JPS63168209A - Method and apparatus for estimating shape of steel plate - Google Patents

Method and apparatus for estimating shape of steel plate

Info

Publication number
JPS63168209A
JPS63168209A JP61311770A JP31177086A JPS63168209A JP S63168209 A JPS63168209 A JP S63168209A JP 61311770 A JP61311770 A JP 61311770A JP 31177086 A JP31177086 A JP 31177086A JP S63168209 A JPS63168209 A JP S63168209A
Authority
JP
Japan
Prior art keywords
steel plate
temp
temperature
temperature distribution
characteristic values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61311770A
Other languages
Japanese (ja)
Other versions
JPH0516927B2 (en
Inventor
Masahide Mori
森 雅英
Masanao Yamamoto
山本 政尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61311770A priority Critical patent/JPS63168209A/en
Publication of JPS63168209A publication Critical patent/JPS63168209A/en
Publication of JPH0516927B2 publication Critical patent/JPH0516927B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/44Control of flatness or profile during rolling of strip, sheets or plates using heating, lubricating or water-spray cooling of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • B21B2261/21Temperature profile

Abstract

PURPOSE:To contribute for controlling and adjusting a water sprinkling cooling by obtaining characteristic values indicating a temperature difference and temperature dispersion on a surface just after the water jet cooling control stage of the hot rolled steel plate and based on this, estimating the shape of the plate after cooling and grooving. CONSTITUTION:The temp. distribution of the hot rolled steel plate 10 is measured in the plate width direction by a temp. sensor 12 just behind the water sprinkling cooling installation RS, then inputted into a temp. distribution pattern deciding device 16 through an instrumented microcomputer 14. The deciding device 16 obtains the characteristic values (a), (e), (b), (f) indicating temp. differences between high temp.s and low temp.s at the central part and both end edges from these data, and obtains the characteristic values indicating the surface temp. dispersions at each split area in the longitudinal direction of the steel plate. This judged result is fed to a cooling control program computer 18 and displayed on a display 20 as a color image displaying the temp. level of each part of the steel plate to estimate the plate shape after the steel plate is cooled and grooved. In this way, the controlling and adjusting of the water sprinkling cooling of the steel plate is performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷却制御プロセスにより急速冷却された鋼板
の形状推定方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for estimating the shape of a steel plate rapidly cooled by a cooling control process.

〔従来の技術〕[Conventional technology]

厚板の熱間圧延工程では、圧延最終段から出てきた鋼板
に注水して所定温度に急速冷却することが行なわれる。
In the process of hot rolling thick plates, water is poured into the steel plate coming out of the final stage of rolling to rapidly cool it to a predetermined temperature.

この制御冷却(CL C)工程を経た例えば圧延長6〜
40m1圧延幅1〜4.5mのwi坂はその後条切りさ
れ、例えば幅40(!lの帯状体にされ、次工程へ渡さ
れる。
For example, after passing through this controlled cooling (CLC) process,
The 40 m1 rolling width 1 to 4.5 m width is then cut into strips, for example, 40 (!l) wide, and passed on to the next process.

この条切りされた鋼板にキャンバ−が発生し、また耳波
、中伸びが発生することがある。これは鋼板の温度分布
が原因である。即ちCLC工程では鋼板両縁上に遮蔽板
(エツジマスク)を配置し・これを鋼帯中心線側へ突出
させまた端縁側へ退去させて鋼板幅方向温度分布を関節
する(フラットであるのが良好)が、これが適切に行な
われないと第8図A−D等の温度分布になる。Aは両縁
の温度が低いケース、Bは逆に高いケースで、前者は耳
波を発生させ、後者は中波(中伸び)を発生させる。C
のように中央部より両端縁が高く、少し中へ入ると逆に
低くなるケースもあり、これも耳波を発生させる。Dは
フラットなケースで、この場合耳波も中伸びも発生しな
い。ケースAは水冷による両縁の冷却が著しい場合で、
エツジマスク(E/M)制御は不良(過小)である、B
のケースは水冷による両縁の冷却が過小、E/M制御は
過大、である。
Camber may occur in the cut steel sheet, and ear waves and elongation may occur. This is caused by the temperature distribution of the steel plate. That is, in the CLC process, shielding plates (edge masks) are placed on both edges of the steel plate, and these are made to protrude toward the center line of the steel strip and retreat toward the edges to adjust the temperature distribution in the width direction of the steel plate (flat is better. ), but if this is not done properly, a temperature distribution such as that shown in FIG. 8A to D will result. A is a case where the temperature at both edges is low, and B is a case where the temperature is high.The former generates ear waves, and the latter generates medium waves (medium extension). C
There are also cases where the edges are higher than the center, and conversely become lower as you move a little further in, which also causes ear waves. D is a flat case, in which neither ear waves nor mid-length extension occur. Case A is a case where both edges are significantly cooled by water cooling.
Edge mask (E/M) control is poor (too small), B
In the case of , the cooling of both edges by water cooling is too little, and the E/M control is too much.

