JPS63167198A - Conveying method for carbon monoxide - Google Patents

Conveying method for carbon monoxide

Info

Publication number
JPS63167198A
JPS63167198A JP61314461A JP31446186A JPS63167198A JP S63167198 A JPS63167198 A JP S63167198A JP 61314461 A JP61314461 A JP 61314461A JP 31446186 A JP31446186 A JP 31446186A JP S63167198 A JPS63167198 A JP S63167198A
Authority
JP
Japan
Prior art keywords
carbon monoxide
adsorbent
pressure
container
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61314461A
Other languages
Japanese (ja)
Inventor
Hidefumi Hirai
平井 英史
Akira Watanabe
明 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Kyushu Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Refractories Co Ltd filed Critical Kyushu Refractories Co Ltd
Priority to JP61314461A priority Critical patent/JPS63167198A/en
Publication of JPS63167198A publication Critical patent/JPS63167198A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To convey a large amount of carbon monoxide under the normal pressure or the pressure equal to or below 10 atmospheric pressure, by transporting a vessel, which is charged with a solid adsorbent adsorbing and storing carbon monoxide under a normal pressure or under the pressurized state, by means of an ordinary conveying means. CONSTITUTION:A solid carbon monoxide adsorbent (called 'dsorbent' hereinafter) activated beforehand is charged in a carbon monoxide conveying vessel (called 'vessel' hereinafter) without losing its activity. Following this, high purity carbon monoxide is fed into the vessel to be adsorbed by adsorbent. The adsorption is operated in the vessel inside under the normal pressure or pressurized state. When carbon monoxide adsorption by the adsorbent reaches a balanced state, charging of carbon monoxide is ceased. The vessel adsorbing and storing this carbon monoxide is transported by means of an ordinary conveying means to a place where the carbon monoxide is used. In this manner, a large amount of carbon monoxide is transported under the normal pressure or pressure equal to or below 10 atmospheric pressure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一酸化炭素を搬送する方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for transporting carbon monoxide.

〔従来の技術〕[Conventional technology]

一酸化炭素は合成化学の基礎原料であり、−酸化炭素の
製造場所より搬送する場合は、パイプラインで輸送する
場合を除き、任意の場所へは通常酸素、窒素や水素の場
合と同じ(、高圧容器(ボンベ)に数十気圧以上の高圧
で充填して搬送している。しかし、この方法では高圧ガ
スを取扱うことになり、容器の重量が大となるだけでな
く、作業に危険が伴なうため高圧ガス取締法の規制を受
ける。
Carbon monoxide is a basic raw material for synthetic chemistry, and when it is transported from the production site to any location, except when transported by pipeline, it is usually the same as for oxygen, nitrogen, and hydrogen. High-pressure containers (cylinders) are filled with high pressures of tens of atmospheres or more and transported.However, this method involves handling high-pressure gas, which not only increases the weight of the container but also poses dangers to the work. Therefore, it is subject to regulations under the High Pressure Gas Control Law.

〔発明が解決しようとする問題〕[Problem that the invention seeks to solve]

高圧ガス取締法の対象にならない10気圧以下の圧力で
一酸化炭素を搬送できれば容器も軽量となり搬送が容易
となる。しかし、単に圧力を下げただけでは一酸化炭素
を多量に搬送することは不可能である。
If carbon monoxide can be transported at a pressure of 10 atmospheres or less, which is not subject to the High Pressure Gas Control Law, the container will be lighter and easier to transport. However, it is impossible to transport a large amount of carbon monoxide simply by lowering the pressure.

