JPS63166797A - Synthesis of diamond - Google Patents

Synthesis of diamond

Info

Publication number
JPS63166797A
JPS63166797A JP30917286A JP30917286A JPS63166797A JP S63166797 A JPS63166797 A JP S63166797A JP 30917286 A JP30917286 A JP 30917286A JP 30917286 A JP30917286 A JP 30917286A JP S63166797 A JPS63166797 A JP S63166797A
Authority
JP
Japan
Prior art keywords
heating element
diamond
mixed gas
hydrocarbon
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30917286A
Other languages
Japanese (ja)
Other versions
JPH0420879B2 (en
Inventor
Masaaki Tobioka
正明 飛岡
Akihiko Ikegaya
池ケ谷 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP30917286A priority Critical patent/JPS63166797A/en
Publication of JPS63166797A publication Critical patent/JPS63166797A/en
Publication of JPH0420879B2 publication Critical patent/JPH0420879B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To keep a heating element at a high temperature and improve quality of diamond, by preheating a mixed gas of hydrogen and a hydrocarbon with a heating element consisting of an alloy containing Ta as a principal component and Zr and/or Hf in a chemical vapor deposition method. CONSTITUTION:A heating element is formed from an alloy consisting of 60-99wt.% Ta and the remainder of Zr and/or Hf. A mixed gas of a hydrocarbon and hydrogen is preheated with the heating element. The heated mixed gas is then introduced into the surface of a substrate to deposit diamond on the substrate by thermal decomposition of the hydrocarbon.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、気相よシ加熱した基板表面にダイヤモンドを
析出させる方法であって、超高圧。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is a method for depositing diamond on the surface of a substrate heated in a vapor phase using ultra-high pressure.

高温を用いないダイヤモンド合成法に関するものである
This paper concerns a diamond synthesis method that does not use high temperatures.

〔従来の技術〕[Conventional technology]

気相よりダイヤモンドを、ダイヤモンド以外の材料から
なる基板の表面に析出させる方法については、マイクロ
波プラズマCVD法(特公昭59−27754号公報)
、高周波プラズマCVD法(特開昭58−135117
号公報)等の数多くの方法が知られているが、工業的方
法としては、量産性に優れ、設備費用も安価な熱CVD
法(特公昭59−27753号公報)が一般的である。
Regarding a method of depositing diamond from a gas phase onto the surface of a substrate made of a material other than diamond, there is a microwave plasma CVD method (Japanese Patent Publication No. 59-27754).
, high frequency plasma CVD method (Japanese Patent Application Laid-Open No. 58-135117
Although many methods are known, such as (No.
(Japanese Patent Publication No. 59-27753) is common.