キャンバ−は、やはり幅方向温度分布がフラットでない
と発生する。第5図で説明すると、(a)はCLC設備
を出た直後の鋼板を条切りされた状態で示し、この鋼板
10aの一方の端縁Saの温度は高<(H)、他方の端
縁sbの温度は低い(L)とすると、冷却後は(blに
示すようにsb側が伸びてキャンバ−のついた鋼板10
bになる。金鋼板10の温度プロフィールが第8図Aの
如くであり、これを第5図(C1の如く条切りしたとす
ると、冷却後は第5図(d+の如くキャンバ−が付く。
Camber also occurs when the temperature distribution in the width direction is not flat. To explain this with reference to FIG. 5, (a) shows a steel plate immediately after leaving the CLC equipment in a cut state, and the temperature at one edge Sa of this steel plate 10a is high < (H), and the temperature at the other edge Sa is Assuming that the temperature of sb is low (L), after cooling, the steel plate 10 is stretched on the sb side and has a camber as shown in bl.
It becomes b. If the temperature profile of the gold steel plate 10 is as shown in FIG. 8A, and it is cut into strips as shown in FIG. 5 (C1), after cooling it will have a camber as shown in FIG. 5 (d+).

また該鋼板の温度プロフィールが第8図Bの如くである
と、冷却後は第5図(e)の如くキャンバ−が付く。
Further, if the temperature profile of the steel plate is as shown in FIG. 8B, camber will be formed after cooling as shown in FIG. 5(e).

第5図+a)の鋼帯10aの端縁Sa、Sbに温度差が
あると、冷却後どの程度のキャンバ−かつ(かを実測し
た結果を第4図に示す。この鋼帯10aの長さは18m
1幅は400mで、温度分布は全長に亘ってAプロフィ
ール又はBプロフィールである。このグラフから温度差
ΔTが大になる程キャンバー量は大になり、両者はほり
比例すると見做せる。
If there is a temperature difference between the edges Sa and Sb of the steel strip 10a in FIG. 5+a), the results of actual measurements of how much camber and () will occur after cooling are shown in FIG. 4.The length of this steel strip 10a is 18m
1 width is 400 m, and the temperature distribution is A profile or B profile over the entire length. From this graph, it can be seen that the larger the temperature difference ΔT, the larger the amount of camber, and that the two are roughly proportional.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように、CLC工程を出た直後の鋼板温度分布を知
ると、条切り後かつ冷却後の鋼帯の耳波、中伸び、キャ
ンバ一つまり形状を推定することが可能である0本発明
はか\る点に着目するものであり、鋼板温度分布を計測
して形状を推定しようとするものである。
In this way, by knowing the temperature distribution of the steel strip immediately after exiting the CLC process, it is possible to estimate the ear wave, mid-elongation, camber, or shape of the steel strip after strip cutting and cooling. This method focuses on these points, and attempts to estimate the shape by measuring the temperature distribution of the steel sheet.