一般に気体の搬送方法としては高圧容器による搬送方法
以外に、プロパンガスのように液下して搬送することが
考えられるが、−酸化炭素は臨界温度が一140℃であ
るため、この温度以下でなければ液化せず実用にはなら
ない。
In general, as a method of transporting gas, in addition to the transport method using a high-pressure container, it is possible to transport the gas by lowering it into a liquid such as propane gas. Without it, it would not liquefy and would not be of practical use.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、常圧または10気圧以下の低圧で多量に
一酸化炭素ガスを搬送する手段について検討を重ねた結
果、容器内に一酸化炭素を吸着・脱着する性質を有する
固体吸着剤を充填し、常圧または10気圧以下の加圧下
で一酸化炭素を吸着貯蔵させ、該容器を通常の運搬手段
により輸送することにより一酸化炭素ガスを搬送する方
法に到達したものである。
As a result of repeated studies on means of transporting large amounts of carbon monoxide gas at normal pressure or at a low pressure of 10 atmospheres or less, the present inventors developed a solid adsorbent that has the property of adsorbing and desorbing carbon monoxide in a container. A method has been developed for transporting carbon monoxide gas by filling the container, adsorbing and storing carbon monoxide under normal pressure or under pressurized pressure of 10 atmospheres or less, and transporting the container using ordinary transport means.

〔発明の構成〕[Structure of the invention]

本発明は容器内に一酸化炭素を吸着・脱着する性質を有
する固体吸着剤を充填し、常圧または10気圧以下の加
圧下で一酸化炭素を吸着貯蔵させ、該容器を通常の運搬
手段により輸送することにより一酸化炭素ガスを搬送す
る方法である。
The present invention involves filling a container with a solid adsorbent that has the property of adsorbing and desorbing carbon monoxide, adsorbing and storing carbon monoxide under normal pressure or under pressure of 10 atmospheres or less, and transporting the container by ordinary transportation means. This is a method of transporting carbon monoxide gas by transporting it.

即ち、あらかじめ賦活させた固体−酸化炭素吸着剤(以
下吸着剤という)を失活させない状態で一酸化炭素搬送
用容器(以下容器という)に充填する。容器には通常は
閉じている吸着剤充填口とバルブなどによって開閉可能
なガス出入口が設けである。
That is, a solid carbon oxide adsorbent (hereinafter referred to as "adsorbent") activated in advance is filled into a carbon monoxide transport container (hereinafter referred to as "container") without being deactivated. The container is provided with an adsorbent filling port, which is normally closed, and a gas inlet and outlet, which can be opened and closed by a valve or the like.

一酸化炭素ガスの充填に際しては、容器のガス、  入
口より高純度の一酸化炭素を送り込み吸着剤に吸着させ
る。この吸着操作は容器内を常圧または加圧して行なう
。容器内に充填される一酸化炭素の量を増すには加圧下
での操作が好ましいが、10気圧以上にすると高圧ガス
取締法の規制を受けるので、10気圧以下とすることが
好ましい。高圧ガス取締法の規制に準拠した容器を使用
すれば従来に比較して数倍の量の一酸化炭素が運搬でき
るのはもちろんである。
When filling with carbon monoxide gas, high-purity carbon monoxide is fed into the container from the gas inlet and adsorbed onto the adsorbent. This adsorption operation is carried out under normal pressure or pressurization inside the container. In order to increase the amount of carbon monoxide filled in the container, it is preferable to operate under pressure, but if the pressure is 10 atmospheres or more, it will be regulated by the High Pressure Gas Control Law, so it is preferable to set the pressure to 10 atmospheres or less. Of course, if a container that complies with the High Pressure Gas Control Law is used, it is possible to transport several times the amount of carbon monoxide compared to conventional methods.

吸着剤による一酸化炭素の吸着が平衡に達した時点で一
酸化炭素の送入を止め容器の入口のバルブを閉じる。
When the adsorption of carbon monoxide by the adsorbent reaches equilibrium, the supply of carbon monoxide is stopped and the valve at the inlet of the container is closed.

この−酸化炭素を吸着貯蔵した容器の運搬は通常の運搬
方法により一酸化炭素の使用場所まで輸送する。−酸化
炭素を使用する際には容器内を減圧、容器の加熱あるい
は容器内の一酸化炭素の分圧を低下させるなどの操作に
より、吸着剤に吸着されている一酸化炭素を脱着させ容
器外に取り出して使用に供する。
The container in which the carbon oxide is adsorbed and stored is transported to the place where the carbon monoxide is used by a normal transportation method. - When using carbon oxide, depressurize the inside of the container, heat the container, or lower the partial pressure of carbon monoxide in the container to desorb the carbon monoxide adsorbed by the adsorbent and remove it from the container. Take it out and use it.