特公昭59−27755号公報に記載の発明は、炭化水
素と水素との混合ガスを、1000℃以上に加熱した熱
電子放射材によって予熱して、これを500〜1300
Cに加熱した基板表面に導入して炭化水素を熱分解する
ことによって、該基板表面にダイヤモンドを析出させる
ダイヤモンド合成法である。この際の熱電子放射材とし
ては、W又はThを添加したWが挙げられておシ、この
種方法の改良に係わる特開昭61−117289号公報
においては、混合ガ −スの予熱を行う発熱体にTaを
用いることが提案されている。
The invention described in Japanese Patent Publication No. 59-27755 preheats a mixed gas of hydrocarbon and hydrogen with a thermionic emitter heated to 1000°C or higher, and
This is a diamond synthesis method in which diamond is precipitated on the substrate surface by introducing hydrocarbons into the substrate surface heated to C and thermally decomposing the hydrocarbons. Examples of the thermionic emitting material in this case include W or W added with Th. In JP-A-61-117289, which relates to an improvement of this type of method, the mixed gas is preheated. It has been proposed to use Ta for the heating element.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、従来のこの種のダイヤモンド合成法において
、混合ガスを予熱する発熱体は、一般には2000℃以
上という超高温に曝されている。そこでこの発熱体とし
てはできるだけ融点の高い物質が好ましい。又、雰囲気
が炭化水素と水素との混合ガス雰囲気であるため、該発
熱体は速やかに炭化してしまう。例えば、元素中、最も
融点が高いものはWであるがWからなる発熱体の場合に
はダイヤモンドを合成中にweに変換される。weの融
点は約2600℃とWよシ大幅に低下し、発熱体の温度
に近いために、該発熱体をこれ以上の高温に加熱すると
発熱体自身が変形してしまい、発熱体と基板との距離を
一定に保つことが極めて困難であった。
By the way, in this type of conventional diamond synthesis method, the heating element for preheating the mixed gas is generally exposed to an extremely high temperature of 2000° C. or higher. Therefore, it is preferable to use a substance with a melting point as high as possible as the heating element. Furthermore, since the atmosphere is a mixed gas atmosphere of hydrocarbons and hydrogen, the heating element quickly carbonizes. For example, among the elements, W has the highest melting point, but in the case of a heating element made of W, it is converted to we during diamond synthesis. The melting point of we is approximately 2,600°C, which is significantly lower than that of W, and is close to the temperature of the heating element, so if the heating element is heated to a higher temperature, the heating element itself will deform, causing damage between the heating element and the substrate. It was extremely difficult to maintain a constant distance.

これに対し、前記のように特開昭61−117281号
公報ではTa f発熱体として用いることが提案されて
いる。Taそのものの融点はWよシも低いもののTaの
炭化物、すなわちTaCの融点Vi3780℃と、WC
よシも約1000℃以上高い。したがって、この方法で
は発熱体を2400℃程度1で加熱することが可能とな
シ、これにより炭化水素と水素との混合ガスを十分に予
熱し得ることから、該混合ガス中の炭化水素濃度ヲ大き
くしても、基板上にダイヤモンド以外の炭素の析出を抑
えて、ダイヤモンドを合成することに成功している。
On the other hand, as mentioned above, Japanese Patent Application Laid-open No. 117281/1983 proposes using it as a Taf heating element. Although the melting point of Ta itself is lower than that of W, the melting point of Ta carbide, that is, TaC, is 3780°C, and WC.
The weather is also about 1000 degrees Celsius higher. Therefore, with this method, it is possible to heat the heating element to about 2400°C1, and since the mixed gas of hydrocarbons and hydrogen can be sufficiently preheated, the concentration of hydrocarbons in the mixed gas can be reduced. Even if the size is large, they have succeeded in synthesizing diamond while suppressing the precipitation of carbon other than diamond on the substrate.

しかしながら、このようなTaの発熱体であっても、2
400℃という高温に加熱して長時間のダイヤモンド被
覆を行うと、やけシ発熱体が変形し、その寿命が工業的
に満足できるものではないという問題があった。
However, even with such a Ta heating element, 2
When heated to a high temperature of 400° C. and coated with diamond for a long time, the heating element becomes deformed and its lifespan is not industrially satisfactory.

本発明はこのような現状に鑑みて、従来のWやTaよシ
さらに高温に保持できる発熱体を用いることで、熱CV
D法によるダイヤモンド合成法を改良せんと意図してな
されたものである。
In view of the current situation, the present invention improves thermal CV by using a heating element that can be maintained at a higher temperature than the conventional W and Ta.
This was done with the intention of improving the D-method diamond synthesis method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは鋭意研究の結果、熱CVD法によるダイヤ
モンド合成において、炭化水素と水素との混合ガスを予
熱する発熱体として、TaとZr及び/又はHfの合金
からなるものを用いれば、従来のWやTaからなるもの
よシ高温に耐えることができるに加え、よシ高温に加熱
できることで基板へのダイヤモンド以外の炭素析出が抑
えられて、ダイヤモンド合成が非常に良好にできること
を見出した。
As a result of intensive research, the present inventors have found that in diamond synthesis by thermal CVD, if a heating element made of an alloy of Ta and Zr and/or Hf is used as a heating element to preheat a mixed gas of hydrocarbon and hydrogen, it will be possible to It has been discovered that in addition to being able to withstand higher temperatures than those made of W or Ta, the ability to heat to higher temperatures suppresses the precipitation of carbon other than diamond onto the substrate, making it possible to synthesize diamond very well.

