JPS63165695A - Direction control system of head pipe in boring device and direction controller for head pipe using said system - Google Patents

Direction control system of head pipe in boring device and direction controller for head pipe using said system

Info

Publication number
JPS63165695A
JPS63165695A JP30886086A JP30886086A JPS63165695A JP S63165695 A JPS63165695 A JP S63165695A JP 30886086 A JP30886086 A JP 30886086A JP 30886086 A JP30886086 A JP 30886086A JP S63165695 A JPS63165695 A JP S63165695A
Authority
JP
Japan
Prior art keywords
pipe
tube
transport
crushing
screw auger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30886086A
Other languages
Japanese (ja)
Inventor
田村 久
栄治 塩浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SADA KENSETSU KK
YAMATO BORING KK
Original Assignee
SADA KENSETSU KK
YAMATO BORING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SADA KENSETSU KK, YAMATO BORING KK filed Critical SADA KENSETSU KK
Priority to JP30886086A priority Critical patent/JPS63165695A/en
Publication of JPS63165695A publication Critical patent/JPS63165695A/en
Pending legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主として小口径下水道管等の横孔を穿孔する穿
孔装置における先導管の方向を制御する方式及びこの方
式を用いた先導管の方向制御装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention mainly relates to a method for controlling the direction of a leading pipe in a drilling device for drilling horizontal holes in small-diameter sewer pipes, etc., and a method for controlling the direction of a leading pipe using this method. This relates to a control device.

〔従来の技術〕[Conventional technology]

地盤の穿孔に際し、従来用いられている穿孔装置は、そ
の先導管の先端部に設けた穿孔刃体を油圧シリンダによ
り一定角度に保持しながら駆動し、推力を掛けながら前
記穿孔刃体を回転させて地盤を穿孔すると共に輸送管内
に内装したスクリューオーガを回転させて、前記穿孔に
より破砕された石塊や砂礫等を搬出するように構成され
ている。
When drilling holes in the ground, conventional drilling devices drive a drilling blade provided at the tip of a leading pipe while holding it at a constant angle with a hydraulic cylinder, and rotate the drilling blade while applying thrust. The system is configured to drill a hole in the ground, rotate a screw auger installed in the transport pipe, and transport out the stone blocks, gravel, etc. crushed by the hole.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然し乍ら、上記のような従来の穿孔装置は、先導管先端
の穿孔刃体を一定の角度を保持して穿孔するようになっ
ているため、穿孔刃体にががる押付力が対象地盤の圧縮
応力より大きくなければ穿孔、前進することは不可能で
ある。従って、対象地盤が圧縮応力の大きい礫層などの
場合、従来の油圧シリンダによる反力保持方式では、一
定の角度を保持して穿孔することは不可能であった。
However, in the conventional drilling equipment as described above, the drilling blade at the tip of the leading pipe is held at a certain angle when drilling, so the pressing force exerted on the drilling blade causes compression of the target ground. Unless the stress is greater than that, it is impossible to drill and move forward. Therefore, when the target ground is a gravel layer with large compressive stress, it is impossible to maintain a constant angle while drilling with the conventional reaction force holding method using a hydraulic cylinder.

