JPS63166966A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPS63166966A
JPS63166966A JP30985986A JP30985986A JPS63166966A JP S63166966 A JPS63166966 A JP S63166966A JP 30985986 A JP30985986 A JP 30985986A JP 30985986 A JP30985986 A JP 30985986A JP S63166966 A JPS63166966 A JP S63166966A
Authority
JP
Japan
Prior art keywords
vacuum chamber
target
substrate
pressure
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30985986A
Other languages
Japanese (ja)
Inventor
Mikio Nonaka
幹男 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuda Seisakusho Co Ltd
Original Assignee
Tokuda Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuda Seisakusho Co Ltd filed Critical Tokuda Seisakusho Co Ltd
Priority to JP30985986A priority Critical patent/JPS63166966A/en
Publication of JPS63166966A publication Critical patent/JPS63166966A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To form a thin film having high mirror reflectivity by measuring the pressure of an inert gas in a reaction chamber and the temp. in the chamber, and automatically starting sputtering when the measured pressure and temp. reach specified values in the title sputtering device utilizing the inert gas plasma generated in glow discharge. CONSTITUTION:A substrate 2 to be vapor-deposited and a metallic target 4 of Al, an Al alloy, etc., are set in a vacuum chamber 1 in opposition to each other, and the inside of the vacuum chamber 1 is evacuated by vacuum pumps 8 and 9. The target 4 and the vacuum chamber 1 are heated by heaters 5 and 6. When the temp. in the vacuum chamber measured by a thermocouple 13 reaches 100 deg.C, the discharge quantity of the residual gas in the vacuum chamber 1 is measured by a pressure gage 14, a CPU 18 is driven by the output from an arithmetic unit 17 when the quantity becomes <=1X10<-4>Pam<3>/sec to open a valve 11, hence gaseous Ar is supplied into the vacuum chamber 1 from an inlet 10, a power source 12 is energized to generate plasma discharge, and a vapor-deposited film having high mirror reflectivity and resulting from the Al-based metal of the target is formed on the substrate 2 with the ionized gaseous Ar.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はスパッタリング装置に係り、特にグロー放電に
より発生するガスプラズマを用いてスパッタリングを行
なうスパッタリング装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a sputtering apparatus, and particularly to a sputtering apparatus that performs sputtering using gas plasma generated by glow discharge.

(従来の技術) 従来から、真空チャンバ内にアルミニウムまたはアルミ
ニウム合金等からなるターゲットを配置し、この真空チ
ャンバ内にグロー放電によるガスプラズマを発生させ、
上記ターゲット材料を被覆されるべき基板の表面に付着
させて薄膜を形成するスパッタリング装置が多く用いら
れている。
(Prior Art) Conventionally, a target made of aluminum or an aluminum alloy is placed in a vacuum chamber, and gas plasma is generated by glow discharge in the vacuum chamber.
Sputtering apparatuses are often used to form a thin film by depositing the target material on the surface of a substrate to be coated.

このスパッタリングにより得られた薄膜は、半導体集積
回路等の微小固体素子の製造における電極形成あるいは
電極間配線として利用されており、この電極形成、電極
間配線の特性として鏡面反射率が高いこと要求されてい
る。これは、薄膜の形成後微細パターンを形成する過程
において薄い膜上に塗布するレジストと呼ばれる高分子
材料を紫外線等で露光する際に、位置合わせが可能な程
度に鏡面反射率が高ければ十分である。
Thin films obtained by this sputtering are used to form electrodes or interconnects between electrodes in the production of microsolid-state devices such as semiconductor integrated circuits, and high specular reflectance is required as a characteristic of the electrode formation and interconnects between electrodes. ing. This is because when exposing a polymeric material called resist, which is applied to a thin film in the process of forming a fine pattern after forming a thin film, to ultraviolet light, etc., it is sufficient that the specular reflectance is high enough to enable alignment. be.

(発明が解決しようとする問題点) しかし、従来のスパッタリング装置では、真空チャンバ
内の残留ガス量が原因で、結晶の異常成長や結晶粒の大
きさの不均一等が発生してしまい、」二記鏡面反射率が
低くなる場合があるという問題を有している。
(Problems to be solved by the invention) However, in conventional sputtering equipment, abnormal growth of crystals and non-uniformity of crystal grain size occur due to the amount of residual gas in the vacuum chamber. There is a problem in that the specular reflectance may be low.

