JPS63167248A - Industrial ct scanner - Google Patents

Industrial ct scanner

Info

Publication number
JPS63167248A
JPS63167248A JP61310201A JP31020186A JPS63167248A JP S63167248 A JPS63167248 A JP S63167248A JP 61310201 A JP61310201 A JP 61310201A JP 31020186 A JP31020186 A JP 31020186A JP S63167248 A JPS63167248 A JP S63167248A
Authority
JP
Japan
Prior art keywords
radiation
detection
section
fan
detection part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61310201A
Other languages
Japanese (ja)
Inventor
Masaya Yoshida
雅也 吉田
Masaji Fujii
正司 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61310201A priority Critical patent/JPS63167248A/en
Publication of JPS63167248A publication Critical patent/JPS63167248A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph

Abstract

PURPOSE:To eliminate a part where radiation can not be detected by a separator by laminating plural detection parts where detecting elements and separators are arranged alternately, and arranging the detecting elements of the respective layers so that they shift in position. CONSTITUTION:A radiation beam from a radiation generator 11 is collimated by a slit 15 into a fan-shaped beam 14, which is projected on a sample 12. A radiation detector group 13 have detection parts 13a and 13b laminated. The detection part 13a has detecting elements 1 at positions obtained by dividing a fan angle alpha equally and separators 2 between them respectively, and the detection part 13b have an arrangement in the opposite relation from the detection part 13a. The quantity of radiation transmission is detected by respective detecting elements 1 of the detection part 13a by arrangement positions. While a turntable 16 is rotated by a specific angle, the sample is rotated by at least 180 deg.+alpha and data corresponding to respective angles are collected. Then the detector group 13 is lowered until the detection part 13b reaches the same plane with the fan-shaped beam and transmission data corresponding to the arrangement positions of the respective detecting elements of the detection part 13b, i.e. >=180 deg.+alpha are collected similarly.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、ファン状の放射線を被検体の特定断面に照射
し得られる透過データに基づき画像再構成処理を行ない
、特定断面の断層像を得る産業用CTスキャナに係り、
特に被検体を透過し九放射線の検出構成の改良に関する
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention performs image reconstruction processing based on transmission data obtained by irradiating fan-shaped radiation onto a specific cross section of an object, and Regarding industrial CT scanners that obtain cross-sectional tomographic images,
In particular, it relates to improvements in the detection configuration of nine radiations that pass through a subject.

(従来の技術) 第8図に従来の産業用eTスキャナの放射線検出部の放
射線入射方向から見た概略構成を示す。
(Prior Art) FIG. 8 shows a schematic configuration of a radiation detection section of a conventional industrial eT scanner as viewed from the radiation incident direction.

図において1はシンチレーション結晶体等が直方体形状
に成形された検出素子、2は各検出素子1間に配置され
各素子1が放射線を検出しシンチレーション現象により
発光した光を絶縁するセパノー夕である。
In the figure, 1 is a detection element in which a scintillation crystal or the like is formed into a rectangular parallelepiped shape, and 2 is a separator arranged between each detection element 1 to insulate the light emitted by the scintillation phenomenon when each element 1 detects radiation.

この検出素子1とセパレータ2とがファン状放射線の受
光面に沿って交互に配置され、検出素子1が放射線を検
知し発光した光量は、検出素子1の側面に配置され九光
電変換部により電気信号に変換され、透過データとして
出力される。
The detection element 1 and the separator 2 are arranged alternately along the fan-shaped radiation receiving surface, and the amount of light emitted when the detection element 1 detects the radiation is converted into electricity by the nine photoelectric conversion parts arranged on the side of the detection element 1. It is converted into a signal and output as transparent data.

