JPS63167121A - Dynamic pressure type field bearing device - Google Patents

Dynamic pressure type field bearing device

Info

Publication number
JPS63167121A
JPS63167121A JP31217686A JP31217686A JPS63167121A JP S63167121 A JPS63167121 A JP S63167121A JP 31217686 A JP31217686 A JP 31217686A JP 31217686 A JP31217686 A JP 31217686A JP S63167121 A JPS63167121 A JP S63167121A
Authority
JP
Japan
Prior art keywords
lubricant
bearing
grease
oil
dynamic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31217686A
Other languages
Japanese (ja)
Inventor
Takafumi Asada
隆文 浅田
Takuji Nakamura
卓司 中村
Hideaki Ono
英明 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31217686A priority Critical patent/JPS63167121A/en
Publication of JPS63167121A publication Critical patent/JPS63167121A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a dynamic pressure type fluid bearing stable and high reliable even for high speed rotation, by providing a shaft, sleeve and a thrust bearing member and using grease, having density No.0 or less with fluorine oil serving as the basic oil, as the lubricant. CONSTITUTION:The whole unit of a herringbone groove 13A and a spiral groove 12A is filled with a lubricant 14. The lubricant 14 is grease manufactured by using a density increasing agent of teflon or the like for fluorine oil, and density of the grease 14 is set to No.0 or less for improving fluidity in a bearing clearance and decreasing bearing friction torque. If the fluorine grease of No.0 or less is used, necessary heat resistance as a dynamic pressure type fluid bearing is provided with no scattering and/or outflow, and stable rotary performance is obtained even for high speed rotation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はディスク駆動装置等に使われる動圧型流体軸受
とその潤滑剤に関するものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a hydrodynamic bearing used in a disk drive device and the like and a lubricant therefor.

従来の技術 近年、フロッピーディスク、光ディスク等、ディスク駆
動装置の軽薄短小化が進む中、その心臓部である回転主
軸部は小屋、高性能化を飛躍的に進めるため、従来の玉
軸受やすべり軸受に代わって動圧型流体軸受を採用する
動きがある。
Conventional technology In recent years, as disk drive devices such as floppy disks and optical disks have become lighter, thinner, and smaller, the rotating main shaft, which is the heart of the device, has become smaller.In order to dramatically improve performance, conventional ball bearings and plain bearings have been There is a movement to adopt hydrodynamic bearings instead.

以下図面を参照しながら従来の動圧型流体軸受について
説明する。第・3図は従来の動圧型流体軸受の断面図を
示すものである。1はフレーム、1Aはスリーブ、1B
は軸受穴、2はスラスト軸受部材でスパイラルグループ
2人を有している。
A conventional hydrodynamic bearing will be described below with reference to the drawings. FIG. 3 shows a cross-sectional view of a conventional hydrodynamic bearing. 1 is the frame, 1A is the sleeve, 1B
2 is a bearing hole, 2 is a thrust bearing member, and has two spiral groups.

3は軸で、3AはへV′ソングーングループである。3 is the axis, and 3A is the Heson V' group.

4は潤滑剤でありパーフルオロポリエーテル完全フッ素
化油(例えばモンテフレオス社製Z−OSオイル等であ
り以下フッ素オイルと称するC)または鉱油またはエス
テル系等の合成潤滑油等のオイルである。6はハブ、6
はモータロータ、7はモータステータである。モータロ
ータ6は、多くの場合モータステータ7を約1キログラ
ム以上の力で吸引し大きなスラスト力を発生している。
4 is a lubricant, which is an oil such as a perfluoropolyether fully fluorinated oil (for example, Z-OS oil manufactured by Montefreos, hereinafter referred to as fluorine oil), mineral oil, or synthetic lubricating oil such as an ester type lubricant. 6 is the hub, 6
is a motor rotor, and 7 is a motor stator. In many cases, the motor rotor 6 attracts the motor stator 7 with a force of about 1 kilogram or more, generating a large thrust force.