また、圧縮強度の大きい地盤特に前記の礫層などでは刃
先前面が崩壊し易いので、穿孔刃体の中心点を輸送用オ
ーガの軸線と一致させて破砕管の位置を設定して穿孔す
る場合は、破砕管は刃先前面の崩壊した抵抗の少ない方
に押し上げられ、穿孔方向は必ず上昇方向に徐々に変位
させられるのである。従って、先導管の刃先制御方式は
、上向方向の設定角度は0°又は極めて小さい角度で設
定し、下向き方向の設定角度は大きく、左右方向の制御
角度はその中間位が最良であることが種々の穿孔例から
実証されているにも拘らず、従来、適切な制御方式は提
案されていない。
In addition, in ground with high compressive strength, especially in the gravel layer mentioned above, the front surface of the cutting edge is likely to collapse, so when drilling by aligning the center point of the drilling blade with the axis of the transport auger and setting the position of the crushing pipe, , the crushing tube is pushed up toward the collapsed front surface of the cutting edge where there is less resistance, and the drilling direction is always gradually displaced in the upward direction. Therefore, the best way to control the cutting edge of the leading pipe is to set the upward angle at 0° or a very small angle, set the downward angle at a large angle, and set the horizontal control angle at an intermediate position. Although this has been proven through various drilling examples, no suitable control method has been proposed to date.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記のような従来技術の問題点を解決すること
を目的としてなされたもので、その構成は、穿孔装置に
おける先導管の方向制御方式において、先導管と装置本
体との接合面を斜面としてこの部を方向制御部とし、先
導管の上向方向制御角度が零度又は僅か上向方向で、下
向方向を所定角度振れるようにしたことを特徴とするも
のである。
The present invention has been made with the aim of solving the problems of the prior art as described above, and has a structure in which, in a method for controlling the direction of a leading pipe in a drilling device, the joint surface between the leading pipe and the main body of the device is sloped. This part is used as a direction control part, and the guide pipe is characterized in that the upward direction control angle of the guide tube is zero or a slight upward direction, and the downward direction can be swung by a predetermined angle.

即ち、本発明制御方式は、先導管となるべき破砕管と穿
孔装置本体との接合面を斜面として該面を方向制御部と
し、上向方向制御を零度又はわずかに上向方向で、下向
き方向を所定角度振れるようにすることにより、常ト適
切な方向制御を行なうことが出来るようにしたものであ
り、その原理について説明すれば、次の通りである。
That is, in the control method of the present invention, the joint surface between the crushing pipe, which is to be the leading pipe, and the drilling device main body is made into an inclined surface, and this surface is used as the direction control section, and the upward direction control is set at zero or slightly upward direction, and the downward direction control is performed at zero degree or slightly upward direction. By allowing the robot to swing by a predetermined angle, appropriate directional control can be performed at all times.The principle of this is explained as follows.

第1図に於て、1は穿孔装置において先導管となるべき
破砕管、2は輸送管、3は破砕管1の先端に設けた穿孔
刃体3.4は該穿孔刃体3により掘削された石塊等を搬
出するため破砕管1内に設置した偏心異径スクリューオ
ーガで、破砕管1の輸送管2への接合面Aは該輸送管2
の軸心に対して直角でなく、所定の角度をもった構造と
なっている。
In FIG. 1, reference numeral 1 denotes a crushing pipe which is to become a leading pipe in the drilling device, 2 a transport pipe, and 3 a drilling blade 3.4 provided at the tip of the crushing pipe 1. An eccentric screw auger with different diameters is installed inside the crushing pipe 1 to transport stone blocks, etc., and the joint surface A of the crushing pipe 1 to the transport pipe 2 is connected to the transport pipe 2.
The structure is not perpendicular to the axis of the machine, but at a predetermined angle.

以下、本発明を詳細に且つ容易に理解されるように説明
するため、接合面Aの取付角度を大にした第2図及び第
3図により破砕管1の先端角度制御方式について詳述す
る。尚、図中の符号は第1図のものと同様である。
Hereinafter, in order to explain the present invention in detail and so that it can be easily understood, a method for controlling the tip angle of the crushing tube 1 will be described in detail with reference to FIGS. 2 and 3, in which the attachment angle of the joint surface A is increased. Note that the symbols in the figure are the same as those in FIG. 1.