形状を知ってCLC工程の冷却制御、次工程の修正制御
等を行なうには形状を定量的に把握する必要がある。形
状を定量的に、正確に把握するには精密な鋼板温度分布
の計測が必要であり、本発明はまたこの精密な鋼板温度
分布の測定法を提案するものである。
In order to know the shape and perform cooling control in the CLC process, correction control in the next process, etc., it is necessary to understand the shape quantitatively. In order to quantitatively and accurately grasp the shape, it is necessary to precisely measure the temperature distribution of the steel plate, and the present invention also proposes a method for measuring this precise temperature distribution of the steel plate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、熱間圧延された鋼板の注水冷却制御工程の直
後で温度センサにより鋼板表面の板幅方向および板長平
方向の二次元温度分布を測定し、咳板幅方向温度分布よ
り、少なくとも板中央部と両端縁部の高、低温度差を示
す特徴値(a、e。
The present invention measures the two-dimensional temperature distribution of the steel sheet surface in the sheet width direction and the sheet longitudinal direction using a temperature sensor immediately after the water injection cooling control process of a hot rolled steel sheet, and from the temperature distribution in the sheet width direction, at least Characteristic values (a, e) indicating high and low temperature differences between the center and both edges.

b、r)を求め、また該鋼板を板長平方向で複数区分に
分割したその各、領域における前記二次元温度分布より
鋼板表面温度の分散を示す特徴値を求め、これらの特徴
値より、鋼板冷却後かつ条切り後の板形状を推定するこ
とを特徴とするものである。
b, r), and the characteristic values indicating the dispersion of the steel plate surface temperature are determined from the two-dimensional temperature distribution in each region of the steel plate divided into a plurality of sections in the horizontal direction of the plate length. From these characteristic values, the steel plate This method is characterized by estimating the shape of the plate after cooling and cutting.

〔作用〕[Effect]

この発明によれば、CLC材の冷却後の形状を推定して
散水冷却の制御、次工程への修正データの提供、ディス
プレイに表示してオペレータによる制御、調整に寄与す
ることができ甚だ有効である。
According to this invention, the shape of the CLC material after cooling can be estimated to control water spray cooling, provide correction data to the next process, and display it on a display to contribute to operator control and adjustment, which is extremely effective. be.

〔実施例〕〔Example〕

第1図に本発明の実施例を示す、FMは厚板熱間圧延の
最終圧延段、CLCは前述の散水による冷却制御設備で
ある。12は温度センサで、光電変換素子としてHg 
Cd Teを用い、測温レンジは一50℃〜2000℃
、測定精度は±3.5℃(120〜800℃)である。
An embodiment of the present invention is shown in FIG. 1, where FM is the final rolling stage for hot rolling of thick plates, and CLC is the cooling control equipment using the water spray described above. 12 is a temperature sensor, which uses Hg as a photoelectric conversion element.
Using CdTe, the temperature measuring range is -50℃ to 2000℃
, the measurement accuracy is ±3.5°C (120-800°C).

ミラー走査により鋼板10の幅方向温度分布を測定し、
鋼板10の移動につれてこれを繰り返すので第7図に示
すように鋼板幅方向で1、+=20m、鋼板長さ方向で
L2=55fiの小区域毎の温度を測定することができ
る。この小区域を画素と呼び、鋼板全体では32万点な
どの多数になる。温度センサ12の出力は計装マイコン
14に一旦取込まれ、それよりCLC材温度分布パター
ン判定装置16へ高速転送され、こ\で温度データの収
集、加工が行なわれ、その収集、加工データDは冷却制
御プロコン18へ送られる。
Measuring the temperature distribution in the width direction of the steel plate 10 by mirror scanning,
Since this process is repeated as the steel plate 10 moves, it is possible to measure the temperature in each small area of 1.+=20 m in the width direction of the steel plate and L2=55 fi in the length direction of the steel plate, as shown in FIG. These small areas are called pixels, and there are a large number of pixels, such as 320,000 points, on the entire steel plate. The output of the temperature sensor 12 is once taken into the instrumentation microcomputer 14, and then transferred at high speed to the CLC material temperature distribution pattern determination device 16, where temperature data is collected and processed, and the collected and processed data D is sent to the cooling control processor 18.

また鋼板各部の温度レベルを色で表現し、この多色画像
をディスプレイ20に表示し、また所要ブータラフロッ
ピーディスク22に格納する。
Furthermore, the temperature level of each part of the steel plate is expressed in color, and this multicolor image is displayed on the display 20 and stored in the required booter floppy disk 22.