1人はへす/グポーングループ3Aとスパイラルグルー
プ2Aの間の近傍にたまった混入気泡を排出する通気穴
である。以上のように構成された動圧型流体軸受につい
て、以下その動作について説明する。モータステータ7
に通電されると回転磁界が発生し、モータロータ6ば、
軸3、ハブ5と共に回転を始める。ハブ5には図示しな
い磁気ディスク、光ディスク等の記録再生用ディスクが
取付けられている。回転が始まると軸3のへリングボー
ングループ3Aは軸受穴1Bの中の潤滑剤4にポンピン
グ圧力を与え、また同時にスラスト軸受部材2のスパイ
ラルグループ2人はスラスト軸受部材2と軸3の下端面
の間の潤滑剤4にポンピング圧力を与え、軸3はスリー
ブ1人とスラスト軸受部材4に対して浮上し無接触で回
転する。
One hole is a vent hole for discharging air bubbles accumulated near the Hesu/Gupone group 3A and the spiral group 2A. The operation of the hydrodynamic bearing configured as described above will be described below. Motor stator 7
When energized, a rotating magnetic field is generated, and the motor rotor 6,
It starts rotating together with the shaft 3 and hub 5. A recording/reproducing disk such as a magnetic disk or an optical disk (not shown) is attached to the hub 5. When rotation starts, the herringbone group 3A of the shaft 3 applies pumping pressure to the lubricant 4 in the bearing hole 1B, and at the same time, the two spiral groups of the thrust bearing member 2 pump the lower end surfaces of the thrust bearing member 2 and the shaft 3. Pumping pressure is applied to the lubricant 4 between them, and the shaft 3 floats on the sleeve and the thrust bearing member 4 and rotates without contact.

発明が解決しようとする問題点 しかしながら上記のような構成では以下のような問題が
あった。第1に潤滑剤14に前記したフッ素オイルを使
用した場合であるが、第4図に示すように回転数が数千
rpm以上の高速回転になると図中AとBに示す潤滑剤
と大気との境界面、即ち気液境界面に乱れが生じ部分的
には流れの状態が層流から乱流に変わり、長時間運転す
ると気液境界面の潤滑剤は同図4A 、 4Bに示すよ
うに飛散し、軸受部においては油切れが生じることがあ
った。これは第6図に示すように潤滑剤の流出防止原理
は、自重により下方にこぼれようとする力(図中ρq)
と回転により発生する遠心力(図中mrω2)の分力(
図中mrω2地θ)の和により流出しようとし、それに
対抗してオイル自身の表面張力(図中γ)による保持力
で流出を防止しているが、(ここでθは勾配、rは軸半
径、ωは軸角速度である。)フッ素オイルは表面張力γ
が小さく保持力が充分でない一方、密度ρ、質量mか大
きいので流出する力は大であり、高速回転状態では遠心
力や気液境界面の乱流の発生に対して潤滑剤が保持でき
ず、時間と共に潤滑剤が不足することがあった。特に動
圧型流体軸受特有の問題として、気液境界面(第4図中
A、B)付近にヘリングボーングループ3Aがあると高
速回転においてはこれが潤滑剤を攪拌し、潤滑剤の流出
を増加させていた。このように潤滑剤は鉱油やエステル
系の合成油のようにオイルシール性に優れた潤滑剤が望
まれていた。
Problems to be Solved by the Invention However, the above configuration has the following problems. The first case is when the above-mentioned fluorine oil is used as the lubricant 14, but as shown in Fig. 4, when the rotation speed becomes high speed of several thousand rpm or more, the lubricant shown in A and B in the figure interacts with the atmosphere. 4A and 4B, the flow state changes from laminar flow to turbulent flow. This could cause the oil to scatter and cause oil to run out in the bearing. As shown in Figure 6, the principle of preventing lubricant from spilling is due to the force that tends to spill downward due to its own weight (ρq in the figure).
The component force of the centrifugal force (mrω2 in the figure) generated by rotation and rotation (
The oil tends to flow out due to the sum of mrω2groundθ in the figure, and is prevented from flowing out by the holding force of the oil's own surface tension (γ in the figure). , ω is the shaft angular velocity.) Fluorine oil has a surface tension γ
On the other hand, the lubricant cannot be retained against centrifugal force and turbulent flow at the gas-liquid interface under high-speed rotation conditions. , the lubricant could run out over time. In particular, a problem specific to hydrodynamic bearings is that if there is a herringbone group 3A near the gas-liquid interface (A and B in Figure 4), this will agitate the lubricant during high-speed rotation, increasing the outflow of the lubricant. was. As described above, a lubricant with excellent oil sealing properties, such as mineral oil or ester-based synthetic oil, has been desired.

