JPS63168414A - Preparation of propylene copolymer - Google Patents

Preparation of propylene copolymer

Info

Publication number
JPS63168414A
JPS63168414A JP31011286A JP31011286A JPS63168414A JP S63168414 A JPS63168414 A JP S63168414A JP 31011286 A JP31011286 A JP 31011286A JP 31011286 A JP31011286 A JP 31011286A JP S63168414 A JPS63168414 A JP S63168414A
Authority
JP
Japan
Prior art keywords
propylene
ethylene
polymerization
copolymer
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31011286A
Other languages
Japanese (ja)
Other versions
JPH0317847B2 (en
Inventor
Nobuaki Goko
郷古 宣昭
Yumito Uehara
上原 弓人
Yasuhiro Nishihara
西原 康博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP31011286A priority Critical patent/JPS63168414A/en
Publication of JPS63168414A publication Critical patent/JPS63168414A/en
Publication of JPH0317847B2 publication Critical patent/JPH0317847B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To form a copolymer which is excellent in transparency, impact resistance and sliding property, by processing a propylene-ethylene random copolymer in two steps in the presence of a stereospecific catalyst, wherein the copolymerization in the 2nd step is carried out in the presence of a specified silicon compound in a gaseous phase. CONSTITUTION:A propylene copolymer is formed in the following two steps in the presence of a stereospecific catalyst consisting chiefly of a titanium compound and an organomagnesium compound. (a) 1st step: Porpylene is homopolymerized in the presence of an inert solvent or liquefied propylene, or propylene and ethylene are copolymerized, with the ethylene content being at most 5wt.%, so that the resulting polymer amounts to 5-95wt.% of the total amt. of polymerization. (b) 2nd step: In succession to the 1st step, a random copolymerization of propylene and ethylene is carried out in a gaseous phases so that the resulting copolymer amounts to 95-5wt.% of the total amt. of polymerization to give a copolymer containing 10wt.% ethylene. The polymerization in the 2nd step is carried out in the presence of a silicon compound of formula 1 (where R<1> and R<2> are each H, 1-20C alkyl or aryl; n is 1-3,000).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プロピレン共重合体の製造法に関する。更に
詳しくは、チタン系化合物と有機アルミニウム系化合物
とを主成分とする立体特異性触媒系を用いて二段階でプ
ロピレン−エチレンランダム共重合体を製造する際に、
第2段の共重合を特定のケイ素化合物を存在させて気相
下で行なうことにより、かさ密度が高く、安息角の小さ
い重合体粒子を高い反応器容積効率で製造する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a propylene copolymer. More specifically, when producing a propylene-ethylene random copolymer in two steps using a stereospecific catalyst system containing a titanium compound and an organoaluminum compound as main components,
The present invention relates to a method for producing polymer particles with high bulk density and a small angle of repose with high reactor volumetric efficiency by carrying out the second stage copolymerization in the presence of a specific silicon compound in a gas phase.

〔従来の技術〕[Conventional technology]

エチレ/を少量の割合で含有する結晶性プロピレン−エ
チレンランダム共重合体は、各種フィルム、中空成型品
、射出成型品などに加工されて広く使用され℃いる。
Crystalline propylene-ethylene random copolymers containing a small amount of ethylene are widely used and processed into various films, blow molded products, injection molded products, etc.

プロピレン−エチレンランダム共重合体は、プロピレン
重合体に比べて透明性や耐衝撃性、低温脆性が改良さね
るほか、フィルム分野におい℃はヒートシール性が良化
するが、こjらの性質はエチレン含有量を増加させるこ
とによって更に改善することが出来る。
Propylene-ethylene random copolymers have improved transparency, impact resistance, and low-temperature brittleness compared to propylene polymers, and also have better heat sealability in the film field. Further improvements can be made by increasing the ethylene content.

ンダム共重合体を不活性靜媒や液化プロピレンの存在下
でスラリー重合などで製造する場合には、重合溶媒に可
溶性の重合体の生成が増加し、重合スラリーが粘稠にな
るため重合体濃度を高くすることができず、生産性が低
下する。
When producing a random copolymer by slurry polymerization in the presence of an inert solvent or liquefied propylene, the production of polymers soluble in the polymerization solvent increases and the polymerization slurry becomes viscous, resulting in a decrease in the polymer concentration. cannot be increased, and productivity decreases.

また重合溶媒に可溶性の重合体は反応器内壁への付着に
より伝熱不良や抜出管の閉塞トラブルの原因となるばか
りでなく、重合体粒子のかさ密度の低下やすべり性の悪
化をもたらし、下流側である移送工程の閉塞やホッパー
での固結、更には乾燥工程での塊状物生成等の原因とな
る。
In addition, polymers that are soluble in the polymerization solvent not only cause poor heat transfer and blockage problems in the extraction tube due to adhesion to the inner wall of the reactor, but also cause a decrease in the bulk density of the polymer particles and worsening of the slipperiness. This may cause clogging of the downstream transfer process, caking in the hopper, and formation of lumps in the drying process.

従って不活性炭化水素や液体プロピレンを溶媒としたス
ラリー重合法によるプロピレン−エチレンランダム共重
合体の製造では生産量を下げる等の著しい不利益を伴う
か、又は少量のエチレン含有量で僅かな改善で妥協せざ
るをえない。
Therefore, in the production of propylene-ethylene random copolymers by slurry polymerization using inert hydrocarbons or liquid propylene as a solvent, there are significant disadvantages such as lower production, or there is only slight improvement with a small amount of ethylene content. I have no choice but to compromise.

このような問題点を解決する為にスラリー重合を多段で
行い、かつ、後段で生成する共重合体中のエチレン富有
量を前段で生成する共重合体中のエチレン含有量よりも
多くL”C全共重合体中のエチレン含有量を増加させる
方法が知りj′″Cいる。しかしながらこの方法では媒
体中へ溶出する成分による前記トラブルは基本的になく
ならず解決策としては全く不十分である。
In order to solve these problems, slurry polymerization is carried out in multiple stages, and the ethylene content in the copolymer produced in the latter stage is higher than the ethylene content in the copolymer produced in the earlier stage. I know of a way to increase the ethylene content in the total copolymer. However, this method does not basically eliminate the above-mentioned troubles caused by components eluting into the medium, and is completely insufficient as a solution.

また、液状媒体を用いな℃・いわゆる気相重合方法も知
らね℃いる。この方法は液状媒体を全く用いないので非
品性重合体による前記トラブルは軽減さiするはすであ
る。しかし、この方法も実際には媒体が存在しない為、
除熱が十分性われず、粒子相互の凝集による塊状物生成
や重合槽内壁への付着は改善さtない。又反応初期に起
ると思わねる触媒の仮枠によって微粒が生じ、得られた
重合体粒子のかさ密度はスラリー重合によって得た重合
体粒子のかさ密度より、むしろ低いのである。
Furthermore, there are no known gas phase polymerization methods that do not use a liquid medium. Since this method does not use any liquid medium, the above-mentioned troubles caused by non-quality polymers are alleviated. However, since there is no actual medium in this method,
Heat removal is not performed sufficiently, and the formation of lumps due to mutual agglomeration of particles and adhesion to the inner wall of the polymerization tank are not improved. Furthermore, fine particles are formed due to the temporary framework of the catalyst that appears to occur in the initial stage of the reaction, and the bulk density of the resulting polymer particles is rather lower than that of polymer particles obtained by slurry polymerization.

気相重合法の更に大きな問題は単量体濃度が低い為単位
時間あたりの生産量は著しく低(なることである。気相
重合では重合体粉末の混合に要するエネルギー、例えば
流動層であわば、流動用循環ガスのプロワ−の動力、債
拌檜であわば攪拌動力を大きくとる必要があり、気相反
応器の容積の大小は建設貿のみならず、変動費にも多大
の影響な及ぼすので、生産性が低いということは経済的
貌点からみると気相重合の重大な欠点と言わざるを得な
い。
An even bigger problem with gas phase polymerization is that the monomer concentration is low, resulting in extremely low production per unit time. In addition, it is necessary to increase the power of the blower for circulating gas for fluidization, and the power of stirring with the cypress, and the size of the volume of the gas phase reactor has a great impact not only on construction trade but also on variable costs. Therefore, low productivity must be considered a serious drawback of gas phase polymerization from an economic point of view.

本発明者らは、プロピレン−エチレンランダム共重合体
の物性上の特質である、すぐれた透明性、耐衝撃性、低
温脆性、ヒートシール性を有スるグロビレンーエチレン
共重合体を工業的有利に製造する方法を開発すべ(、粉
体性状の改良と、高活性を得る重合方法に潰目して鋭意
検討した結果、下記方法を兄い出すに至った。
The present inventors have developed a globylene-ethylene copolymer, which has excellent physical properties such as propylene-ethylene random copolymer, such as excellent transparency, impact resistance, low-temperature brittleness, and heat sealability, for industrial use. As a result of extensive research into ways to improve powder properties and polymerization methods that would yield high activity, we came up with the method below.

すなわち、本発明の目的は、 (1)  透明性、耐衝撃性、低温脆性、ヒートシール
性にすぐjた重合体を得ること、 (2)  反応器内でのポリマーの付着、乾燥工程での
粉体の互着、等の起こらないこと、 (3)得られる重合体の粉体性状にすぐれかつ、高活性
で連続運転が可能であること といつ要件を満すプロピレン共重合体の製造法を提供す
ることである。
That is, the purpose of the present invention is to (1) obtain a polymer with excellent transparency, impact resistance, low-temperature brittleness, and heat-sealing properties; (2) prevent polymer adhesion in a reactor and drying process. (3) A method for producing a propylene copolymer that satisfies the following requirements: (3) The resulting polymer has excellent powder properties, high activity, and can be operated continuously. The goal is to provide the following.