第2図は方向制御部における上向方向制御角度を零度と
゛し、下向方向を所定角度振れるようにした場合のもの
で、C−Cは輸送管2の管中心を通る中心線とし、中心
線C−Cと取付面Aとの交点を○とする。また、前記交
点○を通り取付面Aに対する垂線をD−0とし、中心線
C−Cとなす角度をφとする。同様に点Oを通り中心線
C−Cに下した垂線をE−0とし、A面に平行で交点0
を通る直線をF−〇とすれば、直線E−0とF−0との
角度は同様にφとなる。中心線C−Cは破砕管1のB面
の中心G点を通り、破砕管1の中心線は中心線C−Cと
一致して、図2−1のように、破砕管1.輸送管2は同
一軸心上の円筒となる。
Figure 2 shows the case where the upward direction control angle in the direction control section is set to 0 degrees and the downward direction is allowed to swing by a predetermined angle. Let the intersection of line C-C and mounting surface A be ○. Further, the perpendicular line passing through the intersection ◯ to the mounting surface A is set as D-0, and the angle between it and the center line CC is set as φ. Similarly, the perpendicular line passing through the point O and dropping down to the center line C-C is E-0, and it is parallel to the A plane and the intersection point is 0.
If the straight line passing through is F-0, the angle between the straight lines E-0 and F-0 is similarly φ. The center line C-C passes through the center point G of the surface B of the crushing tube 1, and the center line of the crushing tube 1 coincides with the center line CC, and as shown in FIG. 2-1, the crushing tube 1. The transport pipe 2 is a cylinder on the same axis.

また、直線D−0と破砕管1のB面との交点をHとする
Moreover, the intersection of the straight line D-0 and the B surface of the crushing tube 1 is designated as H.

次に輸送管2を固定して0点を中心とし、破砕管1をA
面を接して反時計方向に90°回転すれば図2−2に示
すようになる。即ち、破砕管1は直線D−0を軸心とし
A面に接して回転することば図2−2から明らかである
。即ち、直線D−0と破砕管1のB面との交点Hは常に
移動せず、B面の中心G点は図2−2のように点Hと水
平で且つ距離H−Gを保って図示の位置に移動し、穿孔
中心となる。同様に図2−3は図2−1より180゜反
時計方向に回転した場合を示し、図2−4は270°反
時計方向に回転した場合の面Bの穿孔中心Gの取る位置
を示す。
Next, fix the transportation pipe 2, center it on the 0 point, and move the crushing pipe 1 to A.
If the surfaces are brought into contact and rotated 90 degrees counterclockwise, the result will be as shown in Figure 2-2. That is, it is clear from FIG. 2-2 that the crushing tube 1 rotates around the straight line D-0 in contact with the A plane. In other words, the intersection H between the straight line D-0 and the B surface of the crushing tube 1 does not always move, and the center G point of the B surface is horizontal to the point H and maintains the distance H-G as shown in Figure 2-2. Move to the position shown and center the hole. Similarly, Figure 2-3 shows the case when rotated 180 degrees counterclockwise from Figure 2-1, and Figure 2-4 shows the position of the drilling center G on surface B when rotated 270 degrees counterclockwise. .

次に第3図について説明する。Next, FIG. 3 will be explained.

第3図は方向制御部における上向方向制御角度を極めて
小さい角度とし、下向方向を所定角度振れるようにした
場合のもので、第2図と同様に、C−Cは輸送管2の管
心を通る中心線、E−0は前記中心線C−Cと面Aとの
交点Oに下した垂線で、線F−〇とE−Oとなす角度を
φとする。また、点0を通り面Aに直角な垂線をD−0
とすれば、C−〇とD−〇のなす角度は同様にφである
Figure 3 shows the case where the upward direction control angle in the direction control section is set to an extremely small angle and the downward direction can be swung by a predetermined angle, and as in Figure 2, C-C is the pipe of transport pipe 2. The center line passing through the heart, E-0, is a perpendicular line drawn to the intersection O of the center line C-C and the surface A, and the angle between the lines F-0 and E-O is φ. Also, a perpendicular line passing through point 0 and perpendicular to plane A is D-0
Then, the angle formed by C-〇 and D-〇 is also φ.

