JPS6316789A - Color demodulation circuit - Google Patents

Color demodulation circuit

Info

Publication number
JPS6316789A
JPS6316789A JP16133286A JP16133286A JPS6316789A JP S6316789 A JPS6316789 A JP S6316789A JP 16133286 A JP16133286 A JP 16133286A JP 16133286 A JP16133286 A JP 16133286A JP S6316789 A JPS6316789 A JP S6316789A
Authority
JP
Japan
Prior art keywords
signal
output
detector
voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16133286A
Other languages
Japanese (ja)
Inventor
Yoichi Morita
要一 森田
Kanesuke Nakamichi
中道 兼介
Tsukasa Kawahara
司 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16133286A priority Critical patent/JPS6316789A/en
Publication of JPS6316789A publication Critical patent/JPS6316789A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Color Television Signals (AREA)

Abstract

PURPOSE:To adjust the set condition of a phase shifting unit at any time by adding a chrominance signal and a signal which is obtained by phase shifting the chrominance signal through the phase shifting unit to two input multiplication detectors respectively and controlling the phase shifting unit with the output signal of the multiplication detector. CONSTITUTION:The chrominance signal and the signal which directly passes through the signal and the phase shifting unit 1 are added to the respective inputs of the first multiplication detector 2 and the second multiplication detector 3 and the first multiplication detector 2 detects for the duration of a burst gate pulse to generate a burst detection output. From the burst detection output a DC voltage is detected and inputted in a voltage comparison circuit 6 with a reference voltage generated by a reference voltage generation circuit 5. The output of the voltage comparison circuit 6 is generated when the inputted DC voltage, that is, the DC voltage corresponding to the detected output of the first multiplication detector 2 is compared with the specified reference voltage and it exceeds the specified reference voltage, and the output of the circuit 6 makes a capacity control circuit 7 start. Thus when the capacity control circuit 7 is made to start the variable capacity in the phase shifting unit 1 can be adjusted to a desirable capacity value.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、カラーテレビジョン受像機に用いる色復調
回路、とりわけ、セカム(S E CA M )方式の
カラーテレビジョン受像機に用いられる色復調回路に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a color demodulation circuit used in a color television receiver, and more particularly to a color demodulation circuit used in a SECAM color television receiver. It is something.

従来の技術 SECAM方式のカラーテレビジョン受像機で、搬送色
信号は、色度図上のR−Y軸成分を送る信号と、同じ<
 B−Y軸成分を送る信号とが、1水平走査線ごとに交
互に送られてくる線順次信号である。R−Y軸成分を送
る信号(DR倍信号は、4.40MHzの搬送波にR−
Y軸成分に比例した量で周波数変調されている。一方、
B−Y軸成分を送る信号(DB倍信号は、4.25MH
zの搬送波にB−Y軸成分に比例した量で周波数変調さ
れている。そして、この搬送色信号の復調は、第4図の
構成ブロック図のように、通常のリミッタ回路を通った
搬送色信号と、同搬送色信号を移相器1に加えて移相量
を調整した信号とを、第1の掛算検波器2および第2の
掛算検波器3に、それぞれ、並列に入力し、第1の掛算
検波器2からはバーストゲートパルス期間に検波された
信号、いわゆる、バースト検波出力を、第2の掛算検波
器3からは線順次色差出力を、それぞれ、得ている。移
相器1には、コイル、容量および抵抗を含み、復調信号
は周波数に対する正弦波関数として、とくに、リニアに
変化する領域を利用して、取り出される。この復調を適
切に行うには、移相器1の移相量を調整する必要がある
。従来、この移相量の調整は、第2の掛算検波器3の出
力を観測しながら、4.40MHzのDR倍信号4.2
5MHzのDB信号とを復調した各直流電圧が、それぞ
れ、所定の相対値で得られるように、移相器1中の可変
容量を手動で調整する方式で行っていた。
In a conventional SECAM color television receiver, the carrier color signal is the same as the signal that sends the R-Y axis components on the chromaticity diagram.
The signal for sending the B-Y axis components is a line sequential signal that is sent alternately for each horizontal scanning line. A signal that sends the R-Y axis component (DR multiplied signal is a signal that sends the R-Y axis component to the 4.40MHz carrier wave
The frequency is modulated by an amount proportional to the Y-axis component. on the other hand,
Signal to send B-Y axis component (DB double signal is 4.25MH
The frequency of the z carrier wave is modulated by an amount proportional to the BY axis component. In order to demodulate this carrier color signal, as shown in the block diagram of FIG. The signals detected during the burst gate pulse period are inputted in parallel to the first multiplicative detector 2 and the second multiplicative detector 3, respectively, and the signals detected during the burst gate pulse period, the so-called A burst detection output is obtained from the second multiplier detector 3, and a line-sequential color difference output is obtained from the second multiplier detector 3, respectively. The phase shifter 1 includes a coil, a capacitor, and a resistor, and the demodulated signal is extracted as a sine wave function with respect to frequency, particularly by using a linearly changing region. In order to properly perform this demodulation, it is necessary to adjust the amount of phase shift of the phase shifter 1. Conventionally, this adjustment of the amount of phase shift was performed by adjusting the 4.40 MHz DR multiplied signal 4.2 while observing the output of the second multiplier detector 3.
This was done by manually adjusting the variable capacitance in the phase shifter 1 so that each DC voltage demodulated from the 5 MHz DB signal was obtained at a predetermined relative value.

