JPS63168412A - Transition metal catalyst for polymerization of olefin - Google Patents

Transition metal catalyst for polymerization of olefin

Info

Publication number
JPS63168412A
JPS63168412A JP11587A JP11587A JPS63168412A JP S63168412 A JPS63168412 A JP S63168412A JP 11587 A JP11587 A JP 11587A JP 11587 A JP11587 A JP 11587A JP S63168412 A JPS63168412 A JP S63168412A
Authority
JP
Japan
Prior art keywords
transition metal
metal catalyst
polymerization
olefin
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11587A
Other languages
Japanese (ja)
Other versions
JPH072796B2 (en
Inventor
Tadashi Asanuma
正 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP62000115A priority Critical patent/JPH072796B2/en
Publication of JPS63168412A publication Critical patent/JPS63168412A/en
Publication of JPH072796B2 publication Critical patent/JPH072796B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To obtain a transition metal catalyst useful as a catalyst ingredient for the polymerization of an olefin, by treating a crystalline magnesium halide having a specified X-ray diffraction pattern with a liquid titanium halide. CONSTITUTION:Crystalline MgBrCl having a maximum intensity at about 7.38Angstrom and having a relatively intense diffractions at about 7.89, 5.32, 3.57, 3.47, 3.26 and 2.90Angstrom in its X-ray diffraction pattern is treated with a liquid titanium halide to give a transition metal catalyst for the polymerizatiom of an olefin, which does not show a sharp diffraction at about 7.38Angstrom at least.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はオレフィンの重合用触媒に関する。詳しくは特
定のX線回折線を有する結晶性のハロゲン化マグネシウ
ムを用いてえたオレフィン重合用遷移金属触媒に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a catalyst for the polymerization of olefins. Specifically, the present invention relates to a transition metal catalyst for olefin polymerization obtained using crystalline magnesium halide having a specific X-ray diffraction line.

〔従来の技術〕[Conventional technology]

オレフィンの重合用にハロゲン化マグネシウムなどの担
体にハロゲン化チタンを担持してなる遷移金属触媒と有
機金属化合物からなる触媒を用いることは特公昭39−
12105号で開示されて以来、種々の改良方法が提案
されており、優れた性能のものも知られている。
The use of a transition metal catalyst consisting of a titanium halide supported on a carrier such as magnesium halide and a catalyst consisting of an organometallic compound for the polymerization of olefins was disclosed in Japanese Patent Publication No. 39-1989.
Since the disclosure in No. 12105, various improved methods have been proposed, and some with excellent performance are known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記改良方法は主として担体を得るに際して添加物を加
えて粉砕したり、成るいは担体として用いるハロゲン化
マグネシウムを溶剤に溶解せしめ次いで析出させること
により、遷移金属を担持してオレフィン重合用の触媒と
した時、優れた性能のものとなるように、担体をX線回
折によって測定された回折線が明確なピークを持たずハ
ローとして観測されるようになるように処理することが
行われている。特に、溶解し、次いで析出する方法は優
れており、高活性の触媒を製造することが出来る(例え
ば、特開昭56−11908) 、 Lかしながらこの
方法は析出側を多量に必要とする上に繰り返しハロゲン
化チタンで処理しないと良好な活性のものが得られない
という問題がある。又、添加物を加えて粉砕する方法は
、再現性良く優れた性能の触媒を与えるのが困難である
The improved method described above mainly involves adding additives and pulverizing the carrier, or dissolving the magnesium halide used as the carrier in a solvent and then precipitating it to support the transition metal and use it as a catalyst for olefin polymerization. In order to obtain excellent performance when carrying out this process, the carrier is treated so that the diffraction line measured by X-ray diffraction does not have a clear peak and is observed as a halo. In particular, the method of dissolving and then precipitating is excellent and can produce highly active catalysts (e.g., JP-A-56-11908).However, this method requires a large amount of precipitate. Moreover, there is a problem in that good activity cannot be obtained unless it is repeatedly treated with titanium halide. Furthermore, the method of adding additives and pulverization makes it difficult to provide a catalyst with excellent performance with good reproducibility.