破砕管1の面Bの中心をG、破砕管1の管中心線G−○
と輸送管2の中心線C−Cとなす/GoCをηとし、/
φ+/η=lθとすれば、図3−1に示すように、点G
は輸送管2の中心線c−cの面Bとの交点より上に位置
するようになる。次に上述したと同様に破砕管1の回転
中心線D−0のB面との交点をHとすれば、同様に反時
計方向に破砕管1を90’ 、180’ 、270″回
転した場合の図面の中心G点の取る位置は図3−2.3
−3.3−4に示す通りである。
Center of surface B of crushing tube 1 is G, tube center line of crushing tube 1 is G-○
and the center line C-C of the transport pipe 2, / GoC is η, /
If φ+/η=lθ, as shown in Figure 3-1, point G
is located above the intersection of the center line cc of the transport pipe 2 with the plane B. Next, as described above, if the intersection of the rotation center line D-0 of the crushing tube 1 with the plane B is H, then when the crushing tube 1 is similarly rotated 90', 180', and 270'' in the counterclockwise direction. The position of the center point G of the drawing is shown in Figure 3-2.3.
-3.3-4.

従って、穿孔作業において、穿孔装置の先導管となる破
砕管1を上記の原理に基いて輸送管2との接合面Aにお
ける締付位置を適宜変化させ、破砕管1の推進方向を制
御することにより、目的とする穿孔方向を変位なく貫通
完成することが出来る。
Therefore, in the drilling operation, the direction of propulsion of the crushing tube 1 is controlled by appropriately changing the tightening position of the crushing tube 1, which is the leading tube of the punching device, at the joint surface A with the transport pipe 2 based on the above-mentioned principle. This makes it possible to complete the hole in the desired direction without any displacement.

次に本発明制御方式を具現する穿孔装置の一例を図によ
り説明する。
Next, an example of a drilling device embodying the control method of the present invention will be explained with reference to the drawings.

第1図において、1,2,3.4は上述の通りそれぞれ
破砕管、輸送管、穿孔刃体、偏心異径スクリューオーガ
で、破砕管1の輸送管2への取付は面即ち接合面Aは輸
送管2の軸心に対して直角でなく、所定の小さい角度を
持った構造となっている。偏心異径スクリューオーガ4
は穿孔刃体3と強固に一体に構成されている。尚、bは
前記オーガ4のオーガ羽根端部である。
In Fig. 1, 1, 2, and 3.4 are a crushing tube, a transport tube, a punching blade, and an eccentric screw auger with different diameters, respectively, as described above, and the attachment of the crushing tube 1 to the transportation tube 2 is on the surface, that is, the joint surface A. is not perpendicular to the axis of the transport pipe 2, but has a structure at a predetermined small angle. Eccentric screw auger 4
is firmly constructed integrally with the punching blade body 3. Note that b is the end of the auger blade of the auger 4.

5は破砕管1内に設けた突起、6は偏心異径スクリュー
オーガ4と輸送用オーガ7とを連結する自在接手、8は
輸送管2の前部に配設した油圧シリンダ、9は該油圧シ
リンダ80ロツドの先端に取付けた締付片で、破砕管1
の後端部外周壁面dをテーパー状に形成し、締付片9の
内周壁面を前記壁面dに対応するように形成して、油圧
シリンダ8により締付片9を引張れば、破砕管1の前記
d面のテーパ一部と輸送管2の内面とを締付片9を介し
て強固に一体化できるようになっている。
5 is a protrusion provided in the crushing pipe 1; 6 is a universal joint that connects the eccentric screw auger 4 with a transport auger 7; 8 is a hydraulic cylinder disposed at the front of the transport pipe 2; 9 is the hydraulic cylinder; With the tightening piece attached to the tip of the cylinder 80 rod,
By forming the rear end outer circumferential wall surface d into a tapered shape, forming the inner circumferential wall surface of the clamping piece 9 so as to correspond to the wall surface d, and pulling the clamping piece 9 with the hydraulic cylinder 8, the crushed pipe is A portion of the tapered surface of the d-plane of the transport pipe 2 can be firmly integrated with the inner surface of the transport pipe 2 via a fastening piece 9.