(発明の解決しようとする問題点) 産業用CTスキャナでは検出素子1の実装密度、即ち、
各素子1間の配置間隔の細かさによって再構成された断
層像の分解能は決定される。しかし従来の検出部では検
出素子1間に配置するセパレータ2によって放射線の検
出不可部分が生じて検出素子1の放射線検出面の実装密
度も制限されてしまい、分解能が限定されてしまった。
(Problems to be solved by the invention) In an industrial CT scanner, the mounting density of the detection element 1, that is,
The resolution of the reconstructed tomographic image is determined by the fineness of the arrangement interval between the elements 1. However, in the conventional detection section, the separator 2 disposed between the detection elements 1 creates a portion where radiation cannot be detected, which limits the mounting density of the radiation detection surface of the detection elements 1, and thus limits the resolution.

本発明は、上記問題点を解消するためになされたもので
、放射線検出部の構成を大きく変更することなく、実装
密度を大幅に向上させ得る産業用CTスキャナを提供す
るものである。
The present invention has been made to solve the above-mentioned problems, and provides an industrial CT scanner that can significantly improve the packaging density without significantly changing the configuration of the radiation detection section.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、上記目的を達成するために、産業用CTスキ
ャナの放射線検出部を、検出素子とセパレータとが交互
に配置された検出部を複数台積層し、各層の検出素子を
ずらして配置することにより、セパレータによる放射線
検出不可部分を解消するものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention has a radiation detection section of an industrial CT scanner in which a plurality of detection sections in which detection elements and separators are arranged alternately are stacked. By shifting the detection elements of each layer and arranging them, the area where radiation cannot be detected due to the separator is eliminated.

(作用) 各層の検出素子の配置位置をずらして積層された複数台
の放射線検出部を用いて、被検体の特定断面を透過した
放射線量を各層毎に順次検出するようにしたので、特定
断面の透過データ検出の分解能を向上できると共に各検
出素子間の光や放射線の散乱を有効に遮蔽できる。
(Function) The radiation dose transmitted through a specific cross section of the object is sequentially detected for each layer by using multiple radiation detectors stacked with the detection elements of each layer shifted in position. The resolution of transmission data detection can be improved, and scattering of light and radiation between each detection element can be effectively blocked.

(実施例) 以下、この発明を図面を参照し一実施例を用いて説明す
る。第1図及び第2図は放射線発生器11と、被検体1
2と、放射線検出器群との配置関係を示しており、第2
図はその平面図、第3図はその側面図である。なお、本
実施例では放射線検出部を2台積層した場合の例を用い
て説明し、また第3図と同一構成には同一符号を付し説
明は省略する。
(Example) Hereinafter, the present invention will be described using an example with reference to the drawings. 1 and 2 show the radiation generator 11 and the subject 1.
2 and the radiation detector group.
The figure is a plan view thereof, and FIG. 3 is a side view thereof. Note that this embodiment will be described using an example in which two radiation detection units are stacked, and the same components as in FIG. 3 are denoted by the same reference numerals, and the explanation will be omitted.

放射線発生器11は、高エネルギーの放射線ビームを放
射するもので、所定位置で一定方向をもって固定設置さ
れている。この放射線ビームは、スリット15によって
所望スライス厚に対応したファン状ビーム14にコリメ
ートされる。ファン状ビーム14は、ファン角度αで扉
状に広がるビームであり、被検体12に照射される。
The radiation generator 11 emits a high-energy radiation beam, and is fixedly installed at a predetermined position in a fixed direction. This radiation beam is collimated by a slit 15 into a fan-shaped beam 14 corresponding to the desired slice thickness. The fan-shaped beam 14 is a beam that spreads like a door at a fan angle α, and is irradiated onto the subject 12.

被検体12はターンテーブル16に載置さへこのテーブ
ルの回転とともに所定回転数で回動する。そしてこの被
検体12の特定断面に沿った平面上に照射されたファン
状ビーム14の透過線量は放射線検出器群13で検出さ
れ、透過データとして取得される。
The subject 12 is placed on a turntable 16 and rotates at a predetermined number of rotations as the table rotates. The transmission dose of the fan-shaped beam 14 irradiated onto a plane along a specific cross section of the subject 12 is detected by the radiation detector group 13 and acquired as transmission data.