本発明者はこれらの問題を解決する方法について鋭意検
討したところ、特定の結晶性の回折線を与えるハロゲン
化マグネシウムを用いることで、従来、担体としてはそ
のまま使用できないと言われている結晶性の回折線を有
する担体であっても驚くべきことに優れた性能のオレフ
ィン重合用触媒となることを見出し本発明を完成した。
The inventors of the present invention have conducted extensive studies on ways to solve these problems, and have found that by using magnesium halide, which gives a specific crystalline diffraction line, crystalline particles, which have conventionally been said to be unusable as a support, can be used. The present invention was completed by discovering that even a carrier having a diffraction line can surprisingly provide an excellent performance catalyst for olefin polymerization.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明はX線回折によって測定された回折線とし
て7.38人付近に最大強度を有し7.98.5゜32
.3.57.3.47.3.26.2.90人付近に比
較的強い回折線を与える結晶性のMgBrClを液状の
ハロゲン化チタンで処理して得た少なくとも7.38人
付近に鋭い回折線を有しないオレフィン重合用遷移金属
触媒である。
That is, the present invention has a maximum intensity near 7.38 as a diffraction line measured by X-ray diffraction, and has a maximum intensity of 7.98.5°32.
.. 3.57.3.47.3.26.2.A sharp diffraction line near 7.38 obtained by treating crystalline MgBrCl with liquid titanium halide, which gives a relatively strong diffraction line near 90. This is a transition metal catalyst for olefin polymerization that has no lines.

本発明において、担体として用いるMgBrClとして
は、そのXS!回折スペクトルが特定のところ、即ち、
7.38人付近に最大強度を存し、7.98.5゜32
.3.57.3.26.2.90人付近に比較的強い回
折線を有するものであるかぎり特にその製法に制限はな
いが例えば次のような製法が例示できる。
In the present invention, as MgBrCl used as a carrier, the XS! Where the diffraction spectrum is specific, i.e.
The maximum intensity is around 7.38 people, 7.98.5°32
.. There is no particular restriction on the manufacturing method as long as it has a relatively strong diffraction line around 3.57.3.26.2.90, but the following manufacturing method can be exemplified.

−a式R’MgBr (式中、R1は炭化水素残基であ
る。
-a formula R'MgBr (wherein R1 is a hydrocarbon residue);

)で表わされるグリニヤール試薬(良く知られているよ
うにR’Brであられされる臭素化炭化水素化合物と金
属マグネシウムをエーテル等の存在下に反応せしめるこ
とで得られる。)と一般式R”CI (式中、R1は炭
化水素残基である。)であられされる塩素化炭化水素化
合物を反応せしめることで容易に上に定義した結晶性の
MgBrClがえられる。ここで上述の臭素化炭化水素
化合物、塩素化炭化水素化合物の炭化水素残基としては
脂肪族、脂環族、芳香族炭化水素残基などのどのような
ものでも良く、特に制限はないが、炭素数1〜20程度
のものを用いるのが一般的である。
) (as is well known, it is obtained by reacting a brominated hydrocarbon compound represented by R'Br with metallic magnesium in the presence of ether etc.) and the general formula R''CI (wherein R1 is a hydrocarbon residue), the crystalline MgBrCl as defined above can be easily obtained by reacting the chlorinated hydrocarbon compound, wherein R1 is a hydrocarbon residue. The hydrocarbon residue of the compound or chlorinated hydrocarbon compound may be any aliphatic, alicyclic, aromatic hydrocarbon residue, etc., and there is no particular restriction, but it may have about 1 to 20 carbon atoms. It is common to use

グリニヤール試薬と塩素化炭化水素の反応は通常媒体と
して用いたエーテル類の沸点で行えば充分に反応は進行
する0反応が進行するとMgBrClは媒体に不溶化し
析出してくるので濾過、或いは静置分離することで容易
にとりだすことができる。
The reaction between the Grignard reagent and the chlorinated hydrocarbon is normally carried out at the boiling point of the ether used as the medium, and the reaction proceeds sufficiently.When the reaction proceeds, MgBrCl becomes insolubilized in the medium and precipitates, so filtration or static separation is performed. You can easily take it out by doing so.