判定装置16の処理内容を第2図に示す。温度センサ1
2の温度計測データ(鋼板表面を幅方向に主走査、長さ
方向に副走査して得られた2次元データで、イメージデ
ータともいう)を、計装マイコン14を通してイメージ
データファイル16aへ取込み、該イメージデータを前
処理して特徴量計算対象データを得、該データにより平
均濃度等を算出し、これらを特徴量ファイル16bへ格
納したのち前記冷却制御プロコン18へ伝送する。
The processing contents of the determination device 16 are shown in FIG. Temperature sensor 1
2 temperature measurement data (two-dimensional data obtained by main scanning the steel plate surface in the width direction and sub-scanning in the length direction, also referred to as image data) is taken into the image data file 16a through the instrumentation microcomputer 14, The image data is pre-processed to obtain feature calculation target data, average density, etc. are calculated from the data, and after being stored in the feature file 16b, it is transmitted to the cooling control processor 18.

第3図はこの部分のハードウェアを示す。16dはイメ
ージデータの処理プロセッサ、16eは判定装置16全
体のプロセッサである。
FIG. 3 shows the hardware of this part. 16d is an image data processing processor, and 16e is a processor for the entire determination device 16.

また当該鋼板の板幅、板厚、全長、材質などの数値デー
タを受信し、これをファイル16cへ格納したのち、フ
ァイル16a、16bのイメージデータおよび特徴量と
共にディスプレイ20に表示する。
It also receives numerical data such as the width, thickness, overall length, material, etc. of the steel plate, stores it in the file 16c, and then displays it on the display 20 together with the image data and feature quantities of the files 16a and 16b.

温度センサー2の幅方向1走査分の出力は例えば第7回
申)に示す如くである。か\る温度分布における図示温
度差a w dを求め、右側部分についても同様にする
。この温度差(特徴1i)a−hは第8図A−Dの定量
的表現になる。
The output of the temperature sensor 2 for one scan in the width direction is, for example, as shown in the seventh report. Find the indicated temperature difference a w d in the temperature distribution, and do the same for the right side. This temperature difference (characteristic 1i) a-h becomes the quantitative expression of FIG. 8A-D.

また特徴量として平均濃度(平均温度) MEAG、濃
淡分散VARG、面積率81重心g、 RMIN、 R
MAX比。
In addition, the feature values are average density (average temperature) MEAG, gray scale variance VARG, area ratio 81 center of gravity g, RMIN, R
MAX ratio.