本発明の要旨は、チタン化合物と有機アルミニウム化合
物とを主成分とする立体特異性触媒を用い、第1段階の
単独重合又は共重合を不活性溶媒又は液化プロピレン中
で行ない、第一段階の共重合を実質的に溶媒、液化プロ
ピレンの、ない気相中で行うことにより高いかさ密匿と
良好なすべり性を有する重合体粒子が極め℃安定的に得
うねること、かつ第一段階の共重合時に特定のケイ素化
合物を1合系に存在させることにより、活性が者しく向
上し高い生産性が得うねるということに存する。
The gist of the present invention is to carry out the first stage homopolymerization or copolymerization in an inert solvent or liquefied propylene using a stereospecific catalyst containing a titanium compound and an organoaluminum compound as main components. By conducting the polymerization in a gas phase substantially free of solvent and liquefied propylene, polymer particles with high bulk density and good slip properties are obtained in an extremely stable manner at °C, and the first stage copolymerization Sometimes, the presence of a specific silicon compound in the monomer system significantly improves the activity and increases productivity.

以下本発明を順次説明する。The present invention will be sequentially explained below.

本発明において使用される重合触媒は、チタン含有固体
触媒成分と、有機アルミニウム化合物とからなるが、特
に限定されず、公知の触媒を用いうる。
The polymerization catalyst used in the present invention consists of a titanium-containing solid catalyst component and an organoaluminum compound, but is not particularly limited, and any known catalyst may be used.

チタン含有固体触媒成分としては、固体のマグネシウム
化合物、チタン化合物成分およびノ・ロゲン成分を含む
公知の担体担持型触媒成分も使用可能であるが、好まし
くは三塩化チタンを主成分とするものである。三塩化チ
タンを主成分とするものとしては、従来公知の三塩化チ
タンが使用できる。たとえばボールミル粉砕で活性化処
理を行なった三塩化チタン、更にそれを溶媒抽出した三
塩化チタン、β型三塩化チタンをエーテル類等の錯化剤
で処理し、更に四塩化チタンで処理し″CAL含有量を
T1に対する原子比で0.7S以下にした三塩化チタン
、エーテル類の存在下、四塩化チタンを有機アルミニウ
ム化合物で処理し℃液状物とし、こjを更に加熱して固
体としてAll有象をT1に対する原子比で0./A;
以下としだ三塩化チタン等があげられる。
As the titanium-containing solid catalyst component, known carrier-supported catalyst components containing solid magnesium compounds, titanium compound components, and nitrogen components can also be used, but preferably titanium trichloride is the main component. . As a material containing titanium trichloride as a main component, conventionally known titanium trichloride can be used. For example, titanium trichloride is activated by ball milling, titanium trichloride is extracted with a solvent, β-type titanium trichloride is treated with a complexing agent such as an ether, and then treated with titanium tetrachloride. In the presence of titanium trichloride and ethers whose atomic ratio to T1 is 0.7S or less, titanium tetrachloride is treated with an organoaluminum compound to form a liquid at °C, and this is further heated to form a solid. The atomic ratio of the elephant to T1 is 0./A;
The following examples include titanium trichloride.

これらの三塩化チタンのうち特に好ましいのは、アルミ
ニウム含有量がチタンに対するアルミニウムの原子比で
0.73以下、好ましくはo、i以下、さらに好ましく
は0.0二以下であり、かつ錯化剤を含有するものであ
る。
Particularly preferred among these titanium trichlorides is an aluminum content in the atomic ratio of aluminum to titanium of 0.73 or less, preferably o, i or less, more preferably 0.02 or less, and a complexing agent. It contains.

上記チタン含有固体触媒成分に対し、共触媒とし1使用
される有機アルミニウム化合物は、一般式A Lkt(
I R3−m (式中、Rは炭素−数7〜−〇の炭化水
素基、Xは〕・ロゲンを表わし、請は3≧m ) /、
 tの畝を示す)で表わされる。チタン含有固体触媒成
分が、固体のマグネシウム化合物を含有する担体担持型
触媒成分である場合は、AlR3またはARK、とA1
%にとの混合物を使用するのが好まし〜・。一方、チタ
ン含有固体触媒成分が、三塩化チタンを主成分とする場
合は、AIR2Xを使用するが、一般にジエチルアルミ
ニウムクロライド、ジノルマルプロピルアルミニウムク
ロライド、ジエチルアルミニウムクロライド、ジノルマ
ルオクチルクロライドが好ましい。
The organoaluminum compound used as a cocatalyst for the titanium-containing solid catalyst component has the general formula A Lkt (
I R3-m (in the formula, R is a hydrocarbon group having 7 to -0 carbon atoms, X represents ].logen, and 3≧m) /,
(indicates the ridge of t). When the titanium-containing solid catalyst component is a carrier-supported catalyst component containing a solid magnesium compound, AlR3 or ARK, and A1
It is preferable to use a mixture with . On the other hand, when the titanium-containing solid catalyst component is mainly composed of titanium trichloride, AIR2X is used, but diethylaluminum chloride, di-n-propyl aluminum chloride, diethylaluminum chloride, and di-n-octyl chloride are generally preferred.

上記に示した三塩化チタンおよび有機アルミニウム化合
物は、一般に有機アルミニウム化合物/三塩化チタンの
モル比がl〜30、好ましくはコ〜13の範囲で使用さ
れる。
The titanium trichloride and organoaluminum compound shown above are generally used in a molar ratio of organoaluminum compound/titanium trichloride of 1 to 30, preferably 1 to 13.

本発明においては、上記の触媒をそのまま用いてもよい
が、前処理として、三塩化チタ/と有機アルミニウム化
合物からなる触媒に予め少量のオレフィンを予備的に重
合させることが好ましい。
In the present invention, the above-mentioned catalyst may be used as it is, but it is preferable to preliminarily polymerize a small amount of olefin onto the catalyst made of tita/trichloride and an organoaluminum compound as a pretreatment.

上記方法は、不活性溶媒、例えばヘキサ/、ヘプタ/等
に三塩化チタンおよび有機アルミニウム化合物を添加し
、これにプロピレン、エチレン、ブテン−1等のオレフ
ィンあるいは、これらの混合物を供給して重合すればよ
い。この前処理は一般に予備重合と称される手段である
が、その重合条件は公知の条件が、そのまま採用できる
。重合温度は30〜り0℃である。重合率は三塩化チタ
ノ単位重量当り大きい程好ましいが、装置上あるいは経
済的な観点から0./〜100jj−ポリマー/ 、9
− Ti113の範囲とするのが一般的である。また、
重合時分子量調節剤、例えば水素を添加してもよい。更
に予備重合は回分式で均一に実施するのが好ましい。こ
の予備1合は、嵩密度など重合体の性状の改良に効果が
ある。
In the above method, titanium trichloride and an organoaluminum compound are added to an inert solvent such as hexa/, hepta/, etc., and an olefin such as propylene, ethylene, butene-1, or a mixture thereof is supplied to polymerize the mixture. Bye. This pretreatment is generally referred to as prepolymerization, and known polymerization conditions can be used as they are. The polymerization temperature is 30-0°C. The higher the polymerization rate per unit weight of titanium trichloride, the better; however, it is less than 0. /~100jj-polymer/ , 9
- It is generally in the range of Ti113. Also,
A molecular weight regulator, such as hydrogen, may be added during polymerization. Furthermore, it is preferable that the prepolymerization is carried out uniformly in a batch manner. This preliminary 1 cup is effective in improving the properties of the polymer such as bulk density.

更に、上記した三塩化チタンおよび有機アルミニウム化
合物からなる触媒には、立体規則性向上の為の添加剤を
第3成分として用い℃もよい。この目的のために、N、
O,P又は81等を含む種々の化合物や、炭化水素化合
物が用いられる。第3成分の添加量は、一般に三塩化チ
タンに対するモル比で0.0007〜よ、好ましくはo
、ooi〜/の範囲である。
Further, in the catalyst made of titanium trichloride and an organoaluminum compound described above, an additive for improving stereoregularity may be used as a third component and the temperature may be adjusted to 0.degree. For this purpose, N.
Various compounds containing O, P, 81, etc., and hydrocarbon compounds are used. The amount of the third component added is generally from 0.0007 to titanium trichloride, preferably from 0.0007 molar ratio to titanium trichloride.
, ooi~/.

プロピレンとエチレンのランダム共重合は、少なくとも
二段階に分け1行なわれる。
Random copolymerization of propylene and ethylene is carried out in at least two stages.

第1段の重合は不活性溶媒中、液体モノマー中いずれで
も行なうことができるが、本発明を実施するにあたって
は、特に液体モノマー中で行なうことが好ましい。第1
段の重合ではプロピレンの単独重合又はエチレン含有量
が5重世%以下のプロピレン−エチレンランダム共重合
体を製造する。エチレン含有量が上記範囲より高い共重
合を行うと不活性溶媒又は液体モノマー中に溶出する成
分の悪影響により本発明の目的の7つであるかさ密度の
高い重合体を得ることが離しくなる。
The first stage polymerization can be carried out either in an inert solvent or in a liquid monomer, but in carrying out the present invention, it is particularly preferable to carry out the polymerization in a liquid monomer. 1st
In the stage polymerization, a propylene homopolymer or a propylene-ethylene random copolymer having an ethylene content of 5% or less is produced. If copolymerization is carried out with an ethylene content higher than the above range, it will be difficult to obtain a polymer with a high bulk density, which is one of the objects of the present invention, due to the adverse effects of components eluted into the inert solvent or liquid monomer.