発明が解決しようとする問題点 ところが従来の色復調回路は、温度変化あるいは経時変
化をうけて、初期設定の状態からずれ、しばしば、再調
整を行わなければならない。
Problems to be Solved by the Invention However, conventional color demodulation circuits deviate from their initial settings due to temperature changes or changes over time, and often require readjustment.

この発明は、手動調整の不要な色復調回路を提供するも
のである。
The present invention provides a color demodulation circuit that does not require manual adjustment.

問題点を解決するための手段 この発明は、搬送色信号と、同搬送色信号を周波数によ
って移相量の変化する移相器に通じて移相させた信号と
を、二入力掛算検波器の各入力とし、前記掛算検波器を
バーストゲートパルス期間で使用状態にしたときの同掛
算検波器の出力信号で、前記移相器を制御する手段をそ
なえた色復調回路である。移相器を制御する手段には、
前記掛算検波器の出力信号を制御信号として用いる容量
制御回路を用い、これにより、前記移相器内の可変容量
を自動調整するのが最適である。
Means for Solving the Problems The present invention uses a two-input multiplier detector to convert a carrier color signal and a signal obtained by passing the carrier color signal through a phase shifter whose phase shift amount changes depending on the frequency. The color demodulation circuit is provided with means for controlling the phase shifter with an output signal of the multiplicative detector when the multiplicative detector is put into use during a burst gate pulse period as each input. The means for controlling the phase shifter include
It is optimal to use a capacitance control circuit that uses the output signal of the multiplicative detector as a control signal, thereby automatically adjusting the variable capacitance in the phase shifter.

作用 この発明によれば、搬送色信号と、これを移相器に通じ
て移相させた信号とを、それぞれ、二入力掛算検波器に
加え、この掛算検波器の出力信号によって、移相器を制
御するので、同移相器の設定条件を随時調整することが
できる。
According to the present invention, a carrier color signal and a signal obtained by passing the carrier color signal through a phase shifter and having its phase shifted are respectively applied to a two-input multiplier detector, and the output signal of the multiplier detector is used to input the carrier color signal to the phase shifter. Since the phase shifter is controlled, the setting conditions of the phase shifter can be adjusted at any time.

実施例 つぎに、この発明を実施例により詳しく述べる。Example Next, the present invention will be described in detail with reference to examples.