第2には潤滑剤4に鉱油またはエステル系等の合成潤滑
油を使った場合であるが、上記オイルシール性能は良好
であるが、次のような問題点があった。軸受が高速回転
すると軸受自身および軸受近傍のモータステータ7のコ
イルからの発熱により軸受部が約100’C以上に加熱
されるが、このような高温状態で連続運転を続けると潤
滑剤は時間と共に劣化し、一部は熱分解を始め軸受性能
が長期に保障できないことがあった。特にこの種の動圧
型流体軸受特有の問題として、スリーブ1人と軸3が金
属接触したときにはへリングボーングループ3Aのエツ
ジが切削摩耗を発生させたり、また、通常の真円軸受に
比べて多くの発熱をするため、例えばフッ素オイルのよ
うな耐熱性の良い潤滑剤が要望されていた。
The second case is when mineral oil or synthetic lubricating oil such as ester type lubricant is used as the lubricant 4, and although the oil seal performance is good, there are the following problems. When the bearing rotates at high speed, the bearing heats up to over 100'C due to heat generated by the bearing itself and the coil of the motor stator 7 near the bearing, but if continuous operation is continued at such high temperatures, the lubricant will deteriorate over time. In some cases, bearings deteriorated, and some of them even began to undergo thermal decomposition, making it impossible to guarantee long-term bearing performance. Particularly, a problem unique to this type of hydrodynamic bearing is that when one sleeve and the shaft 3 come into metal contact, the edges of the herringbone group 3A generate cutting wear, and the Because of this, there was a demand for a lubricant with good heat resistance, such as fluorine oil.

本発明は上記問題点に鑑み遠心力による潤滑剤の流出が
無く、耐熱性の良い、信頼性の高い動圧型流体軸受を提
供するものである。
In view of the above-mentioned problems, the present invention provides a highly reliable hydrodynamic bearing that does not cause outflow of lubricant due to centrifugal force, has good heat resistance, and is highly reliable.

問題点を解決するための手段 上記問題点を解決するために本発明の動圧型流体軸受は
軸とスリーブとスラスト軸受部材を有し、潤滑剤として
フッ素オイルを基油とした0号以下のグリスを使用した
ものである。
Means for Solving the Problems In order to solve the above problems, the hydrodynamic bearing of the present invention has a shaft, a sleeve, and a thrust bearing member, and uses a No. 0 or smaller grease with fluorine oil as a base oil as a lubricant. This is what was used.

作  用 本発明は上記構成によりグリスの粘着力により潤滑剤の
流出が防止され、フッ素オイルを基油にしているので耐
熱性にも優れ、信頼性の高い動圧型流体軸受が得られる
Effects According to the present invention, with the above structure, the adhesive force of the grease prevents the lubricant from flowing out, and since fluorine oil is used as the base oil, a hydrodynamic bearing with excellent heat resistance and high reliability can be obtained.