重合温度及び圧力は一般にプロピレン重合で用いられて
いる条件を適用することができるが通常θ〜100℃、
好ましくは30〜33℃、700気圧以下、好ましくは
/ −j O気圧の圧力範囲が適用される。
For the polymerization temperature and pressure, conditions generally used in propylene polymerization can be applied, but usually θ to 100°C,
Preferably, a pressure range of 30 to 33°C and below 700 atm, preferably / -j O atm, is applied.

分子ik調節剤としては、水素、ジエチル亜鉛等の公知
のものが用いられる。
As the molecular ik regulator, known ones such as hydrogen and diethylzinc can be used.

第1段の重合で得られる重合体は、最終重合体の物性バ
ランスを考慮してMF工(メルトフローインデックス)
が0.1〜100g710分の範囲となるように調節し
、第1段の重合反応で、全重合量の!−9j重′jlk
%を重合させる。
The polymer obtained in the first stage polymerization is subjected to MF processing (melt flow index) in consideration of the physical property balance of the final polymer.
is adjusted so that it is in the range of 0.1 to 100g710 minutes, and in the first stage polymerization reaction, the total amount of polymerization is ! -9j heavy′jlk
% polymerize.

第1段の重合量が全重合量の5重量%に満たない場合は
第一段の気相重合槽で粒子の凝集や塊りが出来易くなり
、本発明の目的であるかさ密度が高くすべり性の良好な
重合体粒子が得られない。
If the amount of polymerization in the first stage is less than 5% by weight of the total amount of polymerization, agglomeration and agglomeration of particles will easily occur in the first stage gas phase polymerization tank, and the bulk density and slippage, which is the objective of the present invention, will increase. Polymer particles with good properties cannot be obtained.

又、第1段の重合量が95重量%を越えた場合は2段階
で重合を行う効果が出ない。
Furthermore, if the amount of polymerization in the first stage exceeds 95% by weight, the effect of carrying out the polymerization in two stages will not be achieved.

第1段の重合反応は、重合反応器一槽でも二種以上用い
ても良い。
In the first stage polymerization reaction, one polymerization reactor may be used or two or more types may be used.

第7段の重合終了後、単独重合体又は共重合体は、含ま
れる触媒を失活させることな(、反応媒体の一部を除去
し、又は、除去せずに気相重合器に移送される。即ち該
ポリマーが溶媒重合法によって得られたものであるとき
は、不活性炭化水素と未反応モノマーを遠心分離機、液
体サイクロン等で除去する。又、液体プロピレン自体を
媒体としたときは、同様の公知の固液分囁手段の他、そ
のまま気相重合器に送ることもできる。
After the completion of the seventh stage polymerization, the homopolymer or copolymer is transferred to a gas phase polymerizer without deactivating the catalyst contained (with or without removing a portion of the reaction medium). That is, when the polymer is obtained by solvent polymerization, inert hydrocarbons and unreacted monomers are removed using a centrifuge, liquid cyclone, etc. Also, when liquid propylene itself is used as the medium, In addition to similar known solid-liquid dispersion means, it is also possible to send the mixture as it is to a gas phase polymerization vessel.

第二段階のプロピレン−エチレン共重合は、実質的に不
活性溶媒液化プロピレンの不存在下、気相下で行なう。
The second stage propylene-ethylene copolymerization is carried out in the gas phase in the substantial absence of an inert solvent, liquefied propylene.

第二段階で生成する共重合体中のエチレン含有量は、通
常20重量%以下であるが、全重合体のエチレン含有量
が所望の値となるよう適宜調節される。全共重合体中に
含まれるエチレン含有量は70重量%以下であるが、本
発明の効果はエチレン含有量が高い程大きい。即ち本発
明の方法はエチレン含有*’1重量%以上の共重合体の
製造に特に好適である。第7段で重合する重合体中のエ
チレン含有量より第1段で重合するエチレン含有量を高
くすることが好ましい。
The ethylene content in the copolymer produced in the second step is usually 20% by weight or less, but it is adjusted as appropriate so that the ethylene content of the entire polymer becomes a desired value. Although the ethylene content contained in the entire copolymer is 70% by weight or less, the effect of the present invention is greater as the ethylene content is higher. That is, the method of the present invention is particularly suitable for producing a copolymer containing ethylene containing 1% by weight or more. It is preferable that the ethylene content polymerized in the first stage is higher than the ethylene content in the polymer polymerized in the seventh stage.

第二段階で生成する共重計体は、全重合体のりS −S
重fjk%となるように製造する。
The copolymer body produced in the second stage is a total polymer glue S-S
Manufactured so that the weight is fjk%.

第二段階の重合は通常30〜100℃、l〜SOゆ−の
範囲で行なう。
The second stage polymerization is usually carried out at 30 DEG to 100 DEG C. and at a temperature of 1 to SO.

本発明の最も重要な特徴は、前記の第1段階の方法によ
つ℃得られたプロピノン単独重合体又はランダム共重合
体に引き続きプロピレンとエチレンを気相で重合させる
際に、ケイ素化合物を添加して重合することにより極め
て高い重合活性が得られ、又ポリマーの粘着のないすべ
り性の優れたランダム共重合体が得られることにある。
The most important feature of the present invention is that a silicon compound is added when propylene and ethylene are subsequently polymerized in the gas phase to the propylene homopolymer or random copolymer obtained by the above-mentioned first step method. By polymerizing in such a manner, extremely high polymerization activity can be obtained, and a random copolymer with no polymer stickiness and excellent slip properties can be obtained.

本発明で加えらねるケイ素化合物は一般式子数/〜20
のアルキル基、アリール基、アルコキシ基、アリールオ
キシ基又はハロゲ7UX子を光わし、nは3〜3000
である)で表わされるケイ素化合物であり、好ましくは
、鎖状、環状又はスピロ栴造のポリシロキサン類である
The silicon compound added in the present invention has a general formula number/~20
an alkyl group, an aryl group, an alkoxy group, an aryloxy group or a halogen group, and n is 3 to 3000
), preferably linear, cyclic or spiro-based polysiloxanes.

具体的には、例えば、オクタエチルシクロテトラシロキ
サンC51(Oaks)so 14、ジメチルポリシロ
キサンC””(CHs)zO)、1 、メチルエチルポ
リシロキサ7 CSi(OHs)(CgHs)OIB 
 などのアルキルシロキサ/11L合物;ヘキサフェニ
ルシクロトリシロキサ;/ C81(OIBHll)2
0 〕s、ジフェニルポリシロキサンCE11(CsH
s)so貼等のアリールシロキサ7重合物、ジフェニル
へキサメチルテトラシロキサン(CHs)sSlo C
81<CaHs)2012 ”1(CBs)3、メチル
フェニルポリシロキサンC51(CHs) (Cass
)0]、  などのアルキルアリールシロキサン重合物
、/、?−ジクロルオクタメチルテトラシロキサン (OH,)、O1日10[81((3H3ン、O]、8
1((3H3)、CI などのハロアルキルシロキサン
:ジメトキシポリシロキサン[81(oCHs)z)。
Specifically, for example, octaethylcyclotetrasiloxane C51 (Oaks) so 14, dimethylpolysiloxane C"" (CHs)zO), 1, methylethylpolysiloxane 7 CSi (OHs) (CgHs) OIB
Alkylsiloxa/11L compounds such as; hexaphenylcyclotrisiloxa; / C81(OIBHll)2
0]s, diphenylpolysiloxane CE11 (CsH
s) Arylsiloxa heptapolymer such as SO adhesive, diphenylhexamethyltetrasiloxane (CHs) sSlo C
81<CaHs)2012 ”1(CBs)3, methylphenylpolysiloxane C51(CHs) (Cass
)0], alkylarylsiloxane polymers such as /, ? -dichlorooctamethyltetrasiloxane (OH,), O1 day 10 [81 ((3H3, O], 8
1 ((3H3), haloalkylsiloxane such as CI: dimethoxypolysiloxane [81(oCHs)z).

、ジェトキシポリシロキサン(81(00,H,)2)
、などのアルコキシシロキサン重合物;ジフェノキシポ
リシロキサン重合物等の有機ポリシロキサン類が挙げら
れる。
, jetoxypolysiloxane (81(00,H,)2)
Examples include alkoxysiloxane polymers such as , and organic polysiloxanes such as diphenoxypolysiloxane polymers.

また、市販のシリコーンオイルも好適な具体例であり、
粘度O1S〜コX106センチストークスの市販の化合
物及びその混合物が用いらね、具体的には、信越化学工
業■の信越シリコーンK F −10%KIP−j−弘
、KF−49、KF−9A(商品名)等がある。
Commercially available silicone oil is also a suitable example,
Commercially available compounds and mixtures thereof with a viscosity of 01S to 106 centistokes are used. Specifically, Shin-Etsu Silicone K F-10% KIP-j-Hiro, KF-49, KF-9A ( product name) etc.