本発明において容器内に充填される吸着剤は、−酸化炭
素吸着能を有し、減圧、加熱あるいは一酸化炭素の分圧
の低下などによって可逆的に近い状態で一酸化炭素を脱
着する能力を有するものであればいかなる吸着剤でも使
用できる。
In the present invention, the adsorbent filled in the container has the ability to adsorb carbon oxide, and has the ability to desorb carbon monoxide in a nearly reversible state by reducing pressure, heating, or lowering the partial pressure of carbon monoxide. Any adsorbent can be used.

特に−酸化炭素の吸着能力の大きい吸着剤としては配位
能力を有する金属イオンを担体に分散担持させた錯体吸
着剤が好ましい。このような金属としてはCu、AI、
Ag、Ni、Mn、Rh。
In particular, as an adsorbent having a high ability to adsorb carbon oxide, a complex adsorbent in which metal ions having coordination ability are dispersedly supported on a carrier is preferable. Such metals include Cu, AI,
Ag, Ni, Mn, Rh.

Feなどがあり、ハロゲン化!(1)、ハロゲン化鋼(
II)またはこれらとハロゲン化アルミニウムとの組合
わせ、特に塩化銅(I)、塩化鋼(II)またはこれら
と塩化アルミニウムとの組合わせが好ましい。一方、担
体としてはとッ≠炭、粘結炭、ヤシガラ炭などの活性炭
、スチレンおよびスチレン誘導体をジビニルベンゼンと
共重合させた架橋ポリスチレン、前記架橋ポリ、不チレ
ン樹脂に1,2゜3級アミノ基を有する置換基を導入し
たイオン交換樹脂、さらにはゼオライト、活性アルミナ
など1が使用できる。そのうちでも塩化鋼(I)−活性
炭系、塩化銅(II)−活性炭系、塩化銅CI)アルミ
ニウムー活性炭系、塩化銅(I)アルミニウムー架橋ポ
リスチレン系、塩化銅(I)−イオン交換樹脂系などの
吸着剤が吸脱着特性が優れている点で特に好ましい。
There are Fe, etc., and it is halogenated! (1), halogenated steel (
II) or their combination with aluminum halides, especially copper(I) chloride, steel(II) chloride or their combination with aluminum chloride. On the other hand, as carriers, activated carbon such as charcoal, caking coal, and coconut shell charcoal, crosslinked polystyrene made by copolymerizing styrene and styrene derivatives with divinylbenzene, and 1,2° tertiary amino Ion exchange resins into which substituents having groups have been introduced, as well as zeolites, activated alumina, etc. 1 can be used. Among them, chloride steel(I)-activated carbon system, copper(II) chloride-activated carbon system, copper chloride CI) aluminum-activated carbon system, copper(I) chloride-aluminum-crosslinked polystyrene system, copper(I) chloride-ion exchange resin system Adsorbents such as the following are particularly preferred because they have excellent adsorption and desorption properties.

これらの吸着剤の製造方法の一例としては、上記金属化
合物を水、塩酸、硝酸、アンモニアなどの無機溶媒ある
いはギ酸、酢酸、塩化メチレン、二硫化炭素、トルエン
、クロロホルム、四塩化炭素、ジクロロエタン、トリク
ロロエタン、テトラクロロエタン、テトラクロロエチレ
ン、シクロヘキサン、デカリン、アセトニトリルなどの
有機溶媒に溶解させて溶液をg7A製する。次いでこの
溶液中に担体を投入し、常圧下、または減圧下、好まし
くは100Torr以下において担体中に溶液を含浸さ
せる。含浸後渡圧あるいは加熱などの方法によって溶媒
を溜去させて吸着剤とするが、必要に応じて、この後賦
活処理を施すことができる。賦活処理は溶媒を溜去させ
た吸着剤をHe、Ar。
An example of a method for manufacturing these adsorbents is to combine the above metal compounds with water, an inorganic solvent such as hydrochloric acid, nitric acid, or ammonia, or with formic acid, acetic acid, methylene chloride, carbon disulfide, toluene, chloroform, carbon tetrachloride, dichloroethane, or trichloroethane. , tetrachloroethane, tetrachloroethylene, cyclohexane, decalin, acetonitrile, or other organic solvent to prepare a solution. Next, a carrier is introduced into this solution, and the solution is impregnated into the carrier under normal pressure or reduced pressure, preferably 100 Torr or less. After impregnation, the solvent is distilled off by a method such as passing pressure or heating to obtain an adsorbent, and if necessary, an activation treatment can be performed after this. In the activation treatment, the adsorbent from which the solvent has been distilled off is heated with He or Ar.