実施例 以下、本発明の一実施例の動圧型流体軸受について第1
図〜第2図を参照しながら説明する。第1図において1
1はフレーム、11Aはスリーブ、11Bは軸受穴、1
2はスラスト軸受部材でスパイラル形状等をした動圧発
生溝12Ai有している。13は軸で外周にはへリング
ボーン形状等をした動圧発生溝13Af有し、軸13の
下端面13Bは平坦かつ直角に加工されており、スラス
ト軸受部材12に当接している。14はへリングボーン
グループ13Aおよびスパイラルグループ12Aの全体
に充満した潤滑剤で110は軸受内部に混入した空気を
排出する通気穴である。16は軸13に固定されたハブ
で図示しない記録再生用ディスクはこのハブ15の上面
に固定され回転する。16はモータロータ、17はモー
タステータでモータロータ16は永久磁石からなり図中
矢印F2の吸引力(約1.6 キログラム)を発生して
いる。
Example Below, the first example of a hydrodynamic bearing according to an example of the present invention will be described.
This will be explained with reference to FIGS. In Figure 1, 1
1 is the frame, 11A is the sleeve, 11B is the bearing hole, 1
2 is a thrust bearing member having a spiral-shaped dynamic pressure generating groove 12Ai. A shaft 13 has a herringbone-shaped dynamic pressure generating groove 13Af on its outer periphery, and a lower end surface 13B of the shaft 13 is machined to be flat and at right angles, and is in contact with the thrust bearing member 12. Reference numeral 14 indicates a lubricant that fills the entire herringbone group 13A and spiral group 12A, and reference numeral 110 indicates a vent hole for discharging air mixed inside the bearing. A hub 16 is fixed to the shaft 13, and a recording/reproducing disk (not shown) is fixed to the upper surface of the hub 15 and rotates. 16 is a motor rotor, 17 is a motor stator, and the motor rotor 16 is made of a permanent magnet and generates an attractive force (approximately 1.6 kilograms) as indicated by arrow F2 in the figure.

以上のように構成された動圧型流体軸受について以下第
1図を用いてその動作を説明する。モータステータ17
に通電されると回転磁界が発生しモータロータ16は、
軸13.ハブ16と共に回転を始める。ハブ15には図
示しない磁気ディスク、光ディスク等の記録再生用ディ
スクが取付けられている。回転が始まると軸13のへリ
ングボーングループ13Aは軸受穴11Bの中の潤滑剤
14にポンピング圧力を与え、ま之スラスト部材12の
スパイラルグループ12Aもポンピング圧力を与えて同
図F2に対抗する浮上刃を発生し、軸13はスリーブ1
1A、スラスト軸受部材12に対して浮上し無接触で回
転する。第2図において潤滑剤14はフッ素オイル(例
えばモンテフレオス社製Z−03またはNOKクリュー
バ社與S J−07等)にテフロン等の増ちょう剤を用
いて贋造したグリスであり軸受隙間内での流動性を良く
し、軸受摩擦トルクを下げるためにグリス14のちょう
度は0号以下とした。
The operation of the hydrodynamic bearing constructed as described above will be described below with reference to FIG. 1. Motor stator 17
When energized, a rotating magnetic field is generated and the motor rotor 16 is
Axis 13. It starts rotating together with the hub 16. A recording/reproducing disk such as a magnetic disk or an optical disk (not shown) is attached to the hub 15. When rotation begins, the herringbone group 13A of the shaft 13 applies pumping pressure to the lubricant 14 in the bearing hole 11B, and the spiral group 12A of the mantle thrust member 12 also applies pumping pressure, causing the levitation to counteract F2 in the same figure. The shaft 13 generates a blade and the sleeve 1
1A, it floats on the thrust bearing member 12 and rotates without contact. In Fig. 2, the lubricant 14 is a fake grease made by using a thickener such as Teflon in fluorine oil (for example, Montefreos Z-03 or NOK Kluva S J-07, etc.), and the lubricant 14 is a grease made by using a thickener such as Teflon. The consistency of the grease 14 was set to 0 or less in order to improve the properties and reduce the bearing friction torque.