およびX、Y軸投影幅を求める。第6図でこれらを説明
すると、平均濃度は、鋼板温度がTI、T2゜T3で第
6図(a)の分布を有するとし、この鋼板の全温度画素
数をG [1、温度TI、T2.T3部分の画素数をG
皇、G2.G3とすれば であり、一般化すれば である。濃淡分散は で表わされ、VARG= 0のとき均一冷却である。ま
た面積率は第6回申)に示すように特定の温度T2の領
域の全領域に対する比を言い、 S= (a++a2>/lt+I12 で表わされる。重心gは温度分布が第6図(C)の如(
であるとして、この分布の重心gをそのX、 Y座標で
求める。RMIN、 RMAX比は第6図(d)に示す
ように特定分布領域の重心gから最小距離と最大距離と
比(RRAT)を言い、 RRAT= RMIN2/ RMAX2=a g2/ 
b g2で表わされる。またX、Y軸投影幅は第6図(
d)のA、Bをいう。この特徴i1MEAG、・・・・
・・は鋼板を長手方向で分割し、その所定の各領域に対
して求める。メモリ上で言えばこれは512X 512
画素のディジタルデータであり、各画素の温度は8ビツ
トで表わされる。特徴量抽出に当ってはノイズ除去(原
画像に対して3×3の重み付き空間フィルタリングをN
回繰り返す)、マスクパターン作成(鋼板部、背景部の
各温度のヒストグラムを作り、これによりスライスレベ
ルを得、原画像を2値化し、マスクパターンを作成)、
計算対象部の抽出などを行なう。
And calculate the X and Y axis projected width. To explain these using FIG. 6, the average density has the distribution shown in FIG. 6(a) when the steel plate temperature is TI, T2°T3, and the total number of temperature pixels of this steel plate is G [1, temperature TI, T2. The number of pixels in the T3 part is G
Emperor, G2. If you call it G3, then yes, if you generalize it. The density dispersion is expressed as: When VARG=0, uniform cooling is achieved. In addition, as shown in the 6th report, the area ratio refers to the ratio of the area of a specific temperature T2 to the whole area, and is expressed as S = (a++a2>/lt+I12).The center of gravity g is the temperature distribution as shown in Figure 6 (C). Like (
, find the center of gravity g of this distribution using its X and Y coordinates. The RMIN, RMAX ratio is the ratio of the minimum distance to the maximum distance (RRAT) from the center of gravity g of a specific distribution area, as shown in Figure 6 (d), and RRAT = RMIN2/ RMAX2 = a g2/
b It is expressed as g2. Also, the X and Y axis projected widths are shown in Figure 6 (
d) A and B. This feature i1MEAG...
... is calculated for each predetermined area of the steel plate divided in the longitudinal direction. In terms of memory, this is 512X 512
This is digital data of pixels, and the temperature of each pixel is represented by 8 bits. When extracting features, noise is removed (3×3 weighted spatial filtering is applied to the original image with N
(repeat twice), mask pattern creation (create a histogram of each temperature of the steel plate part and background part, obtain the slice level from this, binarize the original image, create a mask pattern),
Extracts the part to be calculated.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によればCLC材の冷却後
の形状を推定して散水冷却の制御、次工程への修正デー
タの提供、ディスプレイに表示してオペレータによる制
御、調整に寄与することができ甚だ有効である。
As explained above, according to the present invention, the shape of the CLC material after cooling can be estimated to control water spray cooling, provide correction data to the next process, and display it on a display to contribute to operator control and adjustment. It is very effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明図、 第2図および第3図は第1図の制御系のブロック図、 第4図は温度差とキャンバ−の関係図、第5図はキャン
バ−発生の説明図、 第6図は特徴量の説明図、 第7図は温度センサの出力の説明図、 第8図は温度プロフィールと形状の関係図である。 図面で10は鋼板、12は温度センサ、16は温度分布
パターン判定装置、10aは条切りされた鋼帯である。 出 願 人  新日本製鐵株式会社 代理人弁理士  青  柳   稔 制得系のブ0・ソクロ 第3図 →2l−WS L2 (tl) ;態度t7すの出Vの説明3 第7図 ;L度プロフィールヒ形状関係囮 !¥8図 手続補正書(自発) 1、事件の表示 昭和61年特許願第31)770号 明の名称 鋼板の形状推定方法および装置 3、補正をする者 事件との関係  特許出願人 住所 東京都千代田区大手町二丁目6番3号名称 (6
65)新日本製鐵株式会社 代表者 武 1)  豊 埋入 〒101 住 所  東京都千代田区岩本町3丁目4番5号第−東
ビル10氏 名  (7017)弁理士  青  柳 
    稔1ジ正命令の日付  な し 王によシ増加する発明の数  な し 7、補 8、補 8、補正の内容 (1)明細書の特許請求の範囲を次の様に補正する。 「(1)熱間圧延された鋼板の注水冷却制御工程の直後
で温度センサにより鋼板表面の板幅方向および坂長手方
向の二次元温度分布を測定し、該板幅方向温度分布より
、少なくとも板中央部と両端縁部の高、低温度差を示す
特徴値(ate、b、f)を求め、また該鋼板を板長平
方向で複数区分に分割したその各領域における前記二次
元温度分布より鋼板表面温度の分散を示す特徴値を求め
、 これらの特徴値より、鋼板冷却後かつ条切り後の板形状
を推定することを特徴とする鋼板の形状推定方法。 (2)熱間圧延された鋼板(10)の注水冷却制御工程
の直後に配置され、鋼板表面の板幅方向および板長平方
向の二次元温度分布を測定する温度センサ(12)と、 該板幅方向温度分布より少なくとも扱中央部と両端縁部
の高、低温度差を示す特徴値(a。 e、b、f)を求め、また該鋼板を坂長手方向で複数区
分に分割したその各領域における前記二次元温度分布よ
り鋼板表面温度分散(VARG)を示す特徴値を計算す
る温度分布パターン判定装置(16)と、 これらの特徴値より鋼板冷却後かつ条切り後、の板形状
を推定する手段(18)を有することを特徴とする鋼板
の形状推定装置。」 (2)同第2頁15行の「厚板」を「鋼板」に補正する
。 (3)同第2頁17行のr (CLC)Jを削除する。 (4)同第3頁3行、第4頁1行、第5頁6行の[CL
CJを「冷却制御」に補正する。 (5)同第3頁4行の「(エツジマスク)」を削除する
。 (6)同第3頁15行〜18行の「場合で、〜である」
を次の様に補正する。 「場合である。Bのケースは水冷による両縁の冷却が少
ない場合である。」 (7)同第4頁20行のrCLC工程」を「冷却制御設
備」に補正する。 (8)同第6頁5行のrCLC材」を「鋼板」に補正す
る。 (9)同第6頁1)行の「厚板」を削除する。 α0同第6頁12行のrCLCJをrRsJに補正する