放射線検出器群13は、第3図に示すように、ファン状
ビーム14の入射方向に対向して第1検出部13aと第
2検出部13bが積層されている。第1検出部13aは
、ファン状ビームと同一平面上でファン角αを等分した
位置に検出素子1が配置され、各検出素子1間には検出
素子1とビーム入射面の形状が同一のセパレータ2が配
置されている。
As shown in FIG. 3, the radiation detector group 13 includes a first detecting section 13a and a second detecting section 13b stacked so as to face each other in the direction of incidence of the fan-shaped beam 14. In the first detection unit 13a, the detection elements 1 are arranged at positions equally divided by the fan angle α on the same plane as the fan-shaped beam, and between each detection element 1, the shape of the detection element 1 and the beam incidence surface are the same. A separator 2 is arranged.

−万第2検出部13bは第1検出部13aの検出素子1
、セパレータ2の配置関係と逆の関係、即ち、検出素子
1にはセパレータ2が、セパレータIKは検出素子lが
対向するように配置されている。
- The second detection section 13b is the detection element 1 of the first detection section 13a.
, the separator 2 is arranged in a relationship opposite to that of the separator 2, that is, the separator 2 is arranged to face the detection element 1, and the detection element 1 is arranged to face the separator IK.

そして各検出素子1の側面には光電変換器13 C*1
3dが各々配置されζ検出素子1内での放射線量に対応
し次発光量を透過データとして電気信号を出力する。
A photoelectric converter 13C*1 is installed on the side of each detection element 1.
3d are arranged respectively, and output an electrical signal with the next luminescence amount as transmission data corresponding to the radiation dose within the ζ detection element 1.

次に第5図は、ターンテーブル16と放射線検出器群1
3との駆動系を示す図であるウターンテーブル16はテ
ーブル制御部21によって制御され、このテーブル制御
部21は例えば外部からの信号を入力する毎に回転を伝
えてターンテーブル16を所定角度回転されるギヤ等を
備えている。
Next, FIG. 5 shows the turntable 16 and the radiation detector group 1.
The turntable 16 is controlled by a table controller 21, and the table controller 21 transmits rotation to rotate the turntable 16 by a predetermined angle every time an external signal is input, for example. It is equipped with gears etc.

また放射線検出器群13は検出器群駆動制御部22によ
って制御され、この制御部22は第1検出部13aと第
2検出部13bをデープル制御部21のテーブル制御指
令に応じて上下動制御するものである。
Further, the radiation detector group 13 is controlled by a detector group drive control section 22, and this control section 22 controls the vertical movement of the first detection section 13a and the second detection section 13b according to a table control command from the table control section 21. It is something.

第6図はこの実施例の全体構成を示すブロック図である
。図において、25は放射線制御部であり、これは放射
線発生器11を制御して、放射線ビームを放射させるも
のである。21はテープル制御部、22は検出器駆動制
御部であり、26はデータ収集部で、検出器群13で検
出された映像データを、そのスライスすなわち検出器の
列13a、 13b毎に独立し”℃収集しデータとして
格納しておくものである。27は画像再構成装置で、デ
ータ収集部26からの透過データを入力して、断層像に
なるように画像を再構成処理するものである。28は画
像メモリで、データ収集部26からの各スライス毎の透
過データや、再構成処理されたデータを記憶しておくも
のである。29はCRTディスプレイ・コンソールで、
外部からの命令や信号を与え、かつ、再構成された画像
を要求に応じて表示するものである。
FIG. 6 is a block diagram showing the overall configuration of this embodiment. In the figure, 25 is a radiation control section, which controls the radiation generator 11 to emit a radiation beam. 21 is a table control section, 22 is a detector drive control section, and 26 is a data collection section, which independently collects the video data detected by the detector group 13 for each slice, that is, the rows of detectors 13a and 13b. ℃ is collected and stored as data. 27 is an image reconstruction device which inputs the transmission data from the data collection unit 26 and reconstructs the image so that it becomes a tomographic image. 28 is an image memory that stores transmission data for each slice from the data collection unit 26 and reconstructed data. 29 is a CRT display console;
It receives commands and signals from the outside and displays reconstructed images in response to requests.