すなわち、本発明は (1)炭化水素と水素との混合ガスを加熱された発熱体
により予備加熱した後、該加熱混合ガスを加熱された基
板表面に導入して、炭化水素の熱分解によりダイヤモン
ドを析出させる方法において、発熱体がTaとZr及び
/又はHf  との合金からなplかつTaが該合金の
総量中重量比で60%以上99%以下であることを特徴
とするダイヤモンド合成法、である。
That is, the present invention (1) preheats a mixed gas of hydrocarbon and hydrogen with a heated heating element, and then introduces the heated mixed gas onto the heated substrate surface to generate diamond by thermal decomposition of the hydrocarbon. A diamond synthesis method characterized in that the heating element is made of an alloy of Ta and Zr and/or Hf, and Ta is 60% or more and 99% or less by weight of the total amount of the alloy, It is.

本発明においては該発熱体が1800℃以上2500℃
以下に加熱されておシ、混合ガス中の炭化水素濃度が容
量比で11%以上10チ以下であることが特に好ましい
In the present invention, the temperature of the heating element is 1800°C or higher and 2500°C.
It is particularly preferable that the hydrocarbon concentration in the mixed gas is 11% or more and 10% or less by volume.

前述のように、熱CVD法によるダイヤモンドの合成に
おいて、炭化水素と水素とからなる混合ガスを予熱する
発熱体としては、できるだけ融点の高い物質であること
が好ましい。
As mentioned above, in the synthesis of diamond by thermal CVD, the heating element for preheating the mixed gas of hydrocarbon and hydrogen is preferably a substance with as high a melting point as possible.

本発明者らは従来のTaCよりも高い融点を持つ物質を
求めて種々検討の結果、 TaとZr又はTaとHfの
複炭化物がいずれもTaCより高い融点を持つことに注
目した。すなわち、TaC/ZrC系ではZrCが20
 mob%のところで約4200’K、TaC/HfC
系でもHfCが20 m01%のところで約4210°
にと、 TaCと比較して約40°に高い融点を持つこ
とである。
As a result of various studies in search of a substance with a higher melting point than the conventional TaC, the present inventors noticed that double carbides of Ta and Zr or Ta and Hf both have a higher melting point than TaC. That is, in the TaC/ZrC system, ZrC is 20
About 4200'K at mob%, TaC/HfC
In the system, the temperature is about 4210° at 20 m01% HfC.
Moreover, it has a higher melting point of about 40° compared to TaC.

しかしながら、わずかに50°にの融点温度差では、実
際のダイヤモンド合成における発熱体の寿命には大きく
影響はないであろうとの予想の下に実験してみたのであ
る。その結果、発熱体の温度が2500℃を越えてしま
うと、たしかにTa発熱体の寿命と差がなかったが、温
度2500℃以下では、意外にも、この50°にという
僅かな温度差が大きく影響して、発熱体の寿命が長くな
ることが判明したのである。
However, the experiment was conducted with the expectation that a slight difference in melting point temperature of 50° would not have a large effect on the life of the heating element in actual diamond synthesis. As a result, when the temperature of the heating element exceeded 2500°C, there was no difference in the lifespan of the Ta heating element, but when the temperature was below 2500°C, surprisingly, this slight temperature difference of 50° became large. As a result, it was found that the lifespan of the heating element was extended.

