JPS6316838Y2 - - Google Patents

Info

Publication number
JPS6316838Y2
JPS6316838Y2 JP1984192673U JP19267384U JPS6316838Y2 JP S6316838 Y2 JPS6316838 Y2 JP S6316838Y2 JP 1984192673 U JP1984192673 U JP 1984192673U JP 19267384 U JP19267384 U JP 19267384U JP S6316838 Y2 JPS6316838 Y2 JP S6316838Y2
Authority
JP
Japan
Prior art keywords
air
flow path
bypass
flow rate
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984192673U
Other languages
Japanese (ja)
Other versions
JPS60137139U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19267384U priority Critical patent/JPS60137139U/en
Publication of JPS60137139U publication Critical patent/JPS60137139U/en
Application granted granted Critical
Publication of JPS6316838Y2 publication Critical patent/JPS6316838Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【考案の詳細な説明】 〔考案の利用分野〕 本考案は、内燃機関の空燃比制御装置に係り、
更に詳しくは少なくとも1個の燃料噴射用電磁弁
を具え、内燃機関への吸入空気量を感熱抵抗で検
出し、その検出信号に応じて前記電磁弁の噴射量
を調整して空気と燃料との混合比を制御する空燃
比制御装置に関し、殊に主空気流路の入口部から
前記主空気流路に形成された最狭部までを側路す
るバイパス流路を設け、このバイパス流路の途中
に設置した感熱抵抗でバイパス空気量を求めるこ
とで主空気流路を流れる空気量とバイパス空気流
路を流れるバイパス空気流量との流量比から間接
的に結合流量を求める様にしたものに関する。
[Detailed description of the invention] [Field of application of the invention] The invention relates to an air-fuel ratio control device for an internal combustion engine.
More specifically, it includes at least one electromagnetic valve for fuel injection, detects the amount of air taken into the internal combustion engine with a heat-sensitive resistor, adjusts the injection amount of the electromagnetic valve according to the detection signal, and adjusts the amount of air to be injected into the internal combustion engine. Regarding an air-fuel ratio control device that controls a mixture ratio, in particular, a bypass flow path is provided that bypasses an inlet of a main air flow path to the narrowest part formed in the main air flow path, and This invention relates to a device in which the combined flow rate is indirectly determined from the flow rate ratio between the amount of air flowing through the main air flow path and the flow rate of bypass air flowing through the bypass air flow path by determining the amount of bypass air using a heat-sensitive resistor installed in the air flow path.

〔考案の背景〕[Background of the idea]

実開昭52−38522号公報等で知られる従来の空
燃比制御装置においては、主空気流路とバイパス
流路との断面積比のばらつき等により感熱抵抗で
計測された空気流量値が実際の空気流量値に対し
てかなり違つた値を示す場合がある。
In the conventional air-fuel ratio control device known from Japanese Utility Model Application Publication No. 52-38522, etc., the air flow rate value measured by the heat-sensitive resistor may differ from the actual value due to variations in the cross-sectional area ratio between the main air flow path and the bypass flow path. It may show quite different values for the air flow rate values.

すなわち、この種の装置では、主空気流路をバ
イパスするバイパス流路の途中に感熱抵抗を設
け、感熱抵抗によつてバイパス空気量を求めるこ
とで主空気流路を流れる主空気量とバイパス空気
流路を流れるバイパス空気量の流量比から間接的
に総合流量を求め、この結果から燃料量を決める
ため、主空気流路を流れる空気量とバイパス流路
を流れる空気量の流量比率は正確に定められてお
かねばならない。
In other words, in this type of device, a heat-sensitive resistance is provided in the middle of a bypass flow path that bypasses the main air flow path, and by determining the amount of bypass air using the heat-sensitive resistance, the amount of main air flowing through the main air flow path and the amount of bypass air are determined. The total flow rate is indirectly determined from the flow rate ratio of the amount of bypass air flowing through the flow path, and the fuel amount is determined from this result, so the flow rate ratio of the amount of air flowing through the main air flow path and the amount of air flowing through the bypass flow path must be accurately It must be determined.

ところが、製造過程においては必ずしもこの流
量比率は設計仕様通りに納まらず、その結果、内
燃機関に供給される総合空気量が真の値を示さな
くなるという問題があつた。
However, in the manufacturing process, this flow rate ratio does not necessarily meet the design specifications, and as a result, there is a problem in that the total amount of air supplied to the internal combustion engine does not represent the true value.