ケイ素化合物の添加は、第コ段階の気相反応器に直接添
加し又もよ(、第1段階の反応終了後の重合体に同伴さ
せてもよい。又、第1段反応器に添加してもよい。この
場合第1段のスラリー重合にはほとんど影響を与えず、
第一段の気相重合活性を向上させることが出来る。
The silicon compound may be added directly to the gas phase reactor of the first stage (or may be added to the polymer after the first stage reaction is completed). In this case, it has almost no effect on the first stage slurry polymerization,
The first stage gas phase polymerization activity can be improved.

ケイ素化合物は希釈剤なしにそのまま供給するか、ある
いは、不活性炭化水素溶媒又は液体プロピレンにケイ素
化合物を溶解、希釈して供給することができる。
The silicon compound can be supplied as it is without a diluent, or it can be supplied after being dissolved and diluted in an inert hydrocarbon solvent or liquid propylene.

あるいは、気相重合器に供給するエチレン又はプロピレ
ンとエチレンとの混合ガス中にケイ素化合物を直接又は
、不活性炭化水素溶媒、液体プロピレン等に溶解、希釈
し供給する方法でもよい。
Alternatively, the silicon compound may be supplied directly into the ethylene or mixed gas of propylene and ethylene supplied to the gas phase polymerization vessel, or after being dissolved and diluted in an inert hydrocarbon solvent, liquid propylene, or the like.

上記添加方法は、いずれの方法でもよいが、添加するケ
イ素化合物が、前段のプロビレ/重合体又は共重合体に
有効に添加される方法が好ましい。
The above-mentioned addition method may be any method, but a method in which the silicon compound to be added is effectively added to the former polymer/polymer or copolymer is preferred.

ケイ素化合物の使用量はIg1段のプロビレ/重合体又
は共重合体に対し/ X / 0−6〜o、i重量比、
好ましくは!×70″″’−o、oix量比である。
The amount of silicon compound to be used is based on the Ig 1 stage polymer/polymer or copolymer/X/0-6~o, i weight ratio,
Preferably! x70''''-o, oix amount ratio.

添加するケイ素化合物の量が多すぎると、ケイ素化合物
自体の粘性で重合体粒子が付着しやすくなるので好まし
くない。少なすぎると本発明の効果が十分に発揮されな
い。
If the amount of the silicon compound added is too large, the viscosity of the silicon compound itself tends to cause the polymer particles to adhere, which is not preferable. If it is too small, the effects of the present invention will not be fully exhibited.

本発明においては後段のプロピレンとエチレンの気相重
合を多段に分けて行なうこともでき、しかも各反応器で
、重合温度、水素濃度、単量体組成、反応量比を変える
こともできる。気相重合を多段で行なった場合、いずj
の工程にケイ素化合物を添加してもよい。
In the present invention, the subsequent gas phase polymerization of propylene and ethylene can be carried out in multiple stages, and the polymerization temperature, hydrogen concentration, monomer composition, and reaction amount ratio can also be changed in each reactor. When gas phase polymerization is carried out in multiple stages,
A silicon compound may be added to the step.

本発明において後段の気相重合に使用される装置は特に
限定されず、公知の流動床、攪拌槽、攪拌装置付き流動
床、移動床等の装置が好ましく用いられ、連続あるいは
回分的に重合を行なう。
In the present invention, the equipment used for the subsequent gas phase polymerization is not particularly limited, and known equipment such as a fluidized bed, a stirred tank, a fluidized bed with a stirring device, a moving bed, etc. is preferably used, and the polymerization can be carried out continuously or batchwise. Let's do it.

気相重合終了後、連続的あるいは回分的゛に取り出され
たポリマーは、必要に応じてアルキレンオキサイドやア
ルコール、水等による不活性化処理あるいは脱灰処理、
溶媒による非晶質ポリマーの除去などを行なってもよい
After the completion of gas phase polymerization, the polymer extracted continuously or batchwise is subjected to inactivation treatment with alkylene oxide, alcohol, water, etc. or deashing treatment, as necessary.
The amorphous polymer may be removed using a solvent.

かくして得もねた重合体粒子は高いかさ密度とすべり性
を有するので、移送工程やホッパーでの閉塞や固結を起
すことがな(、その重合体から得た成形品は侵ネた品質
を有する。
The polymer particles obtained in this way have high bulk density and slipperiness, so they do not cause blockage or caking in the transfer process or hopper (and the molded products obtained from the polymer have a eroded quality). have

本発明の方法の工業的な利点はランダム共重合体の物性
上の特質である耐衝撃性、低温脆性、ヒートシール性、
透明性をより誕ワた製品とするために高いエチレン含有
量の共重合体を、第1段では溶媒法によって高効率の重
合を行ない、第2段では第1段よりも高いエチレン含有
量の共重合体を、ケイ素化合物の存在下で気相重合を行
なうことによって、第一段の共重合な渦活性で、粉体性
状の優ねた製品をトラブルなく安定に得ろねることであ
る。
The industrial advantages of the method of the present invention are the physical properties of random copolymers such as impact resistance, low temperature brittleness, heat sealability,
In order to create a product with higher transparency, a copolymer with a higher ethylene content is polymerized in the first stage using a solvent method, and in the second stage, a copolymer with a higher ethylene content than in the first stage is polymerized. By carrying out gas phase polymerization of a copolymer in the presence of a silicon compound, it is possible to stably obtain a product with excellent powder properties without any trouble through vortex activity during the first stage of copolymerization.

更に本発明の重要な部分であるケイ素化合物の存在下の
重合ではケイ素化合物の添加量にかかわらず、第1段階
、第一段階いずわの重合又は共重合反応においても、非
晶質重合体の生成量、分子量、共1合組成に変化を与え
ない。
Furthermore, in the polymerization in the presence of a silicon compound, which is an important part of the present invention, regardless of the amount of silicon compound added, the amorphous polymer is It does not change the production amount, molecular weight, or co-polymerization composition.

即ち、陪媒法での重合ではケイ素化合物は何ら影響を与
えず、気相重合時には重合活性のみを大幅に向上させる
ことができるとい5気相重合にとって最も好ましい特徴
を有するのである。
In other words, the silicon compound has no effect on polymerization using the carrier medium method, and only the polymerization activity can be significantly improved during gas phase polymerization, which is the most desirable feature for gas phase polymerization.

〔実施例〕〔Example〕

以下実施例を上げて本発明を説明するが本発明はこねに
限定されるものではない。
The present invention will be explained below with reference to Examples, but the present invention is not limited to kneading.

なお、実施例中の略号の意味及び各種の測定方法は次の
通りである。
In addition, the meanings of the abbreviations in the examples and various measurement methods are as follows.

(1)  ノルマルヘキサン抽出残分は改良型ソックス
レー抽出器で沸騰n−ヘキサ/により3時間抽出した場
合の残斌(重量%ンである。
(1) The n-hexane extraction residue is the residue (% by weight) obtained when extracted with boiling n-hexane for 3 hours using an improved Soxhlet extractor.

(2)  嵩密度ρn(、!i’/cd)は、J工8−
4クコlにより測定した。
(2) The bulk density ρn(,!i'/cd) is J engineering 8-
It was measured using 4 wolfberry liters.

(3)  安息角渡)は筒片理化学器械■製、三輪式円
筒回転性安息角測定器を用い、回転時の安息角を測定し
た。
(3) The angle of repose during rotation was measured using a three-wheeled cylindrical rotary angle of repose measuring device manufactured by Tsutsukata Rikagaku Kikai ■.

(4)  メk ) :y a −インデックスM F
T(1// 0分ンはA8TM−Dl、2.3g−70
により、230℃荷重コ、/6りの時の重合体の押出量
を示した。
(4) mek) :ya-index MF
T (1//0 minutes is A8TM-Dl, 2.3g-70
The extrusion amount of the polymer at 230° C. load and /6 is shown.

(5)脆化温度Tb(C)は/オンス射出成型機によつ
℃作った厚さ2.0 龍の平板から打抜いた試験片につ
ぎ、A8TM D 7+4により求めた。
(5) The embrittlement temperature Tb (C) was determined by A8TM D 7+4 on a test piece punched from a 2.0 oz. thick plate made by an injection molding machine.

(6)  ヘーズはA8TM D 10OJ−4/ K
準する方法で、0.2 k xmプレスシートについて
測定した。
(6) Haze is A8TM D 10OJ-4/K
Measurements were made on a 0.2 k x m press sheet in a similar manner.

(7)融点は等温結晶化した試料を差動熱量計により測
定した。
(7) The melting point was measured using a differential calorimeter on the isothermally crystallized sample.

(8)  エチレン含有!(重量%)はFT−NMRス
ペクトル分析により測定した。
(8) Contains ethylene! (% by weight) was measured by FT-NMR spectrum analysis.

(9)触媒効率(CI)は三塩化チタン触媒成分/I当
り生成するプロピレン共重合体の全生成景(g−ポリマ
ー/gTil13)を表わす。
(9) Catalyst efficiency (CI) represents the total production rate of propylene copolymer (g-polymer/gTil13) produced per titanium trichloride catalyst component/I.

また、第1図は本発明に含まれる技術内容の理解を助け
るためのフローチャート図であり、本発明はその要旨を
越えない限り、フローチャー4図によつ℃限定さJする
ものではない。
Further, FIG. 1 is a flowchart diagram to help understand the technical content included in the present invention, and the present invention is not limited to the temperature range shown in flowchart 4 unless it exceeds the gist thereof.