こうして得られたMgBrClは、次いで液状のハロゲ
ン化チタンで処理することでオレフィン重合用の遷移金
属触媒とされる。ここで用いるハロゲン化チタンとして
は、好ましくは、四塩化チタン、或いはエーテル等で炭
化水素溶剤に可溶化した三塩化チタン、さらには上記チ
タン化合物の塩素の一部をアルコキシ基としたもの(例
えば、メトキシ、エトキシ、プロポキシ、ブトキシ、ペ
ンチルオキシ等)が例示される。
The MgBrCl thus obtained is then treated with liquid titanium halide to be used as a transition metal catalyst for olefin polymerization. The titanium halide used here is preferably titanium tetrachloride, titanium trichloride solubilized in a hydrocarbon solvent with ether, or titanium compounds in which part of the chlorine in the above titanium compound is converted into an alkoxy group (for example, methoxy, ethoxy, propoxy, butoxy, pentyloxy, etc.).

ここで、接触処理は、MgBrClの粒子に強い力を加
えないような穏和な条件で行われ、例えば、液状のハロ
ゲン化チタンに単にMgBrClを分散し撹拌すること
でおこなわれる。接触処理の際の温度としては通常、常
温ないし200℃である。
Here, the contact treatment is performed under mild conditions that do not apply strong force to the MgBrCl particles, and is performed, for example, by simply dispersing MgBrCl in liquid titanium halide and stirring. The temperature during the contact treatment is usually room temperature to 200°C.

また、接触処理の際に、エーテル、エステル、アルコキ
シシランなどの含酸素有機化合物等の電子供与性化合物
を存在させることもできる。
Further, during the contact treatment, an electron-donating compound such as an oxygen-containing organic compound such as ether, ester, or alkoxysilane may be present.

本発明の遷移金属触媒は周期律表第1属ないし第3m金
属のを機金属化合物、例えば、有機リチウム、有機ナト
リウム、有機マグネシウム、有機ベリラム、有機アルミ
ニウムなど、を併用することでオレフィンを重合するこ
とができる。
The transition metal catalyst of the present invention polymerizes olefins by using in combination metal compounds of metals from Group 1 to Group 3 of the periodic table, such as organolithium, organosodium, organomagnesium, organoberyllum, organoaluminium, etc. be able to.

本発明の触媒を用いて重合できるオレフィンとしてはエ
チレン、プロピレン、ブテン−11ペンテン−1、ヘキ
セン−1、オクテン−1、スチレン、ビニルナフタレン
などが例示され、それらの単独重合或いは相互の共重合
さらにはジエンとの共重合などに用いられる。
Examples of olefins that can be polymerized using the catalyst of the present invention include ethylene, propylene, butene-11pentene-1, hexene-1, octene-1, styrene, and vinylnaphthalene. is used for copolymerization with dienes, etc.

本発明において、オレフィンの重合は、従来より公知の
オレフィン重合方法が適用でき、溶媒を用いる溶液重合
、オレフィン自身を媒体とする塊状重合或いは溶媒の実
質的に含まない気相重合などがとりうる。
In the present invention, olefin polymerization can be carried out by conventionally known olefin polymerization methods, such as solution polymerization using a solvent, bulk polymerization using the olefin itself as a medium, or gas phase polymerization substantially free of solvent.