したがって本発明では、TaとZr及び/又はHf  
の合金からなる発熱体’12500℃以下、1800℃
以上の温度に加熱しておき、これにより炭化水素と水素
との混合ガスを予備加熱する。発熱体の温度が1800
℃未満では、ダイヤモンド以外の炭素の析出が著るしく
好1しくない0 本発明に用いる発熱体はTaとZr及び/又は)(f 
 と合金からな、り、TILへのZr及び/又はHfの
添加量としては、合金総重量の1〜40チの範囲にある
ことが好ましい。1重量−未満では効果が認められず、
40重量%全超克るとその複炭化物の融点が、TaCの
それを下廻ってしまうからである。
Therefore, in the present invention, Ta, Zr and/or Hf
Heating element made of an alloy of 12500℃ or less, 1800℃
The mixed gas of hydrocarbon and hydrogen is preheated by heating to the above temperature. The temperature of the heating element is 1800
If the temperature is less than
The amount of Zr and/or Hf added to the TIL is preferably in the range of 1 to 40 inches based on the total weight of the alloy. No effect is observed when the amount is less than 1% by weight.
This is because if the content exceeds 40% by weight, the melting point of the double carbide will be lower than that of TaC.

本発明においては発熱体の材料と温度条件以外は、一般
的な熱CVD法によるダイヤモンド合成の方法に従えば
よい。例えば次のような条件が挙げられる。
In the present invention, except for the material of the heating element and the temperature conditions, a general diamond synthesis method using thermal CVD may be followed. For example, the following conditions may be mentioned.

炭化水素としては、例えばCH4a C2H6a C2
H4eC,H,等種々の炭化水素を使用し得る。又、炭
化水素と水素との混合ガス中の炭化水素濃度としては、
Q、1容量%〜10容量チの範囲が好ましい。[11容
量チ未満ではダイヤモンドの合成速度が十分ではなく、
又、10容量%を越えるとダイヤモンド以外の炭素の析
出が多すぎ好ましくない。
Examples of hydrocarbons include CH4a C2H6a C2
Various hydrocarbons can be used, such as H4eC, H, etc. In addition, the concentration of hydrocarbons in a mixed gas of hydrocarbons and hydrogen is
Q is preferably in the range of 1% by volume to 10% by volume. [If the capacity is less than 11%, the diamond synthesis rate is not sufficient,
Moreover, if it exceeds 10% by volume, too much carbon other than diamond will be precipitated, which is not preferable.

その表面にダイヤモンドを析出させる基板の温度として
は、700〜1300℃の範囲が好ましい。700℃未
満ではダイヤモンドの合成が認められず、一方1300
℃を越えては、ダイヤモンド以外の炭素の析出が多すぎ
好ましくない0 なお、本発明に用いる基材としては、例えば単結晶S1
ウエノ1−9金属MO板、超硬合金等のように700℃
以上の処理温度に耐え得る材料であれば任意に選択して
よい。
The temperature of the substrate on which diamond is deposited is preferably in the range of 700 to 1300°C. At temperatures below 700°C, diamond synthesis is not observed, while at temperatures below 1300°C
If the temperature exceeds ℃, carbon other than diamond will precipitate too much, which is undesirable.
700℃ like Ueno 1-9 metal MO plate, cemented carbide etc.
Any material may be selected as long as it can withstand the above processing temperatures.

本発明の具体的方法については、以下の実施例にて詳細
に説明する。
A specific method of the present invention will be explained in detail in the following examples.