実施例1 (A)  固体三塩化チタンのl1iJ4製室温におい
℃十分に臘索置換した容積/lのフラスコに精製トルエ
ンよ00WL2を入れ、攪拌下n−ブチルエーテルt、
s、/jj(o、よmol ) 、四塩化チタy? (
1,9i (0,!;mo1)、ジエチルアルミニウム
クロライトコざ、6!i((7,,23mol )を添
加し褐色の均一溶液を得た。
Example 1 (A) Purified toluene and 00 WL2 were added to a flask having a volume/l of solid titanium trichloride at room temperature at room temperature with sufficient displacement, and under stirring n-butyl ether t,
s, /jj (o, mol), titanium tetrachloride y? (
1,9i (0,!; mo1), diethyl aluminum chlorite coza, 6! i ((7,23 mol)) to obtain a brown homogeneous solution.

次いでyo℃に昇温し、30分経過した時点から紫色の
微粒状の固体の析出が認められるがそのまま2時間ti
o℃を保持した。
Next, the temperature was raised to yo℃, and after 30 minutes, precipitation of purple fine granular solid was observed, but it was kept as it was for 2 hours.
The temperature was maintained at 0°C.

さらに96℃で約1時間保持した後、粒状紫色固体を分
離し、n−ヘキサンで洗浄して約toyの固体三塩化チ
タンを得た。
After further holding at 96° C. for about 1 hour, the granular purple solid was separated and washed with n-hexane to obtain about toy of solid titanium trichloride.

(B)  プロピレン重合体含有ヨ塩化チタンの製造(
前処理) 十分に鼠素置換したsoogのフラスコに精製n−ヘキ
サンコ、tO扉lを入わ、ジエチルアルミニウムクロラ
イド7.9g及び上記■で得た固体二塩化チタンをTi
Cl3として2.!;、Si+(0,0/ 4m01 
)を仕込んだ後温度なqo℃に保ち、攪拌下、プロピレ
ンガス/:2.!;iを約70分間気相に吹き込んで接
触処理した。
(B) Production of titanium iochloride containing propylene polymer (
Pretreatment) Purified n-hexane and tO door were put into a SOOG flask which had been sufficiently substituted with nitrogen, and 7.9 g of diethylaluminum chloride and the solid titanium dichloride obtained in step ① above were added to Ti.
2 as Cl3. ! ;, Si+(0,0/ 4m01
) was maintained at a constant temperature of qo℃, and while stirring, propylene gas/:2. ! ; i was blown into the gas phase for about 70 minutes for contact treatment.

次いで固体成分な静置沈降させ、上澄液をデカンテーシ
ョンで除去し、n−ヘキサンで数回洗浄し、プロピレン
重合体含有固体三塩化チタンを得た。
The solid component was then allowed to settle, and the supernatant liquid was removed by decantation and washed several times with n-hexane to obtain solid titanium trichloride containing a propylene polymer.

(0)  プロピレン−エチレン共重合体の製造転線窒
素で十分置換した容tコlのオートクレーブに、共触媒
としてジエチルアルミニウムモノクロリド04mmol
、第3成分としてメタノIJ /L/酸メデメチル00
 J mmolを入れ、水素ガスとエチレンガスを所定
量張り込み液体プロピレンをqoog仕込んだ後、オー
トクレーブを昇温し内温か60℃になった時点で上記0
で得られたプロピレン重合体含有固体三塩化チタン触媒
成分をTi113としてコSダ窒素で圧入し重合反応を
開始した。重合温度は60℃にコントロールし、気相の
組成は各組成が一定に2なる様にガスクロマトグラフィ
ーで分析し、重合するエチレンは逐次追加して制御した
(0) Production of propylene-ethylene copolymer 04 mmol of diethylaluminium monochloride as a cocatalyst was placed in a t-liter autoclave sufficiently purged with nitrogen.
, methanoIJ/L/medemethyl acid 00 as the third component
After adding J mmol and charging the specified amount of hydrogen gas and ethylene gas and charging qoog of liquid propylene, the temperature of the autoclave was increased and when the internal temperature reached 60℃, the temperature was increased to 0 as above.
The propylene polymer-containing solid titanium trichloride catalyst component obtained in step 113 was injected under pressure with Kosda nitrogen to initiate a polymerization reaction. The polymerization temperature was controlled at 60°C, and the composition of the gas phase was analyzed by gas chromatography so that each composition remained constant at 2, and the ethylene to be polymerized was controlled by successively adding it.

3時間重合後未反応のプロピレンを速やかにパージし、
精製窒素雰囲気下型合体粉末!Ogをサンプリングした
。次いで、この反応器に水素ガスを所定量吹込み、70
℃に達したところでケイ素化合物とし℃信越化学社製シ
リコンオイルKF−940,01,9をプロピレンとエ
チレンの所定濃度の混合ガスで圧入した。圧力を2 s
 ’に9/criに保ちながら70℃で7時間気相重合
を続けた。気相の組成は所定鹸度になる様にガスクロマ
トグラフィーで分析しながらエチレン又はプロピレンを
追加フィードし制御した。
After 3 hours of polymerization, unreacted propylene was immediately purged,
Combined powder under purified nitrogen atmosphere! Og was sampled. Next, a predetermined amount of hydrogen gas was blown into this reactor, and the
When the temperature reached .degree. C., silicone oil KF-940, 01, 9 manufactured by Shin-Etsu Chemical Co., Ltd. as a silicon compound was injected under pressure with a mixed gas of propylene and ethylene at a predetermined concentration. Pressure for 2 s
Gas phase polymerization was continued at 70° C. for 7 hours while maintaining the temperature at 9/cri. The composition of the gas phase was controlled by additionally feeding ethylene or propylene while analyzing it by gas chromatography to maintain a predetermined saponity.

反応終了後未反応モノマーガスをパージし378:gの
プロピレン−エチレンランダム共重合体を得た。
After the reaction was completed, unreacted monomer gas was purged to obtain 378 g of a propylene-ethylene random copolymer.

重合条件及び各槙測定結果を表1に示した。Table 1 shows the polymerization conditions and the measurement results for each Maki.

螢光XWによるポリマー中のT1含含有分析からの触媒
効率(e E)は第1段重合終了時点の試料が/J、7
!tO1最終重合生成物が/If、000であり、気相
重合による共重合体の触媒効率は3コ30、活性内25
0であった。
Catalytic efficiency (e E) from analysis of T1 content in the polymer using fluorescent XW shows that the sample at the end of the first stage polymerization has /J, 7
! The tO1 final polymerization product is /If, 000, the catalytic efficiency of the copolymer by gas phase polymerization is 3/30, and the activity is 25
It was 0.

また、第1段重合終了時点の試料のエチレン含有量ti
、o重量%、n−ヘキサン抽出残94.17重量%、嵩
密度0.ダA g/cd、安息角度33度に対して最終
重合体のエチレン含有量よ、コ重童%、n−ヘキサ/抽
出残分57重量%、嵩密度o、 lI7 g/cd、安
息角度36度であり、第コ段階重合によってエチレン含
有量の増加、非品性重合体含有量が増加しているにもか
かわらず、嵩密度は向上し、安息角度は殆んど変わらず
粉体性状の良好な共重合体が得られた。
In addition, the ethylene content ti of the sample at the end of the first stage polymerization
, o weight %, n-hexane extraction residue 94.17 weight %, bulk density 0. dA g/cd, angle of repose of 33 degrees, ethylene content of the final polymer, co-hydrogen%, n-hex/extraction residue 57% by weight, bulk density o, lI7 g/cd, angle of repose 36 Although the ethylene content and non-grade polymer content have increased due to the co-stage polymerization, the bulk density has improved and the angle of repose has remained almost unchanged, resulting in a change in powder properties. A good copolymer was obtained.

比較例/ 実施例1において第1段の共重合のみで実施例1の最終
共重合体と同等のエチレン含有量とすべく、気相のエチ
レンガスを多くして第1段の共重合のみを行ない、所定
の回分重合後プロピレン、エチレンをパージし、共重合
体を得た。
Comparative Example/In Example 1, in order to achieve the same ethylene content as the final copolymer of Example 1 by only performing the first stage copolymerization, the amount of ethylene gas in the gas phase was increased and only the first stage copolymerization was performed. After a predetermined batch polymerization, propylene and ethylene were purged to obtain a copolymer.

結果は表1に示すが、全共重合体中のエチレン含有量は
実施例1の全共重合体と同等にもかかわらず、嵩密度は
0..7 g 9/ai、安息角はpg度、n−ヘキサ
ン抽出残分は79.6重量%であり粉体性状が悪(、自
由流動性の悪い共重合体であった。
The results are shown in Table 1, and although the ethylene content in the total copolymer was the same as that of the total copolymer of Example 1, the bulk density was 0. .. 7 g 9/ai, the angle of repose was pg degree, the n-hexane extraction residue was 79.6% by weight, and the powder properties were poor (the copolymer had poor free flow properties).

比較例コ 実施例/において第1段の共重合及び第1段終了后のサ
ンプリングは実施例1と同様に行なった後、第2段の重
合を再び液体プロピレン中で行なった。全共重合体中の
エチレン含有量は実施例1と同じになる様に第一段共重
合時の気相組成のエチレン分率を多く制御して重合温度
60℃で2時間共重合を行なった後、プロピレン、エチ
レンをパージし共重合体を得た。
Comparative Example In Example 1, the first stage copolymerization and sampling after the first stage were carried out in the same manner as in Example 1, and then the second stage polymerization was carried out again in liquid propylene. The ethylene fraction in the gas phase composition during the first stage copolymerization was controlled to be high so that the ethylene content in the entire copolymer was the same as in Example 1, and the copolymerization was carried out at a polymerization temperature of 60°C for 2 hours. After that, propylene and ethylene were purged to obtain a copolymer.