〔実施例〕〔Example〕

以下、実施例を挙げ本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例1 300mlの丸底フラスコにマグネシウム7.4g、ジ
エチルエーテル2On+1入れ、エーテルの還流下に臭
化シクロヘキサン50gとジエチルエーテル50m1の
混合物を2時間かけて滴下した。その後さらに1時間還
流下撹拌処理し、CJ8MgBrのエチルエーチル溶液
を調製した。
Example 1 7.4 g of magnesium and 2 On+1 diethyl ether were placed in a 300 ml round bottom flask, and a mixture of 50 g of cyclohexane bromide and 50 ml of diethyl ether was added dropwise over 2 hours while the ether was being refluxed. Thereafter, the mixture was further stirred under reflux for 1 hour to prepare an ethyl ethyl solution of CJ8MgBr.

次いでエチルエーテルの還流下に四塩化炭素15gを4
時間かけて加え、更に還流下に2時間攪拌した。
Then, 15 g of carbon tetrachloride was added to 4 ml of ethyl ether under reflux.
The mixture was added over time and further stirred under reflux for 2 hours.

次いで室温でろ過し、固形分をエチルエーテルで洗浄し
、窒素気流で乾燥して、固形分40gを得た。得られた
固形分はMg:C1:Brがほぼ1:1:1であり、M
gBrClであった。またX線回折の測定結果を第1図
に示す。
Then, it was filtered at room temperature, and the solid content was washed with ethyl ether and dried with a nitrogen stream to obtain 40 g of solid content. The obtained solid content has a ratio of Mg:C1:Br of approximately 1:1:1, and Mg:C1:Br is approximately 1:1:1.
gBrCl. Moreover, the measurement results of X-ray diffraction are shown in FIG.

上記固形分10gを200m1の丸底フラスコに入れ、
四塩化チタン50a+1. )ルエン5hlを入れ、9
0℃で1時l′BIPA拌処理し、次いで静置して上澄
を除去した。さらに四塩化チタン51)ml、トルエン
50m1を入れ、90℃で1時間攪拌処理し、次いで静
置して上澄を除去し、得られた固形分をトルエンで7回
洗浄して遷移金属触媒とした0分析の結果はチタンを1
.9wtχ含有していた。
Put 10g of the above solid content into a 200ml round bottom flask,
Titanium tetrachloride 50a+1. ) Add 5 hl of luene, 9
The mixture was stirred with 1'BIPA at 0° C. for 1 hour, then allowed to stand and the supernatant was removed. Furthermore, 51) ml of titanium tetrachloride and 50 ml of toluene were added, stirred at 90°C for 1 hour, then allowed to stand, the supernatant was removed, and the resulting solid content was washed 7 times with toluene to convert it into a transition metal catalyst. The result of the 0 analysis was that titanium was 1
.. It contained 9wtχ.

上記操作で得た遷移金属触媒を用いてエチレンを重合し
た。内容積2Itのオートクレーブにn−へブタンli
入れ、上記遷移金属触媒20fig、トリエチルアルミ
ニウム0.5a+1を加え、水素を2 Kg / cn
lゲージまで入れ、さらにエチレンを6Kg/cnlゲ
ージきで加えた後75℃に昇温し、10Kg/catゲ
ージになるようにエチレンを追加しながら75℃で2時
間重合した。その後冷却し、未反応のエチレンをパージ
した後ろ過して、ポリエチレンパウダーを得た。乾燥秤
量したところ360gであった。このパウダーの極限粘
度数は2.56(135℃テトラリン溶液で測定した。
Ethylene was polymerized using the transition metal catalyst obtained in the above operation. n-hebutane li in an autoclave with an internal volume of 2 It
Add 20 figs of the above transition metal catalyst, 0.5a+1 triethyl aluminum, and add 2 kg/cn of hydrogen.
After adding ethylene at a rate of 6 kg/cnl gauge, the temperature was raised to 75°C, and polymerization was carried out at 75°C for 2 hours while adding ethylene to 10 kg/cnl gauge. Thereafter, it was cooled, unreacted ethylene was purged, and then filtered to obtain polyethylene powder. The dry weight was 360 g. The intrinsic viscosity of this powder was 2.56 (measured using a tetralin solution at 135°C).