第1図は、この発明の実施例構成ブロック図である。搬
送色信号は、その直接信号と移相器1を通過した信号と
が、それぞれ、第1の掛算検波器2および第2の掛算検
波器3の各人力に加えられる。第1の掛算検波器2は、
バーストゲートパルス期間で検波して、バースト検波出
力を発生する。そこで、このバースト検波出力から、直
流検出回路4によって直流電圧を検出し、この直流電圧
を、基準電圧発生回路5によって発生された基準電圧と
共に、電圧比較回路6に入力する。この電圧比較回路6
の出力は、入力の直流電圧、すなわち、第1の掛算検波
器2の検波出力に対応する直流電圧が所定の基準電圧と
比較されて、所定の基準電圧を超えたときに発生し、こ
の出力で容量制御回路7を起動させる。そして、この容
量制御回路7が起動されたとき、移相器1内の可変容量
を所望の容量値に調整する。なお、可変容量には、可変
容量ダイオードが利用できる。
FIG. 1 is a block diagram of an embodiment of the present invention. The direct signal of the carrier color signal and the signal passed through the phase shifter 1 are respectively applied to the first multiplicative detector 2 and the second multiplicative detector 3. The first multiplicative detector 2 is
Detection is performed during the burst gate pulse period to generate a burst detection output. Therefore, a DC voltage is detected by the DC detection circuit 4 from this burst detection output, and this DC voltage is input to the voltage comparison circuit 6 together with the reference voltage generated by the reference voltage generation circuit 5. This voltage comparison circuit 6
The output is generated when the input DC voltage, that is, the DC voltage corresponding to the detection output of the first multiplier detector 2, is compared with a predetermined reference voltage and exceeds the predetermined reference voltage. The capacity control circuit 7 is activated. When this capacitance control circuit 7 is activated, it adjusts the variable capacitance within the phase shifter 1 to a desired capacitance value. Note that a variable capacitance diode can be used as the variable capacitor.

第2図は、第1の掛算検波器2ならびに第2の掛算検波
器3の周波数−出力電圧特性図であり、特性Iは調整の
中心周波数が低周波数側にずれている場合、特性■は同
じく中心周波数がDR倍信号搬送波(4,40MHz)
とDB信号の搬送波(4,25MHz)の中間(約4.
32MHz)にある場合および特性■は同じ(中心周波
数が高周波側にずれている場合の各典型例である。
FIG. 2 is a frequency-output voltage characteristic diagram of the first multiplicative detector 2 and the second multiplicative detector 3. Characteristic I is when the center frequency of adjustment is shifted to the lower frequency side, characteristic ■ is Similarly, the center frequency is a DR multiplied signal carrier (4.40MHz)
and the carrier wave (4.25MHz) of the DB signal (approximately 4.25MHz).
32 MHz) and characteristic (2) are typical examples of the same case (where the center frequency is shifted to the high frequency side).

第3図は、第1の掛算検波器2の出力電圧を、第2図示
の各周波数−出力電圧特性、すなわち、特性!、特性■
および特性■の各々の場合について、基準電圧Voと比
較して表示したものである。
FIG. 3 shows the output voltage of the first multiplicative detector 2 in the frequency-output voltage characteristics shown in the second diagram, that is, the characteristics! , characteristics■
and characteristic (2) are shown in comparison with the reference voltage Vo.

第1の掛算検波器2の出力は、バースト信号aの周期で
検波され、しかも、1水平走査線ごとに4.40MHz
と4.25M七とが検波されるため、特性Iでは出力波
形1a、特性■では出力波形11a。
The output of the first multiplicative detector 2 is detected at the period of the burst signal a, and is detected at a frequency of 4.40 MHz for each horizontal scanning line.
and 4.25M7 are detected, so the output waveform 1a is obtained for characteristic I, and the output waveform 11a is obtained for characteristic (■).

特性■では出力波形maのそれぞれの時系列波形となっ
て出現される。実際の回路構成では、第2図中の特性H
に基づいて第1の掛算検波器2の出力電圧が得られるよ
うに初期条件を設定して、このとき、同検波器2の出力
が、第3図中の出力波形IIaのように、正負各間等に
なるようにする。
In characteristic (2), each time-series waveform of the output waveform ma appears. In the actual circuit configuration, the characteristic H in Fig. 2 is
The initial conditions are set so that the output voltage of the first multiplier detector 2 is obtained based on Make sure the distance is even.