。 (1)1同第7頁3行、第10頁7行のrCLC材」を
「冷却鋼板」に補正する。 02図面第1図、第8図を別紙のとおりに補正する。
Figure 1 is a detailed explanatory diagram of the present invention, Figures 2 and 3 are block diagrams of the control system in Figure 1, Figure 4 is a diagram of the relationship between temperature difference and camber, and Figure 5 is camber generation. FIG. 6 is an explanatory diagram of the feature quantity, FIG. 7 is an explanatory diagram of the output of the temperature sensor, and FIG. 8 is a diagram of the relationship between temperature profile and shape. In the drawing, 10 is a steel plate, 12 is a temperature sensor, 16 is a temperature distribution pattern determination device, and 10a is a cut steel strip. Applicant Minoru Aoyagi, patent attorney representing Nippon Steel Corporation Degree profile H shape relationship decoy! ¥8 Figure procedural amendment (voluntary) 1. Indication of the case Name of Patent Application No. 31) 770 of 1985 Method and device for estimating the shape of steel plate 3. Person making the amendment Relationship with the case Patent applicant address Tokyo 2-6-3 Otemachi, Chiyoda-ku Name (6
65) Takeshi, Representative of Nippon Steel Corporation 1) Toyozuke 101 Address No. 10, Higashi Building, 3-4-5 Iwamoto-cho, Chiyoda-ku, Tokyo Name (7017) Patent Attorney Aoyagi
Date of Minoru 1st Order: None Number of Inventions Increased by the King: None 7, Supplement 8, Supplement 8, Contents of Amendment (1) The scope of claims in the specification is amended as follows. (1) Immediately after the water injection cooling control process of the hot-rolled steel plate, the two-dimensional temperature distribution of the steel plate surface in the width direction and slope longitudinal direction is measured using a temperature sensor, and from the temperature distribution in the width direction, at least The characteristic values (ate, b, f) indicating the high and low temperature differences between the center and both edges are determined, and the steel plate is divided into a plurality of sections in the horizontal direction of the plate, and the two-dimensional temperature distribution in each area is used to calculate the steel plate. A method for estimating the shape of a steel plate, characterized in that characteristic values indicating the dispersion of surface temperature are obtained, and the shape of the steel plate after cooling and strip cutting is estimated from these characteristic values. (2) Hot-rolled steel plate (10) A temperature sensor (12) that is placed immediately after the water injection cooling control step and measures the two-dimensional temperature distribution of the steel sheet surface in the sheet width direction and the sheet longitudinal direction; The characteristic values (a, e, b, f) indicating the high and low temperature differences between the two edges of the steel plate are obtained, and the steel plate is divided into multiple sections in the longitudinal direction of the slope, and from the two-dimensional temperature distribution in each region. The present invention includes a temperature distribution pattern determination device (16) that calculates feature values indicating surface temperature variance (VARG), and means (18) for estimating the shape of the steel plate after cooling and strip cutting from these feature values. Characteristics of a steel plate shape estimating device.'' (2) Correct "thick plate" on page 2, line 15, to "steel plate." (3) Delete r (CLC)J on page 2, line 17. (4) [CL] on page 3, line 3, page 4, line 1, page 5, line 6
Correct CJ to "cooling control". (5) Delete "(edge mask)" on page 3, line 4. (6) "In the case, it is..." on page 3, lines 15 to 18.
Correct as follows. "Case B is a case where cooling of both edges by water cooling is small." (7) Correct "rCLC process" on page 4, line 20 of the same page to "cooling control equipment." (8) Correct “rCLC material” on page 6, line 5 of the same page to “steel plate”. (9) Delete "Thick plate" in line 1) on page 6 of the same page. α0 Correct rCLCJ on page 6, line 12 to rRsJ. (1) 1, page 7, line 3 and page 10, line 7, "rCLC material" is corrected to "cooled steel plate." 02 drawings Figures 1 and 8 will be corrected as shown in the attached sheet.