〔実施例〕〔Example〕

実施例1 石英製反応容器内にTa−20mob%Zr製の直径0
1■のワイヤを用いて作成した発熱体を設け、基板とし
て超硬合金〔住友電工(株)製、材質H1,型番5PG
421、l5OK−10グレード、 wc゛−5,5重
量%Co:li該発熱体の直下に10露離して設置した
。該反応容器内を真空に排気した後に、容器内にH2と
CH4との混合ガス(CH4濃度2容量%) f 15
0 Torrで導入した。その後発熱体に通電して、発
熱体を2400℃まで加熱した。その際、基板の発熱体
に面している表面の温度は1050℃であった。この状
態で1時間被覆を行ったところ、基板表面には粒度約5
μのダイヤモンド膜が、膜厚約10μでコーティングさ
れていた。この被榎膜の同定はX線回析及びラマン公党
によった。
Example 1 Ta-20mob%Zr diameter 0 in a quartz reaction vessel
A heating element made using a wire of
421, 15OK-10 grade, wc-5, 5% by weight Co:li was installed directly under the heating element with 10 exposures. After evacuating the inside of the reaction container, a mixed gas of H2 and CH4 (CH4 concentration: 2% by volume) f 15
It was introduced at 0 Torr. Thereafter, electricity was applied to the heating element to heat the heating element to 2400°C. At that time, the temperature of the surface of the substrate facing the heating element was 1050°C. When coating was carried out in this state for 1 hour, the surface of the substrate had a particle size of approximately 5.
A diamond film of approximately 10 μm in thickness was coated. Identification of this membrane was based on X-ray diffraction and Raman analysis.

以上と同条件の同一プロセスを100回繰り返したが、
発熱体にはいささかの変形も見られなかった。
The same process under the same conditions as above was repeated 100 times,
No deformation was observed in the heating element.

比較のために同条件でTa発熱体を用いて同一プロセス
を繰シ返したところ、26回目でTa発熱体が変形して
しまい、基板表面温度は1150℃に上昇して、寿命と
なってしまった。
When the same process was repeated using a Ta heating element under the same conditions for comparison, the Ta heating element deformed on the 26th time, the substrate surface temperature rose to 1150°C, and the life span was reached. Ta.

筐たW発熱体を用いて行ってみたところ、W発熱体では
2200℃以上の加熱ができず、その他条件を同一にし
てダイヤモンドを合成したところ、X線回析ではダイヤ
モンドしか同定されなかったが、ラマン公党の結果グラ
ファイトによるスペクトルが観察された。
When we tried using a W heating element in a housing, we found that the W heating element could not heat above 2200°C, and when we synthesized diamond under the same conditions, only diamond was identified by X-ray diffraction. , a spectrum due to graphite was observed as a result of the Raman public party.

実施例2 表1に示すような種々の材質の発熱体A−Hを用いて、
その他の条件は実施例1と同一にしてダイヤモンドの被
接ヲ行った。このときの発熱体の寿命を表1に合せて示
す。
Example 2 Using heating elements A-H made of various materials as shown in Table 1,
Other conditions were the same as in Example 1 for diamond contact. The life of the heating element at this time is also shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明は、いわゆる熱CVD法によるダイヤモンド合成
において、水素と炭化水素との混合ガスを予熱する発熱
体として、TaとZr及び/又はHf の合金からなる
発熱体を採用することにより、従来法よりも発熱体の温
度を高温に保つことが可能となり、その結果、従来法に
比ベダイヤモンド以外の炭素の析出を抑えて高品質なダ
イヤモンドを被覆することが可能になυ、かつ発熱体は
工業的に満足できる寿命を持つという、非常に大きな効
果を奏するものである。
The present invention employs a heating element made of an alloy of Ta, Zr, and/or Hf as a heating element for preheating a mixed gas of hydrogen and hydrocarbon in diamond synthesis by the so-called thermal CVD method, which is more efficient than the conventional method. This makes it possible to maintain the temperature of the heating element at a high temperature, and as a result, compared to the conventional method, it is possible to suppress the precipitation of carbon other than diamond and coat high-quality diamond. It has a very significant effect of having a long and satisfying lifespan.