次にこのように構成した装置の動作について説明する。Next, the operation of the apparatus configured as described above will be explained.

まず、オペレータ等の操作により、CRTディスプレイ
・コンソール29から動作指令信号が出力されると、放
射線制御部25はこの信号を受けて放射線発生器11を
制御し、放射線ビームを放射させる。この放射線ビーム
はスリット15によりファン状ビーム14にコリメート
され被検体12の特定断面に対して照射される。この被
検体12を透過した放射線量は、現在ファン状ビーム1
4と同一平面上に配置されている第1検出部13aの各
検出素子によってその配置位置毎に検出され、透過デー
タとしてデータ収集部26に出力される。
First, when an operation command signal is output from the CRT display console 29 through an operation by an operator or the like, the radiation control section 25 receives this signal and controls the radiation generator 11 to emit a radiation beam. This radiation beam is collimated into a fan-shaped beam 14 by a slit 15 and irradiated onto a specific cross section of the subject 12. The amount of radiation transmitted through this object 12 is now the fan-shaped beam 1
The detection elements of the first detecting section 13a arranged on the same plane as the first detecting section 4 detect each position of the first detecting section 13a, and output the transmitted data to the data collecting section 26 as transmission data.

データ収集部26は、第1検出部13aの透過データを
収集し終えるとコンソール29に終了信号を出力する。
When the data collection section 26 finishes collecting the transmission data of the first detection section 13a, it outputs an end signal to the console 29.

これを受はコンソール29はテーブル駆動制御部21を
動作させ、ターンテーブル16を所定角度回転させる。
In response to this, the console 29 operates the table drive control section 21 to rotate the turntable 16 by a predetermined angle.

この回転が終了すると、放射線制御部25を動作させ、
放射ビーム15を発生させて、第1検出部13aでその
角度の透過データを検出する。
When this rotation is completed, the radiation control unit 25 is operated,
A radiation beam 15 is generated, and the first detection unit 13a detects transmission data at that angle.

このようにして少なくとも1800+α角度以上被検体
を回転させ第1検出部13aが各角開毎のデータ収集し
終えると、コンソール29は検出器駆動部22を動作さ
せる信号を与える。これを受は検出器群、駆動部22は
、第6図に示す如く放射線検出器群13を第2検出部1
3bがファン状ビームと同一平面に至るまで下降させる
。この移動が終了するとコンノールは、第1検出部13
aのときにファン状ビーム14を照射した方向と同一方
向になるようにターンテーブル16の回転方向をリセッ
トする。そして第1検出部13aの場合と同様に放射機
制御部25、テーブル駆動制御部21が放射線発生器1
1の放射線照射ターンテーブル16の回転を制御し、少
なくとも180°+α角度以上の第2検出部13の各検
出素子の配置位置に対応した透過データを得て、データ
収集部26に出力される。
When the subject is thus rotated by at least 1800+α angles and the first detection section 13a finishes collecting data for each angular opening, the console 29 gives a signal to operate the detector drive section 22. In response to this, the drive unit 22 moves the radiation detector group 13 to the second detection unit 1 as shown in FIG.
3b is lowered until it is flush with the fan beam. When this movement is completed, the connor moves to the first detection unit 13.
The rotational direction of the turntable 16 is reset so that it is the same direction as the direction in which the fan-shaped beam 14 was irradiated at time a. As in the case of the first detection section 13a, the radiation machine control section 25 and the table drive control section 21 are connected to the radiation generator 1.
The rotation of the first radiation irradiation turntable 16 is controlled to obtain transmission data corresponding to the arrangement position of each detection element of the second detection unit 13 at least at an angle of 180°+α or more, and output to the data collection unit 26.

データ収集部26は、第1検出部13a1第2検出部1
3b各々からの各角度毎に対応した透過データに対して
、A/D変換、10g変換等の前処理を施こし画像メモ
リ26に格納する。
The data collection unit 26 includes a first detection unit 13a1 and a second detection unit 1.
Transmission data corresponding to each angle from each 3b is subjected to preprocessing such as A/D conversion and 10g conversion, and is stored in the image memory 26.