本発明は上記した点に鑑みてなされたもので、鏡面反射
率を高めることのできるスパッタリング装置を提供する
ことを目的とするものである。
The present invention has been made in view of the above points, and an object of the present invention is to provide a sputtering apparatus that can increase specular reflectance.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成するため本発明に係るスパッタリング装
置は、真空排気される真空チャンバの内部に基板および
ターゲットを対向して配置するとともに、この真空チャ
ンバにプロセスガスを導入しながらグロー放電を発生さ
せて上記ターゲット材料を上記基板の表面に付着させる
スパッタリング装置において、上記真空チャンバを加熱
するヒータと、上記真空チャンバの温度を測定する温度
計と、真空チャンバ内の圧力を測定する圧力計と、上記
温度計および圧力計の測定値を人力し一定時間内の圧力
変化から残留ガス放出量を計算する計算ユニットと、こ
の計算ユニットによる値が100℃以上で1xlO−’
Pam/sec以下となったときにスパッタリングを自
動的に開始させる制御装置とを設けたことをその特徴と
するものである。
(Means for Solving the Problems) In order to achieve the above object, a sputtering apparatus according to the present invention disposes a substrate and a target facing each other inside a vacuum chamber to be evacuated, and also provides a process gas in this vacuum chamber. In the sputtering apparatus, the target material is attached to the surface of the substrate by generating a glow discharge while introducing a gas, a heater for heating the vacuum chamber, a thermometer for measuring the temperature of the vacuum chamber, and a thermometer for measuring the temperature of the vacuum chamber. A pressure gauge that measures pressure, a calculation unit that calculates the amount of residual gas released from the pressure change within a certain time by manually inputting the measured values of the thermometer and pressure gauge, and a value determined by this calculation unit that is 1xlO- '
It is characterized by the provision of a control device that automatically starts sputtering when the temperature drops below Pam/sec.

(作 用) 本発明においては、計算ユニットにより上記温度計およ
び圧力計の測定値を入力して計算した残留ガス放出量が
100℃以上で1×10−’PaTd/ s e c以
下となったときに、制御装置によりスパッタリングを自
動的に開始させるようにしたので、加熱による脱ガス効
果が高く、しかも1.残留ガス量が少なくなり、確実に
鏡面反射率の高い薄膜を得ることが可能となるものであ
る。
(Function) In the present invention, the amount of residual gas released calculated by inputting the measured values of the above-mentioned thermometer and pressure gauge by the calculation unit is 1×10-'PaTd/sec or less at 100°C or higher. Since sputtering is started automatically by the control device, the degassing effect due to heating is high, and 1. This reduces the amount of residual gas and makes it possible to reliably obtain a thin film with high specular reflectance.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示したもので、真空チャン
バ1の上面には、基板2を保持する支持部材3が取付け
られ、該下面には、アルミニウムまたはアルミニウム合
金からなるターゲット4が取付けられている。また、上
記ターゲット4の周辺および真空チャンバ1の外周面に
は、ヒータ5゜6がそれぞれ配設されており、真空チャ
ンバ1の側部には、途中排気バルブ7を介して油拡散真
空ポンプ8および油回転真空ポンプ9が接続されている
。さらに、真空チャンバ1の下面には、A「等のプロセ
スガスを導入するガス導入管10が開閉バルブ11を介
して接続され、上記ターゲット4および真空チャンバ1
には、それぞれ電源12が接続されている。
FIG. 1 shows an embodiment of the present invention, in which a support member 3 for holding a substrate 2 is attached to the upper surface of a vacuum chamber 1, and a target 4 made of aluminum or aluminum alloy is attached to the lower surface of the support member 3. installed. Additionally, heaters 5 and 6 are provided around the target 4 and on the outer peripheral surface of the vacuum chamber 1, and an oil diffusion vacuum pump 8 is connected to the side of the vacuum chamber 1 via an intermediate exhaust valve 7. and an oil rotary vacuum pump 9 are connected. Further, a gas introduction pipe 10 for introducing a process gas such as A is connected to the lower surface of the vacuum chamber 1 via an on-off valve 11, and is connected to the target 4 and the vacuum chamber 1 through an on-off valve 11.
A power supply 12 is connected to each of them.