本発明の動圧型流体軸受に用いるフッ素グリス14と、
従来の潤滑剤の代表特性の違いを次に示す。
Fluorine grease 14 used in the hydrodynamic bearing of the present invention,
The differences in typical characteristics of conventional lubricants are shown below.

上表に示すように0号以下のフッ素グリスを使えば、(
1)軸受トルクの温度特性、(閾 耐熱性、(3)  
オイルシール性の3つの軸受必要性能を全て満足するこ
とができた。第2図は高速回転中の潤滑剤14の安定な
状態を示している。以上のように本実施例によれば潤滑
剤14は飛散や流出がなく、動圧型流体軸受として必要
な耐熱性を有し、高速回転でも安定な回転性能が得られ
、信頼性に優れた動圧型流体軸受を得ることができる。
As shown in the table above, if you use fluorine grease of size 0 or less, (
1) Temperature characteristics of bearing torque, (threshold heat resistance, (3)
All three bearing performance requirements for oil sealing were satisfied. FIG. 2 shows the stable state of the lubricant 14 during high speed rotation. As described above, according to this embodiment, the lubricant 14 does not scatter or flow out, has the heat resistance necessary for a hydrodynamic fluid bearing, provides stable rotational performance even at high speed rotation, and provides a highly reliable dynamic bearing. A pressure type fluid bearing can be obtained.

発明の効果 以上のように本発明はちょう付0号以下のフッ素グリス
を使うことにより高速回転でも安定で信頼性の高い動圧
型流体軸受を得ることができる。
Effects of the Invention As described above, the present invention makes it possible to obtain a hydrodynamic bearing that is stable and highly reliable even at high speed rotation by using fluorine grease with a stopper size of 0 or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例における動圧型流体軸受の断面図
、第2図は第1図の要部断面図、第3図は従来の動圧型
流体軸受の断面図、第4図は第3図の要部断面図、第6
図は第4図の0部の詳細図である。 11・・・・・・フレーム、11A山山スリーブ、12
・・・・・・スラスト軸受部材、12A・・・・・・ス
ラスト動圧発生溝、13・・・・−・軸、13A・・・
・・・ラジアル動圧発生溝、13B・・・・−・軸端面
、14・・・・・・フン素グリス。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名++
−−フL−4 イ −一一フL−ム 3−軸 5−一へフ。 0−一七一タ・υ−I 7−(−タスたグ 第4図
Fig. 1 is a sectional view of a hydrodynamic bearing according to an embodiment of the present invention, Fig. 2 is a sectional view of a main part of Fig. 1, Fig. 3 is a sectional view of a conventional hydrodynamic bearing, and Fig. 4 is a sectional view of a conventional hydrodynamic bearing. Cross-sectional view of the main part of the figure, No. 6
The figure is a detailed view of part 0 of FIG. 4. 11... Frame, 11A mountain sleeve, 12
...Thrust bearing member, 12A... Thrust dynamic pressure generation groove, 13... - Shaft, 13A...
... Radial dynamic pressure generation groove, 13B ... - shaft end surface, 14 ... Fluorine grease. Name of agent: Patent attorney Toshio Nakao and one other person++
--Frame L-4 A-11 Frame L-Frame 3-Shaft 5-1 Hef. 0-171ta・υ-I 7-(-tastag Figure 4

Claims (1)