画像再構成装置27は画像メモリ26に格納された第1
検出部13a1第2検出部13bの透過データを各々独
立に読み出し、コンポリュション処理、バックプロジェ
クション処理等の公知の画像再構成処理を各透過データ
に対し独立に行ない、得られた再構成画像は独立に画像
メモリ28に格納する。
The image reconstruction device 27 uses the first image stored in the image memory 26.
The transmission data of the detection unit 13a1 and the second detection unit 13b are read out independently, and known image reconstruction processing such as convolution processing and back projection processing is independently performed on each transmission data, and the obtained reconstructed image is The images are stored independently in the image memory 28.

この画像メモリ28内の第1検出部13a1第2噴出部
13bの再構成画像データは、オペレータの要求に応じ
コンソール29で読み出され、各々独立K又は両者を画
像を組み合せてCRTディスプレイ上に表示される。
The reconstructed image data of the first detection section 13a1 and the second ejection section 13b in the image memory 28 is read out by the console 29 in response to an operator's request, and displayed on the CRT display either individually or by combining the two images. be done.

このように本実施例では、放射線検出器を検出素子1と
セパレーナ2を交互に組み合せ配置した場合に生じるセ
パレーナ2による放射機の検出不可部分を、積層された
他方の検出素子2によって透過データを検出できるので
、検出器の内部構成や接続関係等を変更することなく、
検出素子1の実装密度を倍増できる。
In this way, in this embodiment, when the radiation detector is arranged in an alternating combination of the detection elements 1 and separators 2, the parts of the radiator that cannot be detected by the separators 2 are detected by the other laminated detection element 2. can be detected without changing the internal configuration or connection relationships of the detector.
The mounting density of the detection element 1 can be doubled.

また、放射線発生器11からの高エネルギーの放射線ビ
ームを受光した場合に、第3図に示す如く検出素子1自
体から生じる散乱i(A、B)によりクロストークが発
生するが、本実施例では各検出素子1はその3万がセパ
レータ2で聞込まれる構成なので、セパレータで散乱線
が吸収され、隣接する検出素子1に影響を与えることは
なくなる。
Furthermore, when receiving a high-energy radiation beam from the radiation generator 11, crosstalk occurs due to scattering i(A, B) generated from the detection element 1 itself as shown in FIG. Since 30,000 of each detection element 1 is intercepted by a separator 2, the scattered radiation is absorbed by the separator and does not affect adjacent detection elements 1.

なお、−実施例では検出素子1とセパレータ2とがビー
ムの入射面形状が同一の構成の場合の例を用いて説明し
たが、本発明ではセパレータ2による放射線検出不可部
分を複数段に積層された検出素子1によって放射線を検
出できるように構成されたものであればよい。例えば低
エネルギーの放射線ビームを用い高分解能で検出したい
場合には、検出素子1の入射面に比ベセパレータ20入
射面が太きくなるため、セパレータ2の入射面を同一の
横幅になるまでの検出素子の個数分、検出部13a、b
を積層し、各積層間の検出素子1の配置位を全相互にず
らすようにしてもよい。
In addition, in the embodiment, the case where the detection element 1 and the separator 2 have the same beam incident surface shape was explained, but in the present invention, the portion where the radiation cannot be detected by the separator 2 is stacked in multiple stages. Any device may be used as long as it is configured so that radiation can be detected by the detection element 1 . For example, if you want to detect with high resolution using a low-energy radiation beam, the entrance surface of the separator 20 will be thicker than the entrance surface of the detection element 1, so the entrance surface of the separator 2 will need to be detected until the entrance surface of the separator 2 has the same width. Detectors 13a, b for the number of elements
The detection elements 1 may be stacked and the positions of the detection elements 1 between the stacked layers may be shifted from each other.