また、10は弁保持体、11は該弁支持体10と自由に
回転可能に取付けられた弁体、12は柔軟性のゴムなど
を使用して前記弁体11に一体に固定された弁、13は
適当な推力を保持するためのばね、14は弁箱、15は
泥水輸送管で、泥水輸送管15の出口部Cの圧力が滞水
層の圧力と同一に保持されるようにばね13で押付力が
調整されるようになっている。
Further, 10 is a valve holding body, 11 is a valve body rotatably attached to the valve support body 10, and 12 is a valve integrally fixed to the valve body 11 using flexible rubber or the like. 13 is a spring for maintaining an appropriate thrust; 14 is a valve box; and 15 is a muddy water transport pipe. The pressing force is adjusted with .

以上により本発明装置の一例が構成されるのであるが、
この装置は前述の先導管即ち破砕管1の方向制御方式を
具現できるほか、次のような特徴がある。
The above constitutes an example of the device of the present invention.
This device can realize the direction control method of the leading tube or crushing tube 1 described above, and also has the following features.

・穿孔刃体3による穿孔により、大径で取り込んだ石塊
を輸送用オーガ7で輸送可能な大きさに粉砕するために
、破砕管1内に偏心異径スクリューオーガを設け、必要
以上に細かく粉砕しないようにした。
・In order to crush the large-diameter stone blocks taken in by the drilling blade 3 into a size that can be transported by the transportation auger 7, an eccentric screw auger of different diameters is provided in the crushing tube 1, and the stone blocks are crushed into smaller pieces than necessary. I tried not to crush it.

・滞水砂礫層など、滞水層の内水圧によって崩壊しやす
い地層の穿孔に対してばね式などの弁方式による圧力保
持機構を保有するようにした。
・For drilling in geological formations that are prone to collapse due to the internal water pressure of the water-retaining layer, such as a water-retaining gravel layer, a pressure retention mechanism using a valve type such as a spring type is provided.

上記のように構成される穿孔装置の作用について説明す
れば、次の通りである。
The operation of the punching device configured as described above will be explained as follows.

第1図の状態で輸送用オーガ7を回転する場合は、偏心
異径スクリューオーガ4のオーガ羽根部すは突起5に衝
突せずに自由に回転可能であるが、油圧シリンダ8によ
り締付片9を緩めて自在接手部6を矢印方向に移動し、
輸送用オーガ7をゆっくり回転すると、偏心異径スクリ
ューオーガ4のオーガ羽根端部すが突起5に衝突し、破
砕管1は偏心異径スクリューオーガ4と一体になって回
転するから、第2図の2−1〜2−4又は第3図の3−
1〜3−4の任意の設定位置において偏心異径スクリュ
ーオーガ4の回転を停止し、該偏心異径スクリューオー
ガ4を矢印と反対方向に移動してオーガ羽根部すの突起
5との接触を断ち、油圧シリンダ8によって締付片9に
より破砕管1と輸送管2とを強固に一体になるように締
付けられるようになっている。即ち、破砕管1を、第2
図2−1〜2−4又は第3図3−1〜3−4間の位置に
自由に設定できるのである。
When the transportation auger 7 is rotated in the state shown in FIG. Loosen 9 and move the universal joint 6 in the direction of the arrow.
When the transportation auger 7 is rotated slowly, it collides with the auger blade end projection 5 of the eccentric screw auger 4 of different diameters, and the crushing tube 1 rotates together with the eccentric screw auger 4 of different diameters. 2-1 to 2-4 or 3- in Figure 3
The rotation of the eccentric screw auger 4 of different diameters is stopped at any set position of 1 to 3-4, and the eccentric screw auger 4 of different diameters is moved in the direction opposite to the arrow to make contact with the protrusion 5 of the auger blade part. The shredding pipe 1 and the transport pipe 2 can be firmly tightened together by a tightening piece 9 using a hydraulic cylinder 8. That is, the crushing tube 1 is
It can be freely set to any position between FIGS. 2-1 to 2-4 or 3-1 to 3-4 in FIG.