〔考案の目的〕[Purpose of invention]

本考案の目的は、主空気流路とバイパス流路を
流れる空気量の流量比率を正確に定めるところに
ある。
An object of the present invention is to accurately determine the flow rate ratio of the amount of air flowing through the main air flow path and the bypass flow path.

〔考案の概要〕[Summary of the idea]

本考案の特徴は、バイパス流路の感熱抵抗を通
つて流れるバイパス空気量を外部から調整して主
空気流量と感熱抵抗を通つて流れる空気流量との
流量比を調整する調整手段を設けることによつ
て、主空気流路とバイパス流路との流量比のばら
つきがあつても、バイパス空気量を調整すれば所
望の流量比を得ることができ、正確な総合空気量
を検出することが可能となるものである。
The feature of the present invention is that an adjusting means is provided for externally adjusting the amount of bypass air flowing through the heat-sensitive resistor in the bypass flow path to adjust the flow rate ratio between the main air flow rate and the air flow rate flowing through the heat-sensitive resistor. Therefore, even if there is variation in the flow rate ratio between the main air flow path and the bypass flow path, the desired flow rate ratio can be obtained by adjusting the bypass air flow rate, making it possible to accurately detect the total air flow rate. This is the result.

〔考案の実施例〕[Example of idea]

以下、本考案になる空燃比制御装置の一実施例
を第1図に基づいて説明する。図において、1は
スロツトチヤンバ本体でその内部には2つのスロ
ツトルチヤンバ2および3が形成されている。4
および5は各スロツトルチヤンバ2,3内に夫々
設けられた絞り弁、6はスロツトルチヤンバ本体
1に装着された燃料噴射用電磁弁、7はスロツト
ルチヤンバ本体1の上面に装着された筐体で、そ
の内部には前記の各スロツトルチヤンバ2,3と
連通する主空気流路8が形成され、該主空気流路
8はその途中にベンチユリ9を設けている。10
は筐体7の側壁に穿設されて主空気流路8の入口
部からベンチユリ9部までを側路する第1バイパ
ス流路で、該第1バイパス流路10は、その上流
側の主空気流路8との合流点をベルマウス状に形
成してあり、かつ下流側の主空気流路8との合流
点近傍にオリフイス11を設けている。また該第
1バイパス流路10は、その途中に該バイパス流
路10を通過する吸入空気量を検出する感熱抵抗
12を配設している。前記感熱抵抗12の検出信
号は電磁弁用制御回路13に入力され、該制御回
路13はその入力信号に応じて電磁弁6を開閉制
御するようになつている。14は筐体7の側壁に
穿設されて第1バイパス流路10の感熱抵抗12
上流側と下流側とを側路する第2バイパス流路
で、該バイパス流路14は、その途中にこれの流
路断面積を変え得る調整ねじ15を設けている。
前記調整ねじ15は筐体7の側壁に螺合し、かつ
その一端を筐体外方に突出させて筐体7の外から
調整できるようになつている。16はスロツトル
チヤンバ本体1の側壁に穿設されてスロツトルチ
ヤンバ3の絞り弁5上流側と下流側とを側路する
第3バイパス流路で、該バイパス流路16は、そ
の途中にこれの流路断面積を変え得る調整ネジ1
7を設けている。前記調整ねじ17はスロツトル
チヤンバ本体1の側壁に螺合し、かつその一端を
本体外方に突出させて、本体1の外から調整でき
るようになつている。
An embodiment of the air-fuel ratio control device according to the present invention will be described below with reference to FIG. In the figure, reference numeral 1 denotes a slot chamber main body, and two throttle chambers 2 and 3 are formed inside the main body. 4
and 5 are throttle valves provided in each of the throttle chambers 2 and 3, 6 is a fuel injection solenoid valve mounted on the throttle chamber body 1, and 7 is mounted on the top surface of the throttle chamber body 1. A main air passage 8 is formed inside the housing and communicates with each of the throttle chambers 2 and 3, and a bench lily 9 is provided in the middle of the main air passage 8. 10
is a first bypass flow path that is bored in the side wall of the casing 7 and runs from the inlet of the main air flow path 8 to the bench lily 9; The confluence point with the flow path 8 is formed in a bell mouth shape, and an orifice 11 is provided near the confluence point with the main air flow path 8 on the downstream side. Further, the first bypass flow path 10 is provided with a heat-sensitive resistor 12 midway therein to detect the amount of intake air passing through the bypass flow path 10. The detection signal from the heat-sensitive resistor 12 is input to a solenoid valve control circuit 13, and the control circuit 13 controls the opening and closing of the solenoid valve 6 in accordance with the input signal. 14 is a heat-sensitive resistor 12 bored in the side wall of the casing 7 of the first bypass flow path 10.
This is a second bypass flow path that bypasses the upstream side and the downstream side, and the bypass flow path 14 is provided with an adjustment screw 15 in the middle thereof that can change the cross-sectional area of the flow path.
The adjustment screw 15 is screwed into the side wall of the casing 7, and has one end protruding outside the casing so that it can be adjusted from outside the casing 7. Reference numeral 16 denotes a third bypass flow path that is bored in the side wall of the throttle chamber main body 1 and bypasses the upstream side and the downstream side of the throttle valve 5 of the throttle chamber 3; Adjustment screw 1 that can change the cross-sectional area of the flow path
7 is provided. The adjustment screw 17 is screwed into the side wall of the throttle chamber main body 1, and has one end protruding outside the main body so that it can be adjusted from outside the main body 1.