)、かさ比重は0.48、粒度は200メツシ工以下の
微粉4.5%、10メツシュ以上の粗粒0.3%であっ
た。Ti当たりの収率は、947Kg/g−Tiであり
、かさ比重も良好であり、粒度分布も比較的シャープで
あった。
), the bulk specific gravity was 0.48, the particle size was 4.5% fine powder of 200 mesh or less, and 0.3% coarse particle of 10 mesh or more. The yield per Ti was 947 Kg/g-Ti, the bulk specific gravity was also good, and the particle size distribution was also relatively sharp.

実施例2 実施例1で得たMgBrCl10gを2001Ilの丸
底フラスコに入れ、フタル酸ジブチル1.5g、四塩化
チタン50m1.  )ルエン10醜lを加え120℃
で1時間攪拌処理し上澄を除去した0次いで四塩化チタ
ン100m1を加え130℃で1時間攪拌処理し、静置
して上澄を除去し、得られた固形分をn−ヘキサンで9
回洗浄して遷移金属触媒とした0分析の結果チタンを2
.5wtχ含有していた。
Example 2 10 g of MgBrCl obtained in Example 1 was placed in a 2001 Il round bottom flask, and 1.5 g of dibutyl phthalate and 50 ml of titanium tetrachloride were added. ) Add 10 liters of luene and bring to 120°C.
After stirring for 1 hour and removing the supernatant, 100 ml of titanium tetrachloride was added and stirred for 1 hour at 130°C, left to stand and the supernatant was removed.
As a result of analysis, titanium was washed twice and used as a transition metal catalyst.
.. It contained 5wtχ.

上記遷移金属触媒30mg、  トリエチルアルミニウ
ム0.151111、トリメトキシフェニルシラン0.
03+*Iを用い51のオートクレーブでプロピレン自
身を溶媒として重合をおこなった。この際プロピレン1
゜5kg 、水素3.2NLを加え756Cで2時間重
合した。
30 mg of the above transition metal catalyst, 0.151111 triethyl aluminum, 0.
Polymerization was carried out using 03+*I in a 51 autoclave using propylene itself as a solvent. At this time, propylene 1
5 kg of hydrogen and 3.2 NL of hydrogen were added, and polymerization was carried out at 756C for 2 hours.

2時間の重合のち未反応のプロピレンをパージしてポリ
プロピレンパウダー670gを得た。(遷移金属触媒光
たり22333g/g)このパウダーの極限粘度は1.
56、かさ比重は0.42g/a+1沸騰11−”ブタ
ン抽出残率の割合は98.2χであった。
After 2 hours of polymerization, unreacted propylene was purged to obtain 670 g of polypropylene powder. (Transition metal catalyst light: 22,333 g/g) The intrinsic viscosity of this powder is 1.
56, the bulk specific gravity was 0.42g/a+1, and the ratio of boiling 11-" butane extraction residue was 98.2χ.

(発明の効果) 本発明の触媒はポリオレフィの重合触媒として優れてお
り工業的に価値がある。
(Effects of the Invention) The catalyst of the present invention is excellent as a polyolefin polymerization catalyst and has industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の触媒を製造する際に用いるハロゲン化
マグネシウムのX線回折のスペクトルを示す図面である
FIG. 1 is a diagram showing an X-ray diffraction spectrum of magnesium halide used in producing the catalyst of the present invention.