この状態では、直流検出回路4で検出される直流電圧が
平均値零になり、したがって、電圧比較回路6および容
量制御回路7の動作は静止のままである。次に、移相器
1の移相量が初期設定値からずれると、第1の掛算検波
器2の両人力信号間に変動が生じ、同検波器2の出力電
圧が、第3図の出力波形1aまたは同111aのように
、正または負のいずれかの電圧が大きくなるように変動
する。
In this state, the DC voltage detected by the DC detection circuit 4 has an average value of zero, and therefore the operations of the voltage comparison circuit 6 and the capacity control circuit 7 remain stationary. Next, when the phase shift amount of the phase shifter 1 deviates from the initial setting value, a fluctuation occurs between the two human input signals of the first multiplier detector 2, and the output voltage of the first multiplier detector 2 changes from the output shown in FIG. As shown in waveform 1a or waveform 111a, either the positive or negative voltage changes to become larger.

この結果、直流検出回路4で検出される直流電圧は、基
準電圧Voから正または負の側に移る。そのとき、電圧
比較回路6がはたらき、容量制御回路7が起動され、こ
の容量制御回路7によって、移相器1の可変容量が容量
値増または容量値域の向きに制御される。こうして、移
相器1の移相量が初期設定値に戻される。
As a result, the DC voltage detected by the DC detection circuit 4 moves to the positive or negative side from the reference voltage Vo. At this time, the voltage comparator circuit 6 operates, and the capacitance control circuit 7 is activated, and the variable capacitance of the phase shifter 1 is controlled by the capacitance control circuit 7 to increase the capacitance value or move toward the capacitance value range. In this way, the phase shift amount of the phase shifter 1 is returned to the initial setting value.

移相器1の移相量が一定の設定値に自動調整される状態
では、第2の掛算検波器3の出力、すなわち、線順次色
差出力も安定であり、色復調回路の機能が安定に維持さ
れる。
When the phase shift amount of the phase shifter 1 is automatically adjusted to a constant set value, the output of the second multiplicative detector 3, that is, the line-sequential color difference output is also stable, and the function of the color demodulation circuit is stable. maintained.

発明の効果 この発明によれば、搬送色信号を周波数によって移相量
の変化する移相器に通じて移相させた信号と原搬送色信
号とを掛算検波器に入力し、同掛算検波器の所定出力の
直流成分を検出し、これによって、移相器の移相量を自
動的に調整し得るので、これらの搬送色信号から色差信
号を復調する色復調回路の機能安定化が容易に達成され
る。
Effects of the Invention According to the present invention, the carrier color signal is passed through a phase shifter whose phase shift amount changes depending on the frequency, and the signal and the original carrier color signal are input to the multiplicative detector, and the multiplicative detector The DC component of a predetermined output of the phase shifter can be detected and the amount of phase shift of the phase shifter can be automatically adjusted thereby, making it easy to stabilize the function of the color demodulation circuit that demodulates color difference signals from these carrier color signals. achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の構成ブロック図、第2図は同実
施例の特性図、第3図は同実施例の詩形列出力波形図、
第4図は従来例の構成ブロック図である。 1・・・・・・移相器、2・・・・・・第1の掛算検波
器、3・・・・・・第2の掛算検波器、4・・・・・・
直流検出回路、5・・・・・・基準電圧発生回路、6・
・・・・・電圧比較回路、7・・・・・・容量制御回路
。 代理人の氏名 弁理士 中尾敏男 ほか1名第1図 第2図 第3図 第4図
FIG. 1 is a configuration block diagram of an embodiment of the present invention, FIG. 2 is a characteristic diagram of the embodiment, and FIG. 3 is a poem sequence output waveform diagram of the embodiment.
FIG. 4 is a block diagram of a conventional example. 1... Phase shifter, 2... First multiplicative detector, 3... Second multiplicative detector, 4...
DC detection circuit, 5...Reference voltage generation circuit, 6.
... Voltage comparison circuit, 7 ... Capacity control circuit. Name of agent: Patent attorney Toshio Nakao and one other person Figure 1 Figure 2 Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)搬送色信号と、同搬送色信号を周波数によって移
相量の変化する移相器に通じて移相させた信号とを、二
入力掛算検波器の各入力とし、前記掛算検波器をバース
トゲートパルス期間で使用状態にしたときの同掛算検波
器の出力信号で、前記移相器を制御する手段をそなえた
色復調回路。
(1) A carrier color signal and a signal obtained by passing the carrier color signal through a phase shifter whose phase shift amount changes depending on the frequency are input to a two-input multiplicative detector, and the multiplicative detector is A color demodulation circuit comprising means for controlling the phase shifter with an output signal of the multiplicative detector when activated during a burst gate pulse period.
(2)移相器を制御する手段が、掛算検波器の出力信号
を入力とする直流検出回路、同直流検出回路の出力を基
準電圧と比較する電圧比較回路および同電圧比較回路の
出力で起動される容量制御回路をそなえた特許請求の範
囲第(1)項記載の色復調回路。
(2) The means for controlling the phase shifter is activated by a DC detection circuit that receives the output signal of the multiplicative detector, a voltage comparison circuit that compares the output of the DC detection circuit with a reference voltage, and the output of the voltage comparison circuit. A color demodulation circuit according to claim (1), comprising a capacitance control circuit.
JP16133286A 1986-07-09 1986-07-09 Color demodulation circuit Pending JPS6316789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16133286A JPS6316789A (en) 1986-07-09 1986-07-09 Color demodulation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16133286A JPS6316789A (en) 1986-07-09 1986-07-09 Color demodulation circuit