また、一実施例では第1検出部13aと第2検出部13
bとの組合せによる断漸像1スライス分の透過データの
収集の例を用いて説明したが、WIJ7図に示す如く、
ターンテーブル16の上下動又は放射線検出器群13の
上下動を繰シ返すことによりN枚の断層像を得ることが
できる。
Further, in one embodiment, the first detection section 13a and the second detection section 13
The explanation was given using an example of collecting transmission data for one slice of a progressive image in combination with b, but as shown in Figure WIJ7,
By repeating the vertical movement of the turntable 16 or the vertical movement of the radiation detector group 13, N tomographic images can be obtained.

さらに、一実施例では、第1検出部13aで少なくとも
180°+α角度の透過データ収集が終了した後、第2
検出部13bにシフトしてリセットしてから同様に18
0°+α角度のデータを収集していた。
Furthermore, in one embodiment, after the first detection unit 13a finishes collecting transmission data for at least an angle of 180°+α, the second detection unit 13a
After shifting to the detection section 13b and resetting it, the 18
Data was collected for the 0°+α angle.

しかし、本発明は同−角度毎に第1検出部13aと第2
検出部13bとを上下動させて透過データを収集するよ
うにしてもよい。
However, in the present invention, the first detection section 13a and the second detection section 13a are connected to each other at the same angle.
Transmission data may be collected by moving the detection unit 13b up and down.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、検出素子とセパ
レータとが交互に配置された放射線検出部を複数台積層
し、セパレータによる放射線検出不可部分に相当する透
過データを他層の検出素子によって検出し得るように各
層の検出素子が相互にずれて配置されているので、放射
線ビーム面における検出素子の配置効率が向上し、再構
成画像の分解能を大幅に向上し得る。
As explained above, according to the present invention, a plurality of radiation detecting units in which detecting elements and separators are arranged alternately are stacked, and transmission data corresponding to areas where radiation cannot be detected by the separators is transmitted by detecting elements in other layers. Since the detection elements of each layer are arranged offset from each other for detection, the efficiency of arrangement of the detection elements in the radiation beam plane is improved, and the resolution of the reconstructed image can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の構成を示す平面図、第2
図はこの発明の一実施例の構成を示す側面図、第3図及
び第4図は、この発明の一実施例の構成を説明するため
の概略構成図、第5図はこの発明の一実施例の構成を示
すブロック図、第6図はこの発明の一実施例の作用を説
明するための概略図、第7図はこの発明の他の実施例の
構成を示すフローチャート、第8図はこの発明の従来例
を示す概略構成図でおる。 1・・・検出素子 2・・・セパレータ 11・・・放射線発生器 13・・・放射線検出器群 15・・・スリット 16・・・ターンテーブル 22・・・検出器#嘔勅制御部 26・・・データ収集部 27・・・画像再構成装置 29・・・コンソール 代理人 弁理士 則 近 憲 佑 同  三俣弘文 第  4  図 第  5  図
FIG. 1 is a plan view showing the configuration of an embodiment of the present invention, and FIG.
The figure is a side view showing the configuration of an embodiment of the invention, FIGS. 3 and 4 are schematic configuration diagrams for explaining the configuration of an embodiment of the invention, and FIG. 5 is an embodiment of the invention. FIG. 6 is a schematic diagram for explaining the operation of one embodiment of the invention, FIG. 7 is a flowchart showing the structure of another embodiment of the invention, and FIG. 1 is a schematic configuration diagram showing a conventional example of the invention. 1...Detection element 2...Separator 11...Radiation generator 13...Radiation detector group 15...Slit 16...Turntable 22...Detector ...Data collection unit 27...Image reconstruction device 29...Console agent Patent attorney Nori Chika Nori Yudo Hirofumi Mitsumata Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 被検体の特定断面に対してファン状の放射線を少なくと
も180°+ファン角以上照射する放射線発生手段と、
この手段から発生された放射線の被検体の透過線量を検
出し透過データとして出力する放射線検出手段と、この
手段からの透過データに基づき画像再構成処理をし、前
記被検体の特定断面に対する断層像を得る産業用CTス
キャナにあつて、 前記放射線検出手段が、前記透過線量に応じて光を発す
る検出素子と、この検出素子からの光や散乱線を遮蔽す
るセパレータとが直線状に交互に配置された検出部を、
各層の検出素子の配置関係をずらした状態で積層され、
前記放射線発生手段から発生された放射線の被検体の透
過線量を各層毎に逐次検出することを特徴とする産業用
CTスキャナ。
[Scope of Claims] Radiation generating means for irradiating fan-shaped radiation at least 180°+fan angle or more to a specific cross section of the subject;
a radiation detection means for detecting the transmitted dose of the radiation generated by the means to the subject and outputting it as transmission data; and a tomographic image for a specific cross section of the subject that performs image reconstruction processing based on the transmitted data from this means. In the industrial CT scanner, the radiation detection means includes a detection element that emits light according to the transmitted dose, and a separator that blocks light and scattered rays from the detection element, which are arranged alternately in a straight line. The detected part is
The detection elements in each layer are stacked with the arrangement relationship shifted,
An industrial CT scanner characterized in that the amount of radiation transmitted from the radiation generating means through the subject is sequentially detected for each layer.
JP61310201A 1986-12-27 1986-12-27 Industrial ct scanner Pending JPS63167248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61310201A JPS63167248A (en) 1986-12-27 1986-12-27 Industrial ct scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61310201A JPS63167248A (en) 1986-12-27 1986-12-27 Industrial ct scanner