上記真空チャンバ1には、熱電対13および圧力ゲージ
14が取付けられ、この熱電対13および圧力ゲージ1
4は、それぞれ温度計15および圧力計16を介して計
算ユニット17に接続されている。この計算ユニット1
7は、CPUユニット18に接続され、このCPUユニ
ット18は上記ガス導入管10の開閉バルブ11および
上記電源12のON、OFF制御を行なうようにしてい
る。
A thermocouple 13 and a pressure gauge 14 are attached to the vacuum chamber 1.
4 are connected to a calculation unit 17 via a thermometer 15 and a pressure gauge 16, respectively. This calculation unit 1
7 is connected to a CPU unit 18, and this CPU unit 18 controls ON/OFF of the opening/closing valve 11 of the gas introduction pipe 10 and the power supply 12.

本実施例においては、真空チャンバ1内を油拡散真空ポ
ンプ8および油回転真空ポンプ9により真空排気すると
ともに、各ヒータ5,6により真空チャンバ1を加熱す
る。そして、熱電対13により測定された温度が100
℃になった場合、排気バルブ7を閉じ、計算ユニット1
7により圧力ゲージ14の測定値に基づいて一定時間内
の圧力上昇から残留ガス放出量を計算し、そのガス放出
量が1×10−’Pam/secとなった場合に、排気
バルブ7を開き、CPUユニット18によりガス導入管
10の開閉バルブ11を開いてガスを導入しながら、i
!![12をONにしてスパッタリングを開始する。
In this embodiment, the inside of the vacuum chamber 1 is evacuated by the oil diffusion vacuum pump 8 and the oil rotary vacuum pump 9, and the vacuum chamber 1 is heated by the heaters 5 and 6. Then, the temperature measured by the thermocouple 13 is 100
℃, close the exhaust valve 7 and close the calculation unit 1.
7 calculates the amount of residual gas released from the pressure rise within a certain period of time based on the measured value of the pressure gauge 14, and when the amount of gas released reaches 1×10-'Pam/sec, the exhaust valve 7 is opened. , while the CPU unit 18 opens the on-off valve 11 of the gas introduction pipe 10 to introduce gas, i
! ! [Turn ON 12 and start sputtering.

第2図は加熱時間と残留ガス放出量との関係を示したも
ので、真空チャンバを1ケ月大気に放置後、真空排気と
同時に加熱し、設定温度(100℃)までの昇温時間は
無視するものとする。図中実線は加熱時におけるガス放
出量で、図中破線はそれぞれの加熱時間で常温まで冷却
した場合の常温におけるガス放出量である。これによる
と、実線のガス放出量が1×10−’PaTl1/se
cの場合、加熱時間は15h「であり、常温におけるガ
ス放出量が4X10−6PaTIt/secになッテイ
る。ことがわかる。また、第3図は加熱時のガス放出量
とアルミニウムの鏡面反射率との関係を示したもので、
ガス放出量が1×10−’Pam/sec以下であれば
、鏡面反射率が80%以上あることがわかる。
Figure 2 shows the relationship between heating time and the amount of residual gas released. After leaving the vacuum chamber in the atmosphere for one month, it is heated at the same time as evacuation, and the time taken to raise the temperature to the set temperature (100°C) is ignored. It shall be. The solid line in the figure is the amount of gas released during heating, and the broken line in the figure is the amount of gas released at room temperature when cooling to room temperature at each heating time. According to this, the gas release amount indicated by the solid line is 1×10-'PaTl1/se
In the case of c, the heating time is 15 hours, and the amount of gas released at room temperature is 4X10-6 PaTIt/sec. In addition, Figure 3 shows the amount of gas released during heating and the specular reflectance of aluminum. It shows the relationship between
It can be seen that the specular reflectance is 80% or more when the gas release amount is 1×10 −′ Pam/sec or less.

