、この発光部材と
前記流路を挟んで対向するか或いは前記光を前記流動体
で反射したときの光の光路上に位置するように前記ケー
シングに設置した受光部材と前記流動体が前記発光部材
から射出した光の光路を通過する毎に、前記受光部材に
入射する前記光が遮断されるか或いは前記光が前記受光
部材に入射して、前記受光部材から出力される信号を計
測することにより、前記流路に流入した前記液体の流量
を算出する演算回路とからなることを特徴とする流量測
定装置。
(1) A guide protrusion is provided protruding from the center to form a substantially donut-shaped flow path inside, and an inlet is provided in a tangential direction to the flow path, and perpendicular to the flow path. A casing that is entirely or partially transparent and has an outlet in the direction, and a casing that has an outer diameter larger than the inner diameter of the flow path so that the liquid circulates in the flow path along with the flow of the liquid in the flow path. A fluid made slightly smaller in size, a light emitting member installed in the casing so that the optical path of the emitted light crosses the flow path, and a light emitting member and the light emitting member installed across the flow path, or the light is directed to the fluid. Each time the fluid passes through the optical path of the light emitted from the light-emitting member and the light-receiving member installed in the casing so as to be located on the optical path of the light when reflected by the light-receiving member, the light incident on the light-receiving member and an arithmetic circuit that calculates the flow rate of the liquid flowing into the flow path by measuring a signal output from the light receiving member when the light is blocked or the light enters the light receiving member. Characteristic flow measuring device.
(2)前記流動体は、その比重が前記液体の比重と等し
いか或いは近似していることを特徴とする特許請求の範
囲第(1)項記載の流量測定装置。
(2) The flow rate measuring device according to claim 1, wherein the fluid has a specific gravity that is equal to or similar to the specific gravity of the liquid.
JP13887A 1987-01-06 1987-01-06 Flow rate measuring apparatus Pending JPS63168512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13887A JPS63168512A (en) 1987-01-06 1987-01-06 Flow rate measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13887A JPS63168512A (en) 1987-01-06 1987-01-06 Flow rate measuring apparatus

Publications (1)

Publication Number Publication Date
JPS63168512A true JPS63168512A (en) 1988-07-12

Family

ID=11465666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13887A Pending JPS63168512A (en) 1987-01-06 1987-01-06 Flow rate measuring apparatus

Country Status (1)

Country Link
JP (1) JPS63168512A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859863A (en) * 1971-11-10 1973-08-22
JPS5226560B2 (en) * 1973-08-20 1977-07-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859863A (en) * 1971-11-10 1973-08-22
JPS5226560B2 (en) * 1973-08-20 1977-07-14

Similar Documents

Publication Publication Date Title
ES2382744T3 (en) Sensor device for an appliance
JPS63168512A (en) Flow rate measuring apparatus
JPS63168513A (en) Flow rate measuring apparatus
US4612806A (en) Orbital ball flow detection apparatus
GB1209547A (en) Flow meter for liquids and gases
JP2705796B2 (en) Flow detector
CN211717526U (en) Metering instrument photoelectric sampling assembly and metering instrument
JP2005077402A (en) Flow sensor and flow rate measuring device
JP2574401B2 (en) Flow detector
JP2004093544A (en) Flow sensor and flow measurement system
CN213422297U (en) Optical fiber conduction coding counting device and dry-type intelligent meter head
JPH0238816A (en) Flowmeter
JPH01189519A (en) Flow rate detector
GB2071340A (en) Fluid flow meter
CN216387407U (en) Pipeline water flow detection device
JP6143456B2 (en) Flow sensor and flow control device
KR0128163Y1 (en) Flux sensing device for approach sensor
CN220729401U (en) Liquid level sensor and electrical equipment
CN113588032A (en) Integrated metering module, metering method and dry-type intelligent meter head
JPS58143217A (en) Ball rotating system flow rate detecting device
KR200263025Y1 (en) MLSS Measuring Apparatus
GB2051352A (en) Measuring apparatus for measurement of liquid flow rates
JPS59154341A (en) Measuring device of foreign matter
JPH08240454A (en) Flow rate detecting device
JPH05142010A (en) Flowmeter