次に本実施例の空燃比制御装置の作用について
説明する。エアクリーナを通過して清浄された空
気の大部分は主空気流路8を通過した後絞り弁4
を有するスロツトルチヤンバ2あるいは絞り弁5
を有するスロツトルチヤンバ3を経てエンジンに
供給される。また一部の空気は第1バイパス流路
10および第2バイパス流路14を流通し第1バ
イパス流路110に設けたオリフイス11の手前
で合流した後、該オリフイス11を通過して主空
気流路8の空気と合流する。前記第1バイパス流
路10を流過する空気量は感熱抵抗12により検
出されてその検出信号が制御回路13に入力さ
れ、該制御回路13からの出力信号に従つて燃料
噴射用電磁弁6は燃料を噴射する。この過程にお
いて主空気流路8と第1バイパス流路8との断面
積化のばらつきにより計測された空気流量値が実
際の空気流量値に対して誤差が生じた場合には、
調整ねじ15を調整して第2バイパス流路14の
流路断面積を変え、該第2バイパス流路14を通
過する空気量と第1バイパス流路10の空気量と
の比を変化させることにより、空気と燃料との混
合比を適正に補正できる。また第1バイパス流路
10にオリフイス11が存在することによつてベ
ンチユリ9部を流れる空気量とバイパス空気量と
の比のばらつきは極力小さくなる。一方絞り弁の
上流と下流とを側路する第3バイパス流路16の
流路断面積を、調整ねじ17の調整により変える
ことによりエンジンの回転数を調整できる。例え
ばアイドル運転時における回転数を適正に強制で
きる。
Next, the operation of the air-fuel ratio control device of this embodiment will be explained. Most of the air that has been purified after passing through the air cleaner passes through the main air flow path 8 and then through the throttle valve 4.
A throttle chamber 2 or a throttle valve 5 having
It is supplied to the engine through a throttle chamber 3 having a diameter. Further, some of the air flows through the first bypass flow path 10 and the second bypass flow path 14 and joins in front of the orifice 11 provided in the first bypass flow path 110, and then passes through the orifice 11 and flows into the main air flow. It merges with the air from Route 8. The amount of air flowing through the first bypass flow path 10 is detected by a heat-sensitive resistor 12, and the detection signal is inputted to a control circuit 13, and the fuel injection solenoid valve 6 is operated according to an output signal from the control circuit 13. Inject fuel. In this process, if the measured air flow rate value deviates from the actual air flow rate value due to variations in cross-sectional area between the main air flow path 8 and the first bypass flow path 8,
Adjusting the adjustment screw 15 to change the cross-sectional area of the second bypass flow path 14 and change the ratio between the amount of air passing through the second bypass flow path 14 and the amount of air in the first bypass flow path 10. Accordingly, the mixture ratio of air and fuel can be appropriately corrected. Further, due to the presence of the orifice 11 in the first bypass passage 10, variations in the ratio of the amount of air flowing through the bench lily 9 and the amount of bypass air are minimized. On the other hand, by adjusting the adjustment screw 17 to change the flow passage cross-sectional area of the third bypass flow passage 16 that bypasses the upstream and downstream sides of the throttle valve, the rotation speed of the engine can be adjusted. For example, it is possible to appropriately force the rotation speed during idling operation.

第2図は本考案の他の実施例を示したもので、
第1バイパス流路10にその流路断面積を変化さ
せる調整ねじ18を設けたものである。
Figure 2 shows another embodiment of the present invention.
The first bypass passage 10 is provided with an adjusting screw 18 for changing the cross-sectional area of the passage.

これによれば主空気流量とバイパス空気流量の
比を適正に補正できる。
According to this, the ratio between the main air flow rate and the bypass air flow rate can be appropriately corrected.