N2.N2.Coなどの不活性ガスまたは還元性ガスの
雰囲気下において、80℃以上、好ましくは150〜3
00℃の温度で加熱することにより行なわれる。
N2. N2. In an atmosphere of an inert gas such as Co or a reducing gas, the temperature is 80°C or higher, preferably 150-3
This is done by heating at a temperature of 00°C.

(実施例〕 以下実施例によって本発明をより詳細に説明する。(Example〕 The present invention will be explained in more detail with reference to Examples below.

実施例 1 ガラス容器に塩化銅(I)120gと3規定塩酸500
m1を加え、窒素雰囲気下で攪拌溶解して塩化銅塩酸溶
液を調製した。次に加熱蒸留装置に市販の活性炭の4〜
10メツシュ破砕品200gを装填し、真空ポンプを用
いて3 Torrで脱気を行なった。調製した塩化銅塩
酸溶液をこの蒸留装置内に注入し、3時間装置内を3 
Torrの減圧下に保った後、160℃に加熱して塩酸
を除去し、黒色粒状の塩化銅(I)−活性炭吸着剤を得
た。
Example 1 120 g of copper chloride (I) and 500 g of 3N hydrochloric acid in a glass container
ml was added and dissolved with stirring under a nitrogen atmosphere to prepare a copper chloride hydrochloric acid solution. Next, use commercially available activated carbon in the heating distillation equipment.
200 g of 10 mesh crushed product was loaded and degassed at 3 Torr using a vacuum pump. The prepared copper chloride hydrochloric acid solution was injected into this distillation apparatus, and the inside of the apparatus was heated for 3 hours.
After maintaining the mixture under reduced pressure of Torr, it was heated to 160° C. to remove hydrochloric acid, thereby obtaining a black granular copper (I) chloride-activated carbon adsorbent.

内容f4245m1の充填容器に調製した固体吸着剤1
60gを装填し、窒素気流中250”Cで1時間賦活処
理を行なった後空冷して容器内を25℃に保った。
Solid adsorbent 1 prepared in a container filled with content f4245ml
60 g of the container was loaded and activated at 250''C in a nitrogen stream for 1 hour, then air-cooled to maintain the inside of the container at 25°C.

次に容器内に純度99%以上の一酸化炭素を流通して容
器内の圧力が9 Kg/cm2(ゲージ圧)に到達した
時点で一時的に一酸化炭素の送入を止めた。しばらくす
ると容器内の圧力が徐々に低下してくるので、その都度
−酸化炭素を送って容器内の圧力を維持した。こうして
器内圧力が9 Kg/cm2−Gで平衡となった時点で
一酸化炭素の送入を止めた。この後第1表に示す各脱着
条件で一酸化炭素の脱着を行ない、−酸化炭素の回収量
を求めた。
Next, carbon monoxide with a purity of 99% or higher was passed into the container, and when the pressure inside the container reached 9 Kg/cm2 (gauge pressure), the supply of carbon monoxide was temporarily stopped. After a while, the pressure inside the container gradually decreased, so carbon oxide was supplied each time to maintain the pressure inside the container. In this way, the supply of carbon monoxide was stopped when the internal pressure reached equilibrium at 9 Kg/cm2-G. Thereafter, carbon monoxide was desorbed under each desorption condition shown in Table 1, and the amount of -carbon oxide recovered was determined.

比較例 1 25℃に保った内容積245m1の充填容器に固体吸着
剤を装填せずに一酸化炭素を9 Kg/cm2−Gの圧
力で充填後70℃、100 Torrで一酸化炭素の回
収を行なった。結果は同じく第1表に示す。
Comparative Example 1 A filled container with an internal volume of 245 m1 kept at 25°C was filled with carbon monoxide at a pressure of 9 Kg/cm2-G without loading a solid adsorbent, and then carbon monoxide was recovered at 70°C and 100 Torr. I did it. The results are also shown in Table 1.