従って、穿孔作業中に破砕管1の方向を制御すべき場合
は、上記の操作を行なうことにより容易に破砕管1の方
向を変位させて、適確な穿孔作業を行なうことができる
Therefore, when the direction of the crushing tube 1 needs to be controlled during the drilling operation, the direction of the crushing tube 1 can be easily displaced by performing the above operation, and the drilling operation can be performed accurately.

尚、推力はこれを接合面Aで保持するようにしであるこ
と、前述の通りである。
As mentioned above, the thrust force is to be maintained at the joint surface A.

本発明における先導管の掘削屑搬出方式は、スクリュー
オーガによる穿孔地盤の搬出方法を採用しているために
、石塊などの破砕搬出においても、輸送管2と輸送用オ
ーガー管軸7との空間を通過すれば充分である。破砕管
1内で必要以上に細かく破砕することは不必要且つ動力
の損失となる。
Since the method for carrying out excavated waste using the leading pipe of the present invention adopts the method of carrying out the perforated ground using a screw auger, even when carrying out crushed stone blocks, there is a gap between the transport pipe 2 and the transport auger pipe shaft 7. It is sufficient to pass through. Crushing more finely than necessary in the crushing tube 1 is unnecessary and results in a loss of power.

偏心異径スクリューオーガ4は、第1図に示すように、
オーガ羽根部が軸心に対し偏位して取付られている。従
って、破砕管1内に取り込まれた石塊は、偏心異径スク
リューオーガ4の回転により、その羽根先端部と破砕管
1内面とによって挟まれ、圧壊される構造となっており
、粉砕機のように細かく破砕することがないので、極め
て効率良く且つ動力消費も少なくてすむ。
As shown in FIG. 1, the eccentric screw auger 4 has a
The auger blade is installed offset from the axis. Therefore, the stone blocks taken into the crushing tube 1 are pinched and crushed between the tip of the blade and the inner surface of the crushing tube 1 by the rotation of the eccentric screw auger 4 of different diameters. Since it does not need to be crushed into small pieces, it is extremely efficient and consumes less power.

また、上記の装置を用いて滞水砂礫層を穿孔推進する場
合、最も危険なことは、滞水層の内水圧によって大量の
水と一緒に砂礫層などが一気にスクリューオーガの空隙
に流れ込み、先端の穿孔地盤が陥没することである。こ
のような陥没による事故を防止するために、一般に多用
されている方法が循環ポンプを用いる泥水シールド工法
であるが、この工法を実施するには、輸送用泥水の処理
−12= のために、沈澱槽、泥水圧送ポンプ、泥水圧送パイプな
ど多くの坑内外処理装置が必要である。また、泥水輸送
方式では圧送土砂量に対して一定割合の泥水が常に必要
で、これが泥水処理設備の保有敷地の増大となり、経済
的にもコストの増大となる。
In addition, when using the above-mentioned device to drill through a water-retaining gravel layer, the most dangerous thing is that the internal water pressure of the water-retaining layer causes the gravel layer, etc. to flow into the gap of the screw auger together with a large amount of water at once, leading to The ground where the hole was drilled will cave in. In order to prevent accidents caused by such cave-ins, a commonly used method is the muddy water shield construction method using a circulation pump, but in order to implement this construction method, treatment of muddy water for transportation-12= is necessary. Many in- and out-of-hole processing equipment are required, such as settling tanks, mud pumps, mud pumps, and pipes. In addition, the muddy water transportation method always requires a certain proportion of muddy water to the amount of pumped earth and sand, which increases the amount of land required for muddy water treatment equipment and increases economic costs.