Publications (1)

Publication Number Publication Date
JPS63167248A true JPS63167248A (en) 1988-07-11

Family

ID=18002395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61310201A Pending JPS63167248A (en) 1986-12-27 1986-12-27 Industrial ct scanner

Country Status (1)

Country Link
JP (1) JPS63167248A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049586A (en) * 1996-04-04 2000-04-11 Hitachi, Ltd. Non-destructive inspection apparatus and inspection system using it
JP2013164352A (en) * 2012-02-10 2013-08-22 Central Research Institute Of Electric Power Industry Visualization method and visualization device for moving object

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049586A (en) * 1996-04-04 2000-04-11 Hitachi, Ltd. Non-destructive inspection apparatus and inspection system using it
US6333962B1 (en) 1996-04-04 2001-12-25 Hitachi, Ltd. Non-destructive inspection apparatus and inspection system using it
JP2013164352A (en) * 2012-02-10 2013-08-22 Central Research Institute Of Electric Power Industry Visualization method and visualization device for moving object

Similar Documents

Publication Publication Date Title
JP3449561B2 (en) X-ray CT system
CN1698541B (en) Direct conversion energy discriminating ct detector
US20100252742A1 (en) Multi-layered detector system for high resolution computed tomography
CN100486524C (en) CT detector fabrication process
US7486764B2 (en) Method and apparatus to reduce charge sharing in pixellated energy discriminating detectors
US8488736B2 (en) Stacked flat panel x-ray detector assembly and method of making same
RU2444723C2 (en) Apparatus and method of inspecting objects
RU2599276C1 (en) Detector device, computer tomography system with two energy levels and method of detecting using said system
US4503332A (en) Grazing angle detector array
US9076563B2 (en) Anti-scatter collimators for detector systems of multi-slice X-ray computed tomography systems
US4433427A (en) Method and apparatus for examining a body by means of penetrating radiation such as X-rays
EP1876955A2 (en) Double decker detector for spectral ct
US8385499B2 (en) 2D reflector and collimator structure and method of manufacturing thereof
CN1135430C (en) Computerized tomograph camera
CN104285161A (en) SPECT/PET imaging system
JPH0634712Y2 (en) X-ray detector
US4187430A (en) Tomograph for the production of transverse layer images
JP2003167058A5 (en)
CN108369284A (en) Using the high resolution computer tomography of detector on the edge with time migration depth segment
JP5547873B2 (en) X-ray CT system
JPH1057366A (en) Computed tomograph
JP4076283B2 (en) Radiation tomography apparatus and X-ray tube
JPS63167248A (en) Industrial ct scanner
GB2221129A (en) Computerized tomography system
JPH06277208A (en) X-ray ct device