実施例 2 ガラス製容器内に乾燥窒素を流通させながら塩化アルミ
ニウム140g1塩化銅(I)105g1ポリスチレン
樹脂(スチレン80mo1%とジビニルベンゼン20m
o1%の共重合体の20〜50メツシユのビーズ)13
0gを入れ、二硫化炭素を500m1加えて時々攪拌し
ながら加熱還流した。その後室温で攪拌しながら8時間
4 Torrに減圧して二硫化炭素を十分除去して赤茶
色の吸着剤を得た。
Example 2 140 g of aluminum chloride 105 g of copper(I) chloride 1 polystyrene resin (80 mo1% styrene and 20 m of divinylbenzene) while flowing dry nitrogen into a glass container
20-50 mesh beads of o1% copolymer) 13
0 g of carbon disulfide was added thereto, and 500 ml of carbon disulfide was added thereto, and the mixture was heated to reflux with occasional stirring. Thereafter, the pressure was reduced to 4 Torr for 8 hours while stirring at room temperature to sufficiently remove carbon disulfide to obtain a reddish-brown adsorbent.

内容量245m1の充填容器に乾燥窒素を流通させなが
ら調製した吸着剤140gを装填した。次いで一酸化炭
素によって器内の窒素ガスをパージした後実施例1と同
じ条件で一酸化炭素の吸脱着を行なった。結果を第2表
に示す。
140 g of the prepared adsorbent was loaded into a filled container with an internal capacity of 245 ml while flowing dry nitrogen. Next, after purging the nitrogen gas in the vessel with carbon monoxide, adsorption and desorption of carbon monoxide was performed under the same conditions as in Example 1. The results are shown in Table 2.

実施例 3 ガラス製容器内に乾燥窒素流通下で塩化鋼(I)120
g、 1級および1,2級アミノ基を有するイオン交換
樹脂100gと体積比1:1の水−アセトニトリル混合
溶媒10100Oを加え6時間攪拌した。その後器内を
5 Torrの減圧して80℃に加熱しなから液相を十
分除去して白緑色の吸着剤を得た。
Example 3 Chlorinated steel (I) 120 in a glass container under dry nitrogen flow
100 g of an ion exchange resin having primary and primary and secondary amino groups and 10,100 O of a water-acetonitrile mixed solvent at a volume ratio of 1:1 were added and stirred for 6 hours. Thereafter, the pressure inside the vessel was reduced to 5 Torr and heated to 80°C, and the liquid phase was sufficiently removed to obtain a white-green adsorbent.

内容量245m lの充填容器内に乾燥窒素を流通させ
ながら調製した吸着剤140gを装填した。次いで一酸
化炭素によって器内の窒素ガスをパージした後第3表に
示す条件で一酸化炭素の吸脱着を行なった。
140 g of the prepared adsorbent was loaded into a container with an internal capacity of 245 ml while flowing dry nitrogen. Next, after purging the nitrogen gas in the vessel with carbon monoxide, carbon monoxide was adsorbed and desorbed under the conditions shown in Table 3.

〔発明の効果〕〔Effect of the invention〕

本発明の一酸化炭素吸着剤を充填した容器による一酸化
炭素の搬送方法によれば、固体吸着剤を充填しない場合
に比較して、実施例1では6倍、実施例2では5倍の量
の一酸化炭素が同条件で搬送できる。比較的脱着量の低
い実施例3でも2借集    1    表 第    2    表 第    3    表 吸着剤140g の量の搬送が可能となり、本発明の方法の優秀さが示さ
れている。
According to the method for transporting carbon monoxide using a container filled with the carbon monoxide adsorbent of the present invention, the amount of carbon monoxide in Example 1 is 6 times that of the case where no solid adsorbent is filled, and the amount of carbon monoxide is 5 times that of Example 2. of carbon monoxide can be transported under the same conditions. Even in Example 3, which had a relatively low amount of desorption, it was possible to transport an amount of 140 g of adsorbent, demonstrating the superiority of the method of the present invention.