ここで、真空チャンバ1の温度を100℃以上としてい
るのは、100℃未満とすると、ガス放出の主要なH2
Oが排気されにく、加熱による脱ガス処理を円滑に行な
うことができなくなるためである。また、ガス放出量を
1×10−’PaT!l/sec以上とすると、残留ガ
ス量が多すぎてしまい結晶の異常成長や結晶粒の大きさ
の不均一等が発生してしまうためである。
Here, the reason why the temperature of the vacuum chamber 1 is set to 100°C or higher is because if it is lower than 100°C, H2, which is the main cause of gas release,
This is because O is difficult to be exhausted and degassing treatment by heating cannot be performed smoothly. Also, the amount of gas released is 1×10-'PaT! This is because if it exceeds 1/sec, the amount of residual gas will be too large, resulting in abnormal growth of crystals, non-uniformity of crystal grain size, etc.

さらに、第4図は加熱時のガス放出量とアルミニウムの
固有抵抗および硬度との関係を示したもので、ガス放出
量が1×10−’Parrl/s ec以下であれば、
固有抵抗的2.7μΩ叩、硬度的50kg/slを得る
ことができる。
Furthermore, Fig. 4 shows the relationship between the amount of gas released during heating and the specific resistance and hardness of aluminum; if the amount of gas released is 1 x 10-' Parrl/sec or less,
It is possible to obtain a resistivity of 2.7 μΩ and a hardness of 50 kg/sl.

したがって、本実施例においては、基板に形成した薄膜
の鏡面反射率を確実に高めることができ、かつ、低抵抗
の薄膜を得ることができ、半導体素子の電極や電極間配
線の形成を確実に行なうことが可能となる。
Therefore, in this example, the specular reflectance of the thin film formed on the substrate can be reliably increased, a thin film with low resistance can be obtained, and the electrodes of the semiconductor element and the wiring between the electrodes can be formed reliably. It becomes possible to do so.

【発明の効果〕【Effect of the invention〕

以上述べたように本発明に係るスパッタリング装置は、
計算ユニットにより上記温度計および圧力計の測定値を
入力して計算した残留ガス放出量が100℃以上で1×
10−’PaTIt/sec以下となったときに、制御
装置によりスパッタリングを自動的に開始させるように
したので、加熱による脱ガス効果が高く、シかも、残留
ガス量が少なくなり、確実に鏡面反射率の高い薄膜を得
ることが可能となる等の効果を奏する。
As described above, the sputtering apparatus according to the present invention has
If the amount of residual gas released calculated by inputting the measured values of the above thermometer and pressure gauge by the calculation unit is 100℃ or higher, 1×
Since sputtering is automatically started by the control device when the temperature drops below 10-'PaTIt/sec, the degassing effect due to heating is high, the amount of residual gas is reduced, and specular reflection is ensured. This has the effect of making it possible to obtain a thin film with a high ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図はそれぞれ本発明の実施例を示したも
ので、第1図は概略構成図、第2図はガス放出量と加熱
時間との関係を示す線図、第3図は鏡面反射率とガス放
出量との関係を示す線図、第4図は固有抵抗および硬度
とガス放出量との関係を示す線図である。 1・・・真空チャンバ、2・・・基板、4・・・ターゲ
ット、5.6・・・ヒータ、10・・・ガス導入管、1
3・・・熱電対、14・・・圧力ゲージ、17・・・計
算ユニット、18・・・CPUユニット。 出願人代理人  佐  藤  −雄 刃χfJ#、t (pam’/5ee)j!h3目 T人数出量(pam3/5ea) 弔4図
Figures 1 to 4 show examples of the present invention, respectively, with Figure 1 being a schematic diagram, Figure 2 being a diagram showing the relationship between gas release amount and heating time, and Figure 3 being a diagram showing the relationship between gas release amount and heating time. FIG. 4 is a diagram showing the relationship between the specular reflectance and the amount of gas released. FIG. 4 is a diagram showing the relationship between the specific resistance and hardness and the amount of gas released. DESCRIPTION OF SYMBOLS 1... Vacuum chamber, 2... Substrate, 4... Target, 5.6... Heater, 10... Gas introduction pipe, 1
3...Thermocouple, 14...Pressure gauge, 17...Calculation unit, 18...CPU unit. Applicant's agent Sato - Yuba χfJ#,t (pam'/5ee)j! h3th T number of people (pam3/5ea) Funeral figure 4

Claims (1)