更に第2バイパス通路には調整ねじ19を設け
て各バイパス流路の各流路断面積を変えることに
より主空気流量とバイパス空気流量との比をより
厳密に変化させることができ、これによつて空気
と燃料との混合比をより一層適正に補正できる。
Further, by providing an adjusting screw 19 in the second bypass passage and changing the cross-sectional area of each bypass passage, the ratio between the main air flow rate and the bypass air flow rate can be changed more precisely. Therefore, the mixture ratio of air and fuel can be corrected more appropriately.

〔考案の効果〕[Effect of idea]

以上の如く、本考案の空燃比制御装置によれば
空気流路とバイパス流路との断面積比のばらつき
等があつても、バイパス流路の感熱抵抗を通る空
気量を調整すれば正確な流量比率を得ることがで
き、真の総合空気量を得ることができるものであ
る。
As described above, according to the air-fuel ratio control device of the present invention, even if there are variations in the cross-sectional area ratio between the air flow path and the bypass flow path, accurate control can be achieved by adjusting the amount of air passing through the heat-sensitive resistance of the bypass flow path. The flow rate ratio can be obtained, and the true total air amount can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案空燃比制御装置の一実施例を示
す断面図、第2図は本考案の他の実施例を示す断
面図である。 1……スロツトルチヤンバ本体、2,3……ス
ロツトルチヤンバ、4,5……絞り弁、6……燃
料噴射用電磁弁、8……主空気流路、9……ベン
チユリ、10……第1バイパス流路、11……オ
リフイス、12……感熱抵抗、14……第2バイ
パス流路、15,17,18,19……調整ね
じ、16……第3バイパス流量。
FIG. 1 is a cross-sectional view showing one embodiment of the air-fuel ratio control device of the present invention, and FIG. 2 is a cross-sectional view showing another embodiment of the present invention. 1... Throttle chamber body, 2, 3... Throttle chamber, 4, 5... Throttle valve, 6... Solenoid valve for fuel injection, 8... Main air flow path, 9... Bench lily, 10 ...First bypass channel, 11... Orifice, 12... Heat sensitive resistor, 14... Second bypass channel, 15, 17, 18, 19... Adjustment screw, 16... Third bypass flow rate.

Claims (1)

【実用新案登録請求の範囲】 1 少なくとも一個の燃料噴射用電磁弁を具え、
内燃機関への吸入空気量を感熱抵抗で検出し、
その検出信号により前記電磁弁の噴射量を調整
して空気と燃料との混合比を制御する空燃比制
御装置であつて、主空気流路の入口部から前記
主空気流路に形成された最狭部までを側路する
バイパス流路を設け、このバイパス流路の途中
に前記感熱抵抗を配設してこの感熱抵抗でバイ
パス空気流量を求めることで前記主空気流路を
流れる主空気流量と前記バイパス空気流路を流
れるバイパス空気流量との流量比から間接的に
総合流量を求めるものにおいて、前記バイパス
流路の前記感熱抵抗を通つて流れる空気流量を
外部から調整して前記主空気流量と前記感熱抵
抗を通つて流れる空気流量との流量比を調整す
る調整手段を設けたことを特徴とする空燃比制
御装置。 2 実用新案登録請求の範囲第1項において、前
記調整手段は前記バイパス流路の感熱抵抗上流
側と下流側とを側路する第2バイパス流路に設
けられた調整ねじであることを特徴とする空燃
比制御装置。 3 実用新案登録請求の範囲第1項において、前
記バイパス流路はその出口側の前記主空気流路
との合流点付近にオリフイスを含んでいること
を特徴とする空燃比制御装置。 4 実用新案登録請求の範囲第1項において、前
記バイパス流路はその入口側の前記主空気流路
との合流点がベルマウス状に形成されているこ
とを特徴とする空燃比制御装置。 5 実用新案登録請求の範囲第1項において、前
記調整手段は前記バイパス通路に設けられた調
整ネジであることを特徴とする空燃比制御装
置。 6 実用新案登録請求の範囲第5項において、前
記バイパス通路に設けた前記感熱抵抗上流と前
記感熱抵抗下流と前記調整ネジの間を連通する
第2のバイパス流路を設け、前記第2バイパス
流路の途中に第2調整ねじを設けたことを特徴
とする空燃比制御装置。
[Claims for Utility Model Registration] 1. At least one solenoid valve for fuel injection,
Detects the amount of air intake into the internal combustion engine using a heat-sensitive resistor,
The air-fuel ratio control device controls the mixture ratio of air and fuel by adjusting the injection amount of the solenoid valve based on the detection signal, By providing a bypass flow path that bypasses the narrow part, arranging the heat-sensitive resistor in the middle of this bypass flow path, and determining the bypass air flow rate using this heat-sensitive resistor, the main air flow rate flowing through the main air flow path can be determined. In the device that indirectly determines the total flow rate from the flow rate ratio with the bypass air flow rate flowing through the bypass air flow path, the air flow rate flowing through the heat-sensitive resistor of the bypass flow path is adjusted from the outside to be equal to the main air flow rate. An air-fuel ratio control device comprising an adjusting means for adjusting a flow rate ratio with respect to the flow rate of air flowing through the heat-sensitive resistor. 2 Utility Model Registration Scope of Claim 1, characterized in that the adjusting means is an adjusting screw provided in a second bypass flow path that bypasses the heat-sensitive resistance upstream side and the downstream side of the bypass flow path. air-fuel ratio control device. 3. Utility Model Registration The air-fuel ratio control device according to claim 1, wherein the bypass flow path includes an orifice near a confluence point with the main air flow path on the outlet side thereof. 4 Utility Model Registration The air-fuel ratio control device according to claim 1, wherein the bypass flow path has a confluence point with the main air flow path on the inlet side formed in a bell mouth shape. 5 Utility Model Registration The air-fuel ratio control device according to claim 1, wherein the adjusting means is an adjusting screw provided in the bypass passage. 6 Utility model registration Claim 5, wherein a second bypass flow path is provided that communicates between the heat-sensitive resistor upstream and the heat-sensitive resistor downstream provided in the bypass passage and the adjustment screw, and the second bypass flow An air-fuel ratio control device characterized in that a second adjustment screw is provided in the middle of the path.
JP19267384U 1984-12-19 1984-12-19 Air fuel ratio control device Granted JPS60137139U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19267384U JPS60137139U (en) 1984-12-19 1984-12-19 Air fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19267384U JPS60137139U (en) 1984-12-19 1984-12-19 Air fuel ratio control device