特許代表出願人 九州耐火煉瓦株式会社representative patent applicant Kyushu Firebrick Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 容器内に一酸化炭素を吸着・脱着する性質を有する固体
吸着剤を充填し、常圧または加圧下で一酸化炭素を吸着
貯蔵させ、該容器を通常の運搬手段により輸送すること
を特徴とする一酸化炭素の搬送方法。
A container is filled with a solid adsorbent that has the property of adsorbing and desorbing carbon monoxide, and carbon monoxide is adsorbed and stored under normal pressure or pressurization, and the container is transported by ordinary transportation means. How to transport carbon monoxide.
JP61314461A 1986-12-27 1986-12-27 Conveying method for carbon monoxide Pending JPS63167198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61314461A JPS63167198A (en) 1986-12-27 1986-12-27 Conveying method for carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61314461A JPS63167198A (en) 1986-12-27 1986-12-27 Conveying method for carbon monoxide

Publications (1)

Publication Number Publication Date
JPS63167198A true JPS63167198A (en) 1988-07-11

Family

ID=18053618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61314461A Pending JPS63167198A (en) 1986-12-27 1986-12-27 Conveying method for carbon monoxide

Country Status (1)

Country Link
JP (1) JPS63167198A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156517A (en) * 1982-03-13 1983-09-17 Hidefumi Hirai Adsorptive separation method of carbon monoxide
JPS5969414A (en) * 1982-10-09 1984-04-19 Hidefumi Hirai Separation of carbon monoxide by adsorption
JPS6113097A (en) * 1984-06-26 1986-01-21 Kashiwa Kagaku Kogyo:Kk Simple oxygen cylinder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156517A (en) * 1982-03-13 1983-09-17 Hidefumi Hirai Adsorptive separation method of carbon monoxide
JPS5969414A (en) * 1982-10-09 1984-04-19 Hidefumi Hirai Separation of carbon monoxide by adsorption
JPS6113097A (en) * 1984-06-26 1986-01-21 Kashiwa Kagaku Kogyo:Kk Simple oxygen cylinder

Similar Documents

Publication Publication Date Title
US5531809A (en) Pretreatment layer for CO-VSA
US5993766A (en) Gas source and dispensing system
US5106399A (en) Argon purification system
KR870000758B1 (en) Process for separating argon
US3006153A (en) Method and apparatus for storing and transporting ozone
US5685172A (en) Process and device for the preparation of a flow which is substantially purified with respect to at least one of the impurities oxygen and carbon monoxide
US3237379A (en) Adsorption systems in heatless fractionation processes
US4025321A (en) Purification of natural gas streams containing oxygen
EP0132915B1 (en) Method of preparing solid adsorbent for unsaturated hydrocarbon and process for separation of unsaturated hydrocarbon from gas mixture
US6083298A (en) Process for fabricating a sorbent-based gas storage and dispensing system, utilizing sorbent material pretreatment
CA3033841C (en) Method for recovering hydrogen from biomass pyrolysis gas
Kasuya et al. High purity CO gas separation by pressure swing adsorption
KR20060045436A (en) Ingredient and process for producing copper(i) chloride, adsorbent and adsorbing method for reductive gas each with the use of copper(i) chloride, and recovering method of carbon monoxide gas
Zhang et al. Construction of a Porous Metal–Organic Framework with a High Density of Open Cr Sites for Record N2/O2 Separation
US5271760A (en) Recovery of liquid mercury from process streams
KR20030041780A (en) Process and adsorbent for the recovery of krypton and xenon from a gas or liquid stream
US3029575A (en) Chlorine separation process
KR100397077B1 (en) Cryogenic adsorption process for producing ultra-high purity nitrogen
EP1146949A1 (en) Process for separation of ammonia gas and a solid adsorbent composition
US4020117A (en) Adsorptive recovery system for methyl chloride and methylene chloride
JPS63167198A (en) Conveying method for carbon monoxide
JPS6141841B2 (en)
CN110252078B (en) Method for adsorbing low-boiling-point organic matters by adopting resin
US2583239A (en) Separation of carbon monoxide from gaseous mixtures
KR102583047B1 (en) Methane-selective adsorbent and method for selective separation of methane using the same