【特許請求の範囲】[Claims] 真空排気される真空チャンバの内部に被覆されるべき基
板およびターゲットを対向して配置するとともに、この
真空チャンバにプロセスガスを導入しながらグロー放電
を発生させて上記ターゲット材料を上記基板の表面に付
着させるスパッタリング装置において、上記真空チャン
バを加熱するヒータと、上記真空チャンバの温度を測定
する温度計と、真空チャンバ内の圧力を測定する圧力計
と、上記温度計および圧力計の測定値を入力し一定時間
内の圧力変化から残留ガス放出量を計算する計算ユニッ
トと、この計算ユニットによる値が100℃以上で1×
10^−^4Pam^3/sec以下となったときにス
パッタリングを自動的に開始させる制御装置とを設けた
ことを特徴とするスパッタリング装置。
A substrate to be coated and a target are placed facing each other inside a vacuum chamber to be evacuated, and a glow discharge is generated while introducing a process gas into the vacuum chamber to attach the target material to the surface of the substrate. In the sputtering apparatus, a heater for heating the vacuum chamber, a thermometer for measuring the temperature of the vacuum chamber, a pressure gauge for measuring the pressure inside the vacuum chamber, and the measured values of the thermometer and pressure gauge are input. A calculation unit that calculates the amount of residual gas released from pressure changes within a certain period of time, and a value calculated by this calculation unit that is 1× when the value is 100℃ or higher.
1. A sputtering apparatus comprising: a control device that automatically starts sputtering when the speed decreases to 10^-^4Pam^3/sec or less.
JP30985986A 1986-12-27 1986-12-27 Sputtering device Pending JPS63166966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30985986A JPS63166966A (en) 1986-12-27 1986-12-27 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30985986A JPS63166966A (en) 1986-12-27 1986-12-27 Sputtering device

Publications (1)

Publication Number Publication Date
JPS63166966A true JPS63166966A (en) 1988-07-11

Family

ID=17998153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30985986A Pending JPS63166966A (en) 1986-12-27 1986-12-27 Sputtering device

Country Status (1)

Country Link
JP (1) JPS63166966A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548129A (en) * 1977-06-20 1979-01-22 Siemens Ag Method of making metallic layer
JPS56163438A (en) * 1980-05-21 1981-12-16 Toshiba Corp Method for detecting hardening of resin in resin sealed semiconductor device
JPS61147870A (en) * 1984-12-20 1986-07-05 Anelva Corp Formation of al film by sputtering

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548129A (en) * 1977-06-20 1979-01-22 Siemens Ag Method of making metallic layer
JPS56163438A (en) * 1980-05-21 1981-12-16 Toshiba Corp Method for detecting hardening of resin in resin sealed semiconductor device
JPS61147870A (en) * 1984-12-20 1986-07-05 Anelva Corp Formation of al film by sputtering

Similar Documents

Publication Publication Date Title
CN1555424B (en) For controlling technique and the product produced thereby of uniformity of film
KR890002995A (en) High temperature heating sputtering method
WO2006087777A1 (en) Pressurizing type lamp annealing device, pressurizing type lamp annealing method, thin-film, and electronic component
JP5238688B2 (en) CVD deposition system
EP0355657B1 (en) Method of depositing a tungsten film
JP4806856B2 (en) Heat treatment method and heat treatment apparatus
WO2004021415A1 (en) Treating apparatus and method of treating
KR102388169B1 (en) METHOD OF FORMING RuSi FILM AND FILM-FORMING APPARATUS
JP3667038B2 (en) CVD film forming method
JP3469420B2 (en) CVD film forming method
JPS63166966A (en) Sputtering device
JPH11150073A (en) Thin-film forming equipment
JPH0878392A (en) Plasma processing apparatus and method for forming films for semiconductor wafer
JP2004206662A (en) Apparatus and method for processing
JP3111211B2 (en) Thin film manufacturing apparatus and manufacturing method
JPH0774166A (en) Heat treatment equipment
JP2002367975A (en) Thin-film manufacturing method
JPH0663095B2 (en) CVD equipment
JPH05171434A (en) Formation of aluminum alloy film
JP2000107587A (en) Method and apparatus for calibrating gas pressure in bell jar (vacuum film forming chamber or container)
JP2756126B2 (en) Sputtering equipment
JPS6132511A (en) Processing device for vapor growth and the like
JPS63259081A (en) Plasma cvd device
JPH08190994A (en) Electrode of plasma processing device
JP2002313728A (en) Film forming method and film forming apparatus