Publications (2)

Publication Number Publication Date
JPS60137139U JPS60137139U (en) 1985-09-11
JPS6316838Y2 true JPS6316838Y2 (en) 1988-05-13

Family

ID=30750080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19267384U Granted JPS60137139U (en) 1984-12-19 1984-12-19 Air fuel ratio control device

Country Status (1)

Country Link
JP (1) JPS60137139U (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4882230A (en) * 1972-01-21 1973-11-02 Bosch Gmbh Robert
JPS4949031A (en) * 1972-05-15 1974-05-13
JPS53100324A (en) * 1977-02-15 1978-09-01 Ntn Toyo Bearing Co Ltd Fuel injection system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4882230A (en) * 1972-01-21 1973-11-02 Bosch Gmbh Robert
JPS4949031A (en) * 1972-05-15 1974-05-13
JPS53100324A (en) * 1977-02-15 1978-09-01 Ntn Toyo Bearing Co Ltd Fuel injection system

Also Published As

Publication number Publication date
JPS60137139U (en) 1985-09-11

Similar Documents

Publication Publication Date Title
US4194478A (en) Air-fuel ratio control system for an internal combustion engine
US3817099A (en) Mass flow air meter
EP0054887B1 (en) Air flow meter assembly
JP2857787B2 (en) Thermal air flow meter and internal combustion engine equipped with the flow meter
JPS6316838Y2 (en)
EP0085987B1 (en) Fuel feeding apparatus for internal combustion engine
JPH021518A (en) Hot-wire type air flowmeter
JPS6120499Y2 (en)
JPH0335510B2 (en)
US4986116A (en) Air flow meter for internal combustion engine
US3818933A (en) Mass flow air meter
US4359031A (en) Engine air flow responsive control
JPH0117653Y2 (en)
JPS606736Y2 (en) Intake air amount measuring device
JPH0320619A (en) Hot-wire type air flowmeter
JPH01247723A (en) Suction path for internal combustion engine
JPS6157456B2 (en)
JP2515018Y2 (en) Intake air flow rate measuring device for internal combustion engine
JPS6017318A (en) Measuring device of flow rate
JPH089612Y2 (en) Intake air flow rate measuring device for internal combustion engine
JPS6014902B2 (en) Internal combustion engine fuel control device
JPH01248023A (en) Intake air flow rate measuring apparatus for internal combustion engine
JPS58109816A (en) Air flow meter
JPS62126243A (en) Intake amount detecting method for engine
JPH07128109A (en) Hot wire airflow meter integrated with throttle body