Claims (1)

【特許請求の範囲】[Claims] X線回折によって測定された回折線として7.38Å付
近に最大強度を有し7.98、5.32、3.57、3
.47、3.26、2.90Å付近に比較的強い回折線
を与える結晶性のMgBrClを液状のハロゲン化チタ
ンで処理して得た少なくとも7.38Å付近に鋭い回折
線を有しないオレフィン重合用遷移金属触媒。
Diffraction lines measured by X-ray diffraction have maximum intensity around 7.38 Å, and 7.98, 5.32, 3.57, 3
.. Transition for olefin polymerization that does not have sharp diffraction lines at least around 7.38 Å obtained by treating crystalline MgBrCl that gives relatively strong diffraction lines around 47, 3.26, and 2.90 Å with liquid titanium halide. metal catalyst.
JP62000115A 1987-01-06 1987-01-06 Transition metal catalyst component for olefin polymerization Expired - Lifetime JPH072796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62000115A JPH072796B2 (en) 1987-01-06 1987-01-06 Transition metal catalyst component for olefin polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62000115A JPH072796B2 (en) 1987-01-06 1987-01-06 Transition metal catalyst component for olefin polymerization

Publications (2)

Publication Number Publication Date
JPS63168412A true JPS63168412A (en) 1988-07-12
JPH072796B2 JPH072796B2 (en) 1995-01-18

Family

ID=11465053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62000115A Expired - Lifetime JPH072796B2 (en) 1987-01-06 1987-01-06 Transition metal catalyst component for olefin polymerization

Country Status (1)

Country Link
JP (1) JPH072796B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273204A (en) * 1986-05-22 1987-11-27 Mitsui Toatsu Chem Inc Method for polymerizing olefin
JPS62275105A (en) * 1986-05-09 1987-11-30 Mitsui Toatsu Chem Inc Polymerization of olefin
JPS6369803A (en) * 1986-09-12 1988-03-29 Mitsui Toatsu Chem Inc Polymerization of olefin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275105A (en) * 1986-05-09 1987-11-30 Mitsui Toatsu Chem Inc Polymerization of olefin
JPS62273204A (en) * 1986-05-22 1987-11-27 Mitsui Toatsu Chem Inc Method for polymerizing olefin
JPS6369803A (en) * 1986-09-12 1988-03-29 Mitsui Toatsu Chem Inc Polymerization of olefin

Also Published As

Publication number Publication date
JPH072796B2 (en) 1995-01-18

Similar Documents

Publication Publication Date Title
Desmangles et al. Preparation and characterization of (R2N) 2VCl2 [R= Cy, i-Pr] and its activity as olefin polymerization catalyst
JPH05194640A (en) Catalyst for polymerization of olefin
DE10130229A1 (en) Non-metallocenes, processes for their preparation and their use in the polymerization of olefins
JP2012236994A (en) Method for producing olefin block polymer
JPS63168412A (en) Transition metal catalyst for polymerization of olefin
JP2537221B2 (en) Method for producing catalyst component for olefin polymerization
JPS5846128B2 (en) Highly active catalyst used for olefin polymerization
JP2537220B2 (en) Olefin Polymerization Method
DE60205795T2 (en) Transition metal compound, catalyst for olefin polymerization and use of the catalyst for olefin polymerization
JPS63168411A (en) Magnesium halide used as carrier for transition metal catalyst
JP2004027232A (en) Catalyst for polyolefin derived from magnesium-diketonate complex, its manufacturing method and polymerizing method using it
JPS63186706A (en) Polymerization of olefin
JPS63210105A (en) Polymerization of olefin
JP2553042B2 (en) Olefin Polymerization Method
JPH0745544B2 (en) Olefin Polymerization Method
JPS63210104A (en) Polymerization of olefin
JPH0745546B2 (en) Olefin Polymerization Method
JPS63132908A (en) Polymerization of olefin
JPS63210106A (en) Polymerization of olefin
JPH0791331B2 (en) Olefin Polymerization Method
Angpanitcharoen Substituted indenyl complexes for ethylene polymerisation
JPH0745545B2 (en) Olefin Polymerization Method
JPH0780941B2 (en) Olefin Polymerization Method
JPS63132907A (en) Polymerization of olefin
JPS64962B2 (en)