結果は表/に示すが、全共重合体中のエチレン含有量は
実施例1の全共重合体と同等にもかかわらず、嵩密度は
0.J 7 g/cyt、安息角は弘ワ度、n−ヘキサ
ノ抽出残分はI/、!I;重童%であり粉体性状は悪(
、安息角も高く゛流動性が悪い。
The results are shown in Table 1, and although the ethylene content in the total copolymer was equivalent to that of the total copolymer of Example 1, the bulk density was 0. J 7 g/cyt, angle of repose is Hirowa degree, n-hexano extraction residue is I/,! I: heavy % and powder properties are bad (
, the angle of repose is high and the fluidity is poor.

比較例3 実施例/の(0)において、シリコンオイルKF’−9
6を使用しなかった他は実施例/のΦ)の工程と同様に
重合して得たプロピレン官有固体三塩化チタンを用いて
、実施例/の(C)と同様にしてプロピレン−エチレン
ランダム共重合体の製造を行なった。
Comparative Example 3 In (0) of Example/, silicone oil KF'-9
Using propylene-functionalized solid titanium trichloride obtained by polymerization in the same manner as in the process of Φ) of Example 6, except that 6 was not used, propylene-ethylene random was prepared in the same manner as in (C) of Example 2. A copolymer was produced.

結果は表7に示した。The results are shown in Table 7.

実施例/に比較し℃、第2段の気相重合活性は低(、触
媒効率も低くい。この為エチレン含有量は少なく、ラン
ダム共重合体の特質は実施例/に比べて悪い。
Compared to Example/, the second stage gas phase polymerization activity is low (and the catalyst efficiency is also low. Therefore, the ethylene content is low, and the properties of the random copolymer are poor compared to Example/.

実施例コ〜ダ 実施例/の0)において、シリコンオイルKP−96の
代わりに表1に示すケイ素化合物の種類及び量を代え″
′C添加し、実施例ノの(ロ)の工程と同様に重合して
得たプロピレン重合体含有固体三塩化チタンを用いて、
実施例/の0と同様にしてプロピレン一二チレンランタ
”ム共重合体を製造した。
In Examples Co to Example 0), the type and amount of the silicon compound shown in Table 1 was substituted for silicone oil KP-96.
Using propylene polymer-containing solid titanium trichloride obtained by adding C and polymerizing in the same manner as in step (b) of Example No.
A propylene-dethylene lantam copolymer was produced in the same manner as in Example 0.

結果は表7に示した。The results are shown in Table 7.

実施例/と同様に、第一段の重合は高触媒効率で粉体性
状の良好な共重合体が得られた。
As in Example 1, the first stage polymerization yielded a copolymer with high catalyst efficiency and good powder properties.

実施例! 実施例1のQ)において、第1段階の重合開始時プロピ
レン重合体含有固体三塩化チタン触媒成分とともにシリ
コンオイルKF−940,061を供給し、第コ段階で
の重合開始時にシリコンオイルKF−94を添加しなか
った他は、実施例1の(0)と同様にしてグロピレンー
エチレンランダム共重合体の製造を行なった。
Example! In Q) of Example 1, silicone oil KF-940,061 was supplied together with the propylene polymer-containing solid titanium trichloride catalyst component at the start of the polymerization in the first stage, and silicone oil KF-94 was supplied at the start of the polymerization in the second stage. A glopyrene-ethylene random copolymer was produced in the same manner as in Example 1 (0) except that .

結果は表1に示した。The results are shown in Table 1.

第1段階重合での触媒効率、nヘキサン抽出残分、嵩密
度、安息角は何ら変らず実施例7〜qと同様の値が得ら
れ、第1段階重合での触媒効率、活性は実施例1−参と
同様に添加しない比較例/に比べ℃大幅に向上し、粉体
性状の良好な共重合体が得られた。
The catalyst efficiency, n-hexane extraction residue, bulk density, and angle of repose in the first stage polymerization were unchanged and the same values as in Examples 7 to q were obtained, and the catalyst efficiency and activity in the first stage polymerization were the same as those in Examples 7 to q. As with 1-Dan, the temperature was significantly improved compared to Comparative Example/without addition, and a copolymer with good powder properties was obtained.

実施例6 (A)  実施例/の0において、別に70℃に加熱し
、精製窒素で内圧をよψ−に保持しながら精製窒素をj
lZ分で流通し工いるオートクレーブに実施例/と同様
にして重合した第1段重合終了後のプロピレン−エチレ
ン共重合体スラリーを回分で少量ずつ供給し、プロピレ
ンをフラッシュ・パージした。供給終了後精製窒素雰囲
気下でフラッシュ後の共重合体ダクIをサンプリングし
た。
Example 6 (A) At 0 in Example/, it was heated separately to 70°C, and purified nitrogen was added to it while maintaining the internal pressure at ψ-.
The propylene-ethylene copolymer slurry after the first stage polymerization, which had been polymerized in the same manner as in Example, was fed in small batches into an autoclave which was operated at a flow rate of 1Z, and the propylene was flash-purged. After the supply was completed, the flashed copolymer Dac I was sampled under a purified nitrogen atmosphere.

第1段の重合槽に残った共重合体は103Iであった。The copolymer remaining in the first stage polymerization tank was 103I.

(B)  次いで共重合体を移送したオートクレーブに
、水素を所定量吹込みシリコンオイルKF−9A  O
,0/’iff:エチレンープロピレンノ所定磯度の混
合ガスで圧入した。圧力を−2!r ’Q/adに保ち
ながら70℃で7時間気相重合反応を続けた。気相の組
成は、所定濃度になるようにガスクロマトグラフィーで
分析しながらエチレン又はプロピレンケ追加フィードし
制御した。
(B) Next, a predetermined amount of hydrogen was blown into the autoclave into which the copolymer was transferred, and silicone oil KF-9A O
, 0/'iff: A mixed gas of ethylene-propylene having a predetermined roughness was injected under pressure. -2 pressure! The gas phase polymerization reaction was continued at 70°C for 7 hours while maintaining r'Q/ad. The composition of the gas phase was controlled by additionally feeding ethylene or propylene to a predetermined concentration while analyzing it by gas chromatography.

反応終了後未反応モノマーガスをパージし、−≠/9の
プロピレン−エチレンランダム共重合体を得た。
After the reaction was completed, unreacted monomer gas was purged to obtain a -≠/9 propylene-ethylene random copolymer.

重合条件及び各種測定結果を表1に示した。Table 1 shows the polymerization conditions and various measurement results.

第1段重合終了後の共重合体のaXは 14q3o、最終の共重合体の○Eは/ 7.9 I 
Oであり、気相重合による共重合体のORは5oso、
活性は5050であった。
The aX of the copolymer after the first stage polymerization is 14q3o, and the ○E of the final copolymer is / 7.9 I
O, and the OR of the copolymer obtained by gas phase polymerization is 5oso,
Activity was 5050.

第1段重合終了後の共重合体のエチレン含有量は帆/重
量%、n−ヘキサン抽出残分はり6.6重量%、嵩密度
は0.asf//cri1.安息角度は36度であり、
最終の共重合体のエチレン含有量5.3重量%、n−ヘ
キサン抽出残分t 4.コsit%、嵩密度o、qtg
鷹、安息角度37度であった。
After the first stage polymerization, the ethylene content of the copolymer was 6.6% by weight, the n-hexane extraction residue was 6.6% by weight, and the bulk density was 0. asf//cri1. The angle of rest is 36 degrees,
Ethylene content of the final copolymer: 5.3% by weight, n-hexane extraction residue t4. cosit%, bulk density o, qtg
The hawk had a resting angle of 37 degrees.

実施例7 実施例1の0に於いて、第7段の重合を共重合する代わ
りにグロビン/のみの重合を行なった。重合は温度70
℃でコ時間行ない、重合終了後プロピレンをパージし、
重合体粉末をSSgサンプリングした。
Example 7 In 0 of Example 1, instead of copolymerizing the seventh stage, only globin was polymerized. Polymerization is at a temperature of 70
After polymerization, the propylene was purged,
SSg sampling of the polymer powder was carried out.

次いで実施例1の(0)の第2段の共重合と同様に水素
を所定量フィード後、ケイ素化合物として、信越化学社
製のシリコンオイルIF−91゜o、obgをプロピレ
ン、エチレン混合ガスで圧入した。圧力2 J kg/
cdl 、重合温度70℃に保ち215時間気相重合を
行なった。
Next, in the same manner as in the second stage copolymerization in Example 1 (0), a predetermined amount of hydrogen was fed, and as a silicon compound, silicone oil IF-91゜obg manufactured by Shin-Etsu Chemical Co., Ltd. was mixed with propylene and ethylene mixed gas. It was press-fitted. Pressure 2 J kg/
cdl, and gas phase polymerization was carried out for 215 hours while maintaining the polymerization temperature at 70°C.

気相の組成は所定濃度になる様にガスクロマトグラフィ
ーで分析しながら、エチレン又はプロピレンを追加フィ
ードし制御した。
The composition of the gas phase was controlled by additionally feeding ethylene or propylene while analyzing it by gas chromatography to maintain a predetermined concentration.

共重合終了後未反応ガスをパージし4tざθIの共重合
体を得た。
After the copolymerization was completed, unreacted gas was purged to obtain a copolymer of 4t and θI.