Claims (2)

【特許請求の範囲】[Claims] (1)熱間圧延された鋼板の注水冷却制御工程の直後で
温度センサにより鋼板表面の板幅方向および板長手方向
の二次元温度分布を測定し、 該板幅方向温度分布より、少なくとも板中央部と両端縁
部の高、低温度差を示す特徴値(a、e、b、f)を求
め、また該鋼板を板長手方向で複数区分に分割したその
各領域における前記二次元温度分布より鋼板表面温度の
分散を示す特徴値を求め、 これらの特徴値より、鋼板冷却後かつ条切り後の板形状
を推定することを特徴とする鋼板の形状推定方法。
(1) Immediately after the water injection cooling control process of a hot-rolled steel plate, the two-dimensional temperature distribution in the width direction and longitudinal direction of the steel plate surface is measured using a temperature sensor, and from the temperature distribution in the width direction, at least the center of the plate is measured. The characteristic values (a, e, b, f) indicating the high and low temperature differences between the part and both end edges are determined, and the steel plate is divided into multiple sections in the longitudinal direction of the plate, and from the two-dimensional temperature distribution in each area. A method for estimating the shape of a steel sheet, the method comprising: obtaining characteristic values indicating dispersion of the surface temperature of the steel sheet, and estimating the shape of the sheet after the steel sheet has been cooled and after strip cutting from these characteristic values.
(2)熱間圧延された鋼板(10)の注水冷却制御工程
(CLC)の直後に配置され、鋼板表面の板幅方向およ
び板長手方向の二次元温度分布を測定する温度センサ(
12)と、 該板幅方向温度分布より少なくとも板中央部と両端縁部
の高、低温度差を示す特徴値(a、e、b、f)を求め
、また該鋼板を板長手方向で複数区分に分割したその各
領域における前記二次元温度分布より鋼板表面温度分散
(VARG)を示す特徴値を計算する温度分布パターン
判定装置(16)と、これらの特徴値より鋼板冷却後か
つ条切り後の板形状を推定する手段(18)を有するこ
とを特徴とする鋼板の形状推定装置。
(2) A temperature sensor that is placed immediately after the water injection cooling control process (CLC) of the hot rolled steel plate (10) and measures the two-dimensional temperature distribution on the steel plate surface in the plate width direction and plate longitudinal direction.
12) From the temperature distribution in the sheet width direction, characteristic values (a, e, b, f) indicating the high and low temperature differences at least between the central part of the sheet and both edge portions are determined, and the steel sheet is divided into multiple parts in the longitudinal direction of the sheet. A temperature distribution pattern determination device (16) that calculates characteristic values indicating the steel plate surface temperature variance (VARG) from the two-dimensional temperature distribution in each region divided into sections, and a temperature distribution pattern determination device (16) that calculates characteristic values indicating the steel sheet surface temperature variance (VARG) from the two-dimensional temperature distribution in each region divided into sections; A steel plate shape estimating device comprising means (18) for estimating the shape of a steel plate.
JP61311770A 1986-12-27 1986-12-27 Method and apparatus for estimating shape of steel plate Granted JPS63168209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61311770A JPS63168209A (en) 1986-12-27 1986-12-27 Method and apparatus for estimating shape of steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61311770A JPS63168209A (en) 1986-12-27 1986-12-27 Method and apparatus for estimating shape of steel plate