Claims (3)

【特許請求の範囲】[Claims] (1)炭化水素と水素との混合ガスを加熱された発熱体
により予備加熱した後、該加熱混合ガスを加熱された基
板表面に導入して、炭化水素の熱分解によりダイヤモン
ドを析出させる方法において、発熱体がTaとZr及び
/又はHfとの合金からなり、かつTaが該合金の総量
中重量比で60%以上99%以下であることを特徴とす
るダイヤモンド合成法。
(1) A method in which a mixed gas of hydrocarbon and hydrogen is preheated by a heated heating element, and then the heated mixed gas is introduced onto the heated substrate surface to precipitate diamond by thermal decomposition of the hydrocarbon. . A diamond synthesis method, characterized in that the heating element is made of an alloy of Ta and Zr and/or Hf, and Ta is 60% or more and 99% or less by weight of the total amount of the alloy.
(2)発熱体が1800℃以上2500℃以下に加熱さ
れている特許請求の範囲第(1)項記載のダイヤモンド
合成法。
(2) The diamond synthesis method according to claim (1), wherein the heating element is heated to 1800°C or more and 2500°C or less.
(3)混合ガス中の炭化水素濃度が容量比で0.1%以
上10%以下である特許請求の範囲第(1)項に記載の
ダイヤモンド合成法。
(3) The diamond synthesis method according to claim (1), wherein the hydrocarbon concentration in the mixed gas is 0.1% or more and 10% or less by volume.
JP30917286A 1986-12-27 1986-12-27 Synthesis of diamond Granted JPS63166797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30917286A JPS63166797A (en) 1986-12-27 1986-12-27 Synthesis of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30917286A JPS63166797A (en) 1986-12-27 1986-12-27 Synthesis of diamond

Publications (2)

Publication Number Publication Date
JPS63166797A true JPS63166797A (en) 1988-07-09
JPH0420879B2 JPH0420879B2 (en) 1992-04-07

Family

ID=17989799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30917286A Granted JPS63166797A (en) 1986-12-27 1986-12-27 Synthesis of diamond

Country Status (1)

Country Link
JP (1) JPS63166797A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002079546A1 (en) * 2001-03-29 2002-10-10 Honeywell International Inc. Methods for electrolytically forming materials; and mixed metal materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002079546A1 (en) * 2001-03-29 2002-10-10 Honeywell International Inc. Methods for electrolytically forming materials; and mixed metal materials
US6827828B2 (en) * 2001-03-29 2004-12-07 Honeywell International Inc. Mixed metal materials
US7252751B2 (en) 2001-03-29 2007-08-07 Honeywell International Inc. Methods for electrically forming materials

Also Published As

Publication number Publication date
JPH0420879B2 (en) 1992-04-07

Similar Documents

Publication Publication Date Title
US5191099A (en) Chemical vapor deposition of aluminum films using dimethylethylamine alane
JP3967455B2 (en) Potassium-containing thin film and method for producing the same
US5064686A (en) Sub-valent molybdenum, tungsten, and chromium amides as sources for thermal chemical vapor deposition of metal-containing films
WO1993013015A1 (en) Composite diamond grains and process for their production
JPH09124395A (en) Multilayer system comprising diamond layer, interfacial layer and metallic substrate and method for obtaining these layers
US5055280A (en) Process for producing transition metal boride fibers
JPS60231494A (en) Manufacture of diamond superfines
JPH03199379A (en) Method of evaporating crystallite solid particle by using chemical deposition method
JPS63166797A (en) Synthesis of diamond
JPH0643243B2 (en) Method for manufacturing tungsten carbide
US4869929A (en) Process for preparing sic protective films on metallic or metal impregnated substrates
EP0472666A1 (en) Cvd grown transition metal carbide and nitride whiskers
JPS5915983B2 (en) Formation method of boron film
JPS6358798B2 (en)
JP2569423B2 (en) Gas phase synthesis of boron nitride
JP2585342B2 (en) Diamond vapor phase synthesis
JPS5824501B2 (en) Method for manufacturing tungsten carbide coating layer
JP2686970B2 (en) Membrane diamond manufacturing method
Norin et al. Chemical vapour deposition of molybdenum carbides using C60 as a carbon source
JPH0667797B2 (en) Diamond synthesis method
JPS6353159B2 (en)
JPS6261109B2 (en)
JPH04124272A (en) Cubic boron nitride coating member and its production
JPS6335495A (en) Diamond vapor phase synthesizer of high-efficiency
JPS6261108B2 (en)