この結果を第、2表に示した。The results are shown in Table 2.

第一段目の活性は実施例/−4と同様に高く、粉体性状
も良好な共重合体であった。
The first-stage activity was high as in Example/-4, and the copolymer had good powder properties.

実施例g 実施例/の←)で行なったと同様にして第1段の共重合
を行ない、一段目の共重合を気相で行なうに際しシリコ
/オイルKI+’−96をo、o6g添加し、実施例1
の(0)と同等のガス組成で重合温度70℃で3時間共
重合を行なった。共重合終了後混合ガスをパージし共重
合体を得た。
Example g The first stage copolymerization was carried out in the same manner as in Example ←), and when the first stage copolymerization was carried out in the gas phase, 6 g of silico/oil KI+'-96 was added and carried out. Example 1
Copolymerization was carried out at a polymerization temperature of 70° C. for 3 hours using the same gas composition as in (0). After the copolymerization was completed, the mixed gas was purged to obtain a copolymer.

結果は第2表に示した。第2段の共重合量の分率を3θ
%としたが、粉体性状は液体プロピレン中で共重合した
場合に比べて良好であり、触媒効率も高く、高活性が得
られた。
The results are shown in Table 2. The fraction of copolymerization amount in the second stage is 3θ
%, the powder properties were better than when copolymerized in liquid propylene, the catalyst efficiency was high, and high activity was obtained.

実施例9 実施例1の(0)で行なったと同様にして第1段の共重
合を行なった(但し、触媒量は31m9、ジノルマルプ
ロピルアルミニウムクロライドJ、 、7 mmol、
メタアクリル酸メチルθ、ozrnmo1)が、気相組
成のエチレン分率は実施例1の(9)の約l/コとし、
重合温度60℃で7時間共重合を行なった。
Example 9 The first stage copolymerization was carried out in the same manner as in Example 1 (0) (however, the catalyst amount was 31 m9, di-n-propyl aluminum chloride J, , 7 mmol,
Methyl methacrylate θ, ozrnmol 1), the ethylene fraction in the gas phase composition is about 1/co as in (9) of Example 1,
Copolymerization was carried out at a polymerization temperature of 60° C. for 7 hours.

第1段終了後未反応グロビレン、エチレン、水素をパー
ジし、精製窒素雰囲気下、共重合体粉末hogをサンプ
リングした。
After completing the first stage, unreacted globylene, ethylene, and hydrogen were purged, and the copolymer powder hog was sampled under a purified nitrogen atmosphere.

以後冥流側/の00第一段の共重合と同様にシリコンオ
イルKF−940,049及び水素、プロピレン、エチ
レンを所定の組成になる様に吠込み、重合温度70℃で
3時間共重合を行なった。共重合終了後混合ガスをパー
ジし、共重合体を得た。
Thereafter, silicone oil KF-940,049, hydrogen, propylene, and ethylene were added to the predetermined composition in the same way as the 00 first stage copolymerization on the undercurrent side, and copolymerization was carried out at a polymerization temperature of 70°C for 3 hours. I did it. After the copolymerization was completed, the mixed gas was purged to obtain a copolymer.

結果は第2表に示した。第2段の共重合体の分率を71
.3重t%としたが、粉体性状の大幅な悪化は見られず
良好であり、かつ触媒効率も高く、高活性が得られた。
The results are shown in Table 2. The fraction of the second stage copolymer is 71
.. Although it was set at 3% by weight, the powder properties were good with no significant deterioration, and the catalyst efficiency was high, resulting in high activity.

実施例i。Example i.

(A)  固体三塩化チタン触媒成分の製造充分に窒素
置換した容量1001のオートクレーブにトルエンso
bおよび四塩化チタンj−Q mob、ジ−n−ブチル
エーテルSOmolを添加する。こわを撹拌下λ5℃に
保持しつつ、ジエチルアルミニウムクロライトコ5m0
1を添加し、褐色の均一溶液を得た。
(A) Production of solid titanium trichloride catalyst component Toluene solution was placed in an autoclave with a capacity of 100 mm, which was sufficiently purged with nitrogen.
b and titanium tetrachloride jQ mob, di-n-butyl ether SOmol are added. While stirring and maintaining the stiffness at λ5℃, add 5m0 of diethyl aluminum chlorite.
1 was added to obtain a brown homogeneous solution.

次いでyo℃に昇温し30分経過した時点から紫色の畝
粒状の固体の析出が認めらねるが、そのままIIO℃で
コ時間保持した。
Next, the temperature was raised to IO°C, and after 30 minutes, no precipitation of purple ridge-like solids was observed, but the mixture was kept at IIO°C for an additional hour.

次いで96℃に昇温し、さらに約7時間保持した後、粒
状紫色固体を分離しn−へキサンで洗浄し℃約ざooo
gの固体三塩化チタンを得た。
The temperature was then raised to 96°C and held for about 7 hours, after which the granular purple solid was separated and washed with n-hexane, and then heated to about 96°C.
g of solid titanium trichloride was obtained.

次に充分に窒素置換した容量2001の・オートクレー
ブにn−ヘキサンlコSlを仕込み、攪拌下にジ−n−
プロピルアルミニウムクロライド/ 4 molおよび
上記固体三塩化チタン系触媒錯体をT i O13量が
コsoogとなる様に仕込んだ。次いで内温を30℃に
調節シ攪拌下、プロピレンガスの吹込みを開始して重合
したプロピレンが/コsoogになるまでプロピレンガ
スの吹込みを続けた。しかる後、固体を分離し、n−ヘ
キサンで繰り返し洗浄し、ポリプロピレン含有三塩化チ
タン(チタン含有固体触媒成分ンを得た。
Next, l-Sl of n-hexane was charged into an autoclave with a capacity of 2,001 kg, which was sufficiently purged with nitrogen, and di-n-hexane was charged with stirring.
4 mol of propylaluminum chloride and the above solid titanium trichloride-based catalyst complex were charged so that the amount of T i O13 was about 0.5 mol. Then, the internal temperature was adjusted to 30° C., and while stirring, propylene gas was started to be blown into the reactor, and the blowing of propylene gas was continued until the amount of polymerized propylene reached /soog. Thereafter, the solid was separated and washed repeatedly with n-hexane to obtain polypropylene-containing titanium trichloride (titanium-containing solid catalyst component).

(B)  プロピレン−エチレンランダム共重合体の製
造 容量/!00gの攪拌機付き反応槽、容量7001のラ
セン型攪拌機付き気相反応器を直列に連結し℃なる装置
を用いた。
(B) Production capacity of propylene-ethylene random copolymer/! An apparatus was used in which a reaction tank of 00 g with a stirrer and a gas phase reactor with a spiral type stirrer with a capacity of 7001 were connected in series.

第1査目の反応槽では液体プロピレンを温媒とし℃用い
、上記■で得たチタン含有固体触媒成分、共触媒として
ジエチルアルミニウムクロライド、第3成分とじ℃メタ
クリル酸メチル、分子量調節剤としてH2ガス、共重合
単量体としてエチレンを所定の割合で連続的に反応槽に
供給し、重合温度tO℃、滞留時間3時間になる様にプ
ロピレンの供給量を調節して、プロピレン−エチレンの
ランダム共重合体を製造した。
In the first reactor, liquid propylene was used as a heating medium at ℃, the titanium-containing solid catalyst component obtained in step ① above, diethylaluminium chloride as a cocatalyst, and the third component were methyl methacrylate and H2 gas as a molecular weight regulator. , ethylene was continuously supplied as a comonomer to the reaction tank at a predetermined ratio, and the amount of propylene supplied was adjusted so that the polymerization temperature was tO ℃ and the residence time was 3 hours. A polymer was produced.

上記重合体スラリーは、連続的に、第一番目の気相反応
器に供給し、反応器の圧力を2 !r kg/ffl 
、ガス組成で(エチレン/エチレン十プロビレ/)がガ
スクロ分析で4z mo1%になる様に調節しながら、
水素、エチレン、プロピレン混合ガスを循環し℃気相重
合7行なった。
The above polymer slurry is continuously fed to the first gas phase reactor, and the pressure of the reactor is increased to 2! r kg/ffl
, while adjusting the gas composition so that (ethylene/ethylene tenpropylene/) was 4z mo1% by gas chromatography analysis.
Gas phase polymerization at 7° C. was carried out by circulating a mixed gas of hydrogen, ethylene, and propylene.

気相反応器の温度は、70℃になる様に循環混合ガスの
温度で調節した。又ポリマーの滞留時間はへS時間にな
る様に滞留量を調節しながら連続的に抜き出し、粉末状
の共重合体を得た。
The temperature of the gas phase reactor was adjusted to 70°C by adjusting the temperature of the circulating mixed gas. Further, the polymer was continuously extracted while adjusting the amount of residence so that the residence time of the polymer was equal to S time to obtain a powdery copolymer.

気相重合器にフィードする混合ガスには、信越化学社製
のシリコンオイルKF−940n−ヘキサン希釈液とし
て第1番目の反応器から、第2番目の反応器に供給する
プロピレン共重合体に対してシリコンオイルの量がコo
 o ppmになる様に連続的に供給した。
The mixed gas fed to the gas phase polymerization vessel includes silicone oil KF-940 manufactured by Shin-Etsu Chemical Co., Ltd. as an n-hexane diluted liquid from the first reactor, and propylene copolymer fed to the second reactor. The amount of silicone oil is
It was continuously supplied so that the amount was 0 ppm.