Publications (2)

Publication Number Publication Date
JPS63168209A true JPS63168209A (en) 1988-07-12
JPH0516927B2 JPH0516927B2 (en) 1993-03-05

Family

ID=18021267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61311770A Granted JPS63168209A (en) 1986-12-27 1986-12-27 Method and apparatus for estimating shape of steel plate

Country Status (1)

Country Link
JP (1) JPS63168209A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020051997A (en) * 2000-12-23 2002-07-02 이구택 Method For Predicting Temperature Profile Into Width Direction In A Plate Rolling
WO2019224906A1 (en) * 2018-05-22 2019-11-28 東芝三菱電機産業システム株式会社 Industrial plant image analysis device and industrial plant monitoring control system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846554A (en) * 1971-10-18 1973-07-03
JPS5926371A (en) * 1982-08-04 1984-02-10 Nissan Motor Co Ltd Structure for mounting kicking plate on car body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846554A (en) * 1971-10-18 1973-07-03
JPS5926371A (en) * 1982-08-04 1984-02-10 Nissan Motor Co Ltd Structure for mounting kicking plate on car body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020051997A (en) * 2000-12-23 2002-07-02 이구택 Method For Predicting Temperature Profile Into Width Direction In A Plate Rolling
WO2019224906A1 (en) * 2018-05-22 2019-11-28 東芝三菱電機産業システム株式会社 Industrial plant image analysis device and industrial plant monitoring control system
JPWO2019224906A1 (en) * 2018-05-22 2020-12-10 東芝三菱電機産業システム株式会社 Industrial plant monitoring and control system

Also Published As

Publication number Publication date
JPH0516927B2 (en) 1993-03-05

Similar Documents

Publication Publication Date Title
EP2492634B1 (en) Method of measuring flatness of sheet and method of manufacturing steel sheet using same
DE602004011681T3 (en) METHOD AND IR CAMERA FOR DETERMINING THE CONDENSATION HAZARD
JPS63168209A (en) Method and apparatus for estimating shape of steel plate
EP3047253B1 (en) Method and apparatus for determination of wear properties of a coated flat product
CN106500810B (en) A kind of target vehicle weighing method and system
JP2777921B2 (en) Method and apparatus for estimating actual rate of aggregate
JPH08233538A (en) Dimension measuring apparatus
JPH05107124A (en) Method and device for nondestructive-measuring characteristic of continuously manufactured product by on-line
JPH06249621A (en) Instrument for measuring film thickness distribution
JP7047995B1 (en) Steel plate meandering amount measuring device, steel sheet meandering amount measuring method, hot-rolled steel strip hot rolling equipment, and hot-rolled steel strip hot-rolling method
JP4686924B2 (en) Thickness measuring method, thickness measuring device and thickness control method for hot rolled steel sheet
JPH048128B2 (en)
Hector et al. Friction stir processed AA5182-O and AA6111-T4 aluminum alloys. Part 2: Tensile properties and strain field evolution
JP3145296B2 (en) Defect detection method
JPH06102107A (en) Method for measuring residual stress distribution of metal-made rolled plate material
JP2763459B2 (en) Flatness measuring device
EP4205536A1 (en) Method for measuring dimensions of plant
JPH07190909A (en) Infrared stress image system
JP3525522B2 (en) Temperature Prediction Method of Steel Sheet Tip in Hot Rolling
JP3189721B2 (en) Estimation method of thickness of tapered steel plate
KR100685022B1 (en) Apparatus for measuring distribution of delta-ferrite of strip in strip casting process, and its method
WO2022163177A1 (en) Steel-sheet walking amount measurement device, steel-sheet walking amount measurement method, hot-rolling equipment for hot-rolled steel strip, and hot-rolling method for hot-rolled steel strip
JPH10249419A (en) Device for predicting out-of-plane deformation of thick steel plate
JP2539052B2 (en) Method and apparatus for estimating dog bone height of rolled material
Pálinkás et al. Investigation of the flatness of rolled aluminium sheet