【特許請求の範囲】[Claims] 軸とスリーブと前記軸端面に当接するスラスト軸受部材
とを有し、前記軸の外周またはスリーブ内周面のいずれ
か一方には動圧発生溝を有し、前記軸の端面または前記
スラスト軸受部材のいずれか一方には動圧発生溝を有し
、パーフルオロポリエーテル完全フッ素化油を基油とし
、ちょう度0号以下のグリスを注油したことを特徴とす
る動圧型流体軸受装置。
a shaft, a sleeve, and a thrust bearing member that abuts the end surface of the shaft; a dynamic pressure generating groove is provided on either the outer periphery of the shaft or the inner periphery of the sleeve; the end surface of the shaft or the thrust bearing member 1. A hydrodynamic bearing device characterized in that either one of the two has a dynamic pressure generating groove, the base oil is perfluoropolyether fully fluorinated oil, and the grease is lubricated with a consistency of No. 0 or less.
JP31217686A 1986-12-26 1986-12-26 Dynamic pressure type field bearing device Pending JPS63167121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31217686A JPS63167121A (en) 1986-12-26 1986-12-26 Dynamic pressure type field bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31217686A JPS63167121A (en) 1986-12-26 1986-12-26 Dynamic pressure type field bearing device

Publications (1)

Publication Number Publication Date
JPS63167121A true JPS63167121A (en) 1988-07-11

Family

ID=18026136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31217686A Pending JPS63167121A (en) 1986-12-26 1986-12-26 Dynamic pressure type field bearing device

Country Status (1)

Country Link
JP (1) JPS63167121A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158622U (en) * 1987-04-03 1988-10-18
CN100422583C (en) * 2003-04-24 2008-10-01 松下电器产业株式会社 Fluid bearing device and disk rotating device
CN109667835A (en) * 2019-01-25 2019-04-23 中国科学院兰州化学物理研究所 It is impregnated with the self-lubricating oily bearing and preparation method thereof of lubricationg jelly
WO2024084649A1 (en) * 2022-10-20 2024-04-25 日本ポリプロ株式会社 Polymerization reaction device and method for producing propylene polymer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158622U (en) * 1987-04-03 1988-10-18
CN100422583C (en) * 2003-04-24 2008-10-01 松下电器产业株式会社 Fluid bearing device and disk rotating device
CN109667835A (en) * 2019-01-25 2019-04-23 中国科学院兰州化学物理研究所 It is impregnated with the self-lubricating oily bearing and preparation method thereof of lubricationg jelly
WO2024084649A1 (en) * 2022-10-20 2024-04-25 日本ポリプロ株式会社 Polymerization reaction device and method for producing propylene polymer

Similar Documents

Publication Publication Date Title
US5847479A (en) Self-pressure-balanced hydrodynamic bearing spindle motor
JP2506836B2 (en) Hydrodynamic bearing device
JP3578948B2 (en) motor
US6196722B1 (en) Hydrodynamic bearing
JP2005003042A (en) Hydrodynamic bearing device
US20070230840A1 (en) Hydrodynamic bearing rotary device and information apparatus
US20060147135A1 (en) Hydrodynamic bearing motor
JP2002266861A (en) Fluid dynamic pressure bearing device
JP2007252168A (en) Fluid-bearing type rotary device
JP2007292107A (en) Fluid bearing type rotating device
JP2002266852A (en) Spindle motor
JPS63167121A (en) Dynamic pressure type field bearing device
JPS585518A (en) Dynamic pressure spindle apparatus
US7042125B2 (en) Hydraulic fluid dynamic bearing incorporating an asymmetric journal bearing
JP3799176B2 (en) Hydrodynamic sintered oil-impregnated bearing unit
JP4202080B2 (en) Hydrodynamic bearing device and spindle motor using the same
JPH1182478A (en) Fluid bearing device
JPH10255389A (en) Optical disk rotating device
JP4392112B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND SPINDLE MOTOR HAVING THE SAME
JPH11201143A (en) Fluid bearing device
JPH01247821A (en) Bearing device for high-speed rotary device
KR20010038339A (en) Spindle motor
JPS63167113A (en) Dynamic pressure type field bearing device
JP2004183867A (en) Dynamic pressure fluid bearing device, and motor provided with the same
JP2001146915A (en) Fluid bearing device for disc device