Publications (1)

Publication Number Publication Date
JPS6316789A true JPS6316789A (en) 1988-01-23

Family

ID=15733069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16133286A Pending JPS6316789A (en) 1986-07-09 1986-07-09 Color demodulation circuit

Country Status (1)

Country Link
JP (1) JPS6316789A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7769192B2 (en) 2005-09-20 2010-08-03 Roland Corporation Speaker system with oscillation detection unit
US7912233B2 (en) 2005-09-20 2011-03-22 Roland Corporation Speaker system for musical instruments

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7769192B2 (en) 2005-09-20 2010-08-03 Roland Corporation Speaker system with oscillation detection unit
US7912233B2 (en) 2005-09-20 2011-03-22 Roland Corporation Speaker system for musical instruments

Similar Documents

Publication Publication Date Title
DE69025125T2 (en) Satellite receiver
US4020500A (en) Controlled oscillator
EP0079097A1 (en) Auto-tuned frequency discriminator
CA1175560A (en) Filter and phase shift circuit for a television automatic flesh color correction system
JPS6316789A (en) Color demodulation circuit
JPH0250676B2 (en)
KR830001359B1 (en) Phase Transition Filter Network Coupled within Color Video Signal Processing Equipment
US4157569A (en) Television receiver having a synchronous detection circuit and a frequency deviation-detection circuit to achieve a wide frequency range control function
EP0616474A2 (en) Television circuit utilizing color burst signal
JPH09181991A (en) If signal processing circuit
JPS5845230B2 (en) Color control device for color television receivers
JPS5943036B2 (en) Circuit layout in color television encoder
JP3539638B2 (en) RGB encoder
US2988592A (en) Automatic-chrominance-control system
JP3118395B2 (en) Chroma signal processor
US5122865A (en) Chroma key signal generator for a video editing apparatus
US3405230A (en) Color television demodulation system
GB2032207A (en) Colour television receivers
US4625233A (en) I-phase fleshtone correction system using R-Y, G-Y and B-Y color difference signal demodulators
JPS6093803A (en) Odd order harmonic wave generator
US5101265A (en) Secam color signal processing device
US3405231A (en) Color television demodulation system
JP3133658B2 (en) Chroma signal processor
US3715472A (en) Color emphasis circuit for tv receivers
JPS6327167A (en) Contour compensation circuit