第1番目の重合槽で生成する共重合体のエチレン含有量
は、併重量%になる様にエチレンとプロピレンの組成を
ガスクロ分析しながら調節し、第2番目の気相重合で生
成する共重合体のエチレン含有量は、tM量%になる様
にガス組成を分析しながら調節した。
The ethylene content of the copolymer produced in the first polymerization tank is adjusted by gas chromatographic analysis of the composition of ethylene and propylene so that the ethylene content of the copolymer produced in the second polymerization tank is % by weight. The ethylene content of the combined product was adjusted to tM% while analyzing the gas composition.

この様にして連続運転をlj日間行ない、この間第1、
第2反応器ともに付着トラブルもな(、安定運転ができ
た。運転終了後、気相反応器を開放し点検したが、器壁
等への付着はな(塊状物の生成も見らjながった。
Continuous operation was carried out in this manner for lj days, during which time the first
There was no adhesion trouble in both the second reactor (and stable operation was possible. After the operation was completed, the gas phase reactor was opened and inspected, but there was no adhesion on the vessel walls, etc. (no lumps were observed). I got angry.

連続運転中の活性等代表的な値を第3表に示した。Typical values of activity etc. during continuous operation are shown in Table 3.

比較例グ 実施例6の■と同様にして得た固体三塩化チタン触媒成
分を用いて、実施例基の(ロ)で使用したシリコンオイ
ルを添加しなかった他は、実施例6の0と同様にして連
続重合を行なった。
Comparative Example G A solid titanium trichloride catalyst component obtained in the same manner as in Example 6 (2) was used, except that the silicone oil used in Example (B) was not added. Continuous polymerization was carried out in the same manner.

結果は第二衣に示した。The results are shown in the second column.

ケイ素化合物を使用しなかったため、気相重合器での触
媒効率は小さく、得られた共重合体中ノエチンン含有量
も少な(、ランダム共重合体の特質は実施例9に比べて
悪かった。
Since no silicon compound was used, the catalyst efficiency in the gas phase polymerizer was low, and the noetin content in the obtained copolymer was also low (the characteristics of the random copolymer were worse than in Example 9.

第2表 第3表 昔l シリコンオイ/I/KF−qb;ジメチルポリシ
ロキサン 簀2 シリコンオイルKF−デqニジメチルハイドロジ
ンポリシロキサン 斧3 シリコンオイルKF−、14:メチルフェニルポ
リシロキサン 〔発明の効果〕 本発明によると、高いかさ密度と良好なすべり性を有す
る重合体粒子を高活性で安定に得られるため工業的に有
用である。
Table 2 Table 3 Old l Silicone oil/I/KF-qb; dimethylpolysiloxane 2 Silicone oil KF-deq Nidimethylhydrozine polysiloxane ax 3 Silicone oil KF-, 14: Methylphenylpolysiloxane [invention Effect] According to the present invention, polymer particles having high bulk density and good slip properties can be obtained stably with high activity, and therefore are industrially useful.

Claims (4)

【特許請求の範囲】[Claims] (1)チタン化合物と有機アルミニウム化合物とを主成
分とする立体特異性触媒系を用い、 (イ)第1段階において、不活性溶媒又は液化プロピレ
ンの存在下、プロピレンの単独重合又はエチレン含有量
5重量%以下のプロピレン−エチレンランダム共重合を
全重合量に対し5〜95重量%となるように行ない、 (ロ)第2段階において、気相下でプロピレンとエチレ
ンのランダム共重合を全重合量に対し95〜5重量%と
なるように行なつて、エチレン含有量が10重量%以下
のプロピレン−エチレンランダム共重合体を製造する方
法であつて、第2段の共重合を行う際に一般式▲数式、
化学式、表等があります▼(但し、R^1、R^2は水
素原子又は炭素1〜20のアルキル基、アリール基、ア
ルコキシ基又はアリールオキシ基、あるいはハロゲン原
子を表わし、nは1〜3000である)で表わされるケ
イ素化合物を存在させることを特徴とするプロピレン共
重合体の製造法。
(1) Using a stereospecific catalyst system containing a titanium compound and an organoaluminum compound as main components, (a) In the first step, in the presence of an inert solvent or liquefied propylene, propylene homopolymerization or ethylene content of 5 Random copolymerization of propylene and ethylene is carried out in a proportion of 5 to 95% by weight based on the total polymerization amount, and (b) In the second stage, random copolymerization of propylene and ethylene is carried out in a gas phase to reduce the total polymerization amount. This is a method for producing a propylene-ethylene random copolymer having an ethylene content of 10% by weight or less, in which the ethylene content is 95% to 5% by weight. Formula ▲ Formula,
There are chemical formulas, tables, etc. ▼ (However, R^1 and R^2 represent a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, an aryloxy group having 1 to 20 carbon atoms, or a halogen atom, and n is 1 to 3000. 1. A method for producing a propylene copolymer, which comprises the presence of a silicon compound represented by
(2)エチレン含有量が4重量%以上〜10重量%以下
であることを特徴とする特許請求範囲第1項記載の製造
法。
(2) The manufacturing method according to claim 1, wherein the ethylene content is 4% by weight or more and 10% by weight or less.
(3)立体特異性触媒系が、三塩化チタンとジアルキル
アルミニウムクロライドを主成分とすることを特徴とす
る特許請求範囲第1項又は第2項記載の製造法。
(3) The production method according to claim 1 or 2, wherein the stereospecific catalyst system contains titanium trichloride and dialkyl aluminum chloride as main components.
(4)立体特異性触媒系がアルミニウム含有量がチタン
に対するアルミニウムの原子比で0.15以下であつて
、かつ錯化剤を含有する固体三塩化チタン系触媒錯体と
有機アルミニウム化合物とを主とする触媒系であること
を特徴とする特許請求の範囲第1項又は第一項記載の製
造法。
(4) The stereospecific catalyst system has an aluminum content of 0.15 or less in terms of the atomic ratio of aluminum to titanium, and mainly comprises a solid titanium trichloride catalyst complex containing a complexing agent and an organoaluminum compound. The method according to claim 1 or 1, characterized in that the catalyst system is a catalyst system in which:
JP31011286A 1986-12-29 1986-12-29 Preparation of propylene copolymer Granted JPS63168414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31011286A JPS63168414A (en) 1986-12-29 1986-12-29 Preparation of propylene copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31011286A JPS63168414A (en) 1986-12-29 1986-12-29 Preparation of propylene copolymer

Publications (2)

Publication Number Publication Date
JPS63168414A true JPS63168414A (en) 1988-07-12
JPH0317847B2 JPH0317847B2 (en) 1991-03-11

Family

ID=18001321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31011286A Granted JPS63168414A (en) 1986-12-29 1986-12-29 Preparation of propylene copolymer

Country Status (1)

Country Link
JP (1) JPS63168414A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004530778A (en) * 2001-06-27 2004-10-07 ボレアリス テクノロジー オイ Propylene random copolymer and process for producing the same
US7390575B2 (en) 2003-10-31 2008-06-24 Japan Polypropylene Corporation Propylene-ethylene random block copolymer and biaxially oriented multi-layer film using the same as a surface layer
JP2014172921A (en) * 2013-03-06 2014-09-22 Japan Polypropylene Corp Method for producing propylene-based block copolymer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004530778A (en) * 2001-06-27 2004-10-07 ボレアリス テクノロジー オイ Propylene random copolymer and process for producing the same
US7390575B2 (en) 2003-10-31 2008-06-24 Japan Polypropylene Corporation Propylene-ethylene random block copolymer and biaxially oriented multi-layer film using the same as a surface layer
JP2014172921A (en) * 2013-03-06 2014-09-22 Japan Polypropylene Corp Method for producing propylene-based block copolymer

Also Published As

Publication number Publication date
JPH0317847B2 (en) 1991-03-11

Similar Documents

Publication Publication Date Title
EP0164215B1 (en) Gas fluidised bed terpolymerisation of olefins
KR860001062B1 (en) Polypropylenic composition having improved impact strength properties at low temperature and process for preparing the same
JPS5847402B2 (en) Polymer composition for molding and its manufacturing method
US4740551A (en) Multistage copolymerization process
JPH02219806A (en) Vapor phase polymerization of ethylene which can prepare linear polyethylene with narrow molecular weight distribution
EP0028076A1 (en) Process for producing propylene-ethylene block copolymers
JPS6020405B2 (en) Manufacturing method of low density polyethylene
EP0285415B1 (en) Continuous process for producing polypropylene
EP0300638B1 (en) A process for preparing highly crystalline poly-1-butene and the catalyst used in the process
JP3089713B2 (en) Method for producing ethylene-propylene block copolymer
JPS63168414A (en) Preparation of propylene copolymer
AU655584B2 (en) Copolymers of propylene and non-conjugated dienes
EP0604401A2 (en) Production of a catalyst component for producing crystalline polymers
JPS6150087B2 (en)
JPH0528731B2 (en)
JPH075803B2 (en) Method for producing highly stereoregular polypropylene composition
JP3141705B2 (en) Propylene random copolymer composition
JPS6150085B2 (en)
JPH01272612A (en) Production of propylene copolymer composition
JPH0317846B2 (en)
JPH0621133B2 (en) Continuous production method of high melt viscoelastic polypropylene
JPH0562885B2 (en)
JPH06184240A (en) Preparation of 4- methyl 1- pentene copolymer
JP2568215B2 (en) Method for producing propylene polymer
JPH02145611A (en) Propylene random copolymer