本来、滞水砂礫層の崩壊は、その滞水圧のバランスが保
持されている場合は起らないが、滞水砂礫層中の水圧が
変化すると、その水圧の変化を除去しようと水が水圧の
高い方から低い方へ移動するにつれて砂礫が一緒に移動
するために生じるものである。
Normally, the collapse of a water-retaining gravel layer will not occur if the balance of the water-retaining pressure is maintained, but if the water pressure in the water-retaining gravel layer changes, the water will increase its water pressure to remove the change in water pressure. This occurs because sand and gravel move together as you move from a high place to a low place.

従って、滞水砂礫層中の水圧が一定に保たれ、且つ砂礫
の水中空間に崩れる空隙がなければ良いわけである。ま
た、泥水シールド工法の欠陥は、穿孔土砂と圧送泥水と
の混合物を先端穿孔部から坑外まで圧送する圧力が必要
であり、小径管の泥水シールド工法で泥水圧送ポンプを
坑外に設置した場合、所要圧力は泥水の管内損失圧力+
滞水層水圧で、そのために土かぶりの浅い滞水層の泥水
シールド工法では、通常の推進工法とは別に穿孔地盤の
隆起を生じることがある。
Therefore, it is sufficient that the water pressure in the water-retaining gravel layer is kept constant and that there are no voids that could collapse in the underwater space of the gravel. In addition, the flaw in the mud shield method is that pressure is required to pump the mixture of drilling earth and sand and pumped mud from the tip of the hole to the outside of the mine. , the required pressure is the pipe loss pressure of muddy water +
Due to water pressure in the aquifer layer, the mud shield method for an aquifer layer with a shallow soil cover may cause uplift of the drilling ground, unlike the normal propulsion method.

然し乍ら、本発明では第1図に示すような構成を採るこ
とにより、上記のような欠陥を除去することができる。
However, in the present invention, by adopting the configuration shown in FIG. 1, the above-mentioned defects can be eliminated.

即ち、いま、滞水砂礫層の水圧、換言すれば地表面より
推進工の中心までの深さに合せて、予め、ばね13に適
当な推力のものを採用して取付けておけば、常に滞水層
の水圧と泥水輸送管の出口C部の圧力を一定に保持する
ことができるから、この圧力保持機構を採用することに
より、滞水層の崩壊を招くことなく推進穿孔が可能であ
り、然も対象地盤の隆起を招くおそれもない。尚、ばね
13は、エアシリンダー、空気ばねなどによっても代用
可能である。
In other words, if the spring 13 is installed with an appropriate thrust in accordance with the water pressure of the water retention gravel layer, in other words, the depth from the ground surface to the center of the propulsion structure, the retention will always be maintained. Since the water pressure in the water layer and the pressure at the outlet C of the mud water transport pipe can be maintained constant, by adopting this pressure holding mechanism, propulsion drilling can be performed without causing collapse of the water reservoir layer. However, there is no risk of causing upheaval of the target ground. Note that the spring 13 can be replaced by an air cylinder, an air spring, or the like.

また、本発明装置は、破砕管1と偏心異径スクリューオ
ーガ4とによって石塊を破砕する際に生じる大きな回転
モーメント、換言すれば輸送用スクリューオーガ7の最
大トルク、即ち、機械の有する最大トルクに対して、破
砕管1が回されることのないように輸送管2と一体に強
固に固定することが必要である。
In addition, the device of the present invention is characterized by a large rotational moment generated when crushing a stone block by the crushing tube 1 and the eccentric screw auger 4 of different diameters, in other words, the maximum torque of the transportation screw auger 7, that is, the maximum torque of the machine. However, it is necessary to firmly fix the crushing tube 1 integrally with the transport tube 2 so that it cannot be rotated.

そのため、本発明装置においては、前述のように、油圧
シリンダ8により締付片9を引張り、破砕管1のd部の
テーパ一部と輸送管2の内面とを該締付片9を介して強
固に一体化するようにした。
Therefore, in the device of the present invention, as described above, the clamping piece 9 is pulled by the hydraulic cylinder 8, and the tapered part of the d section of the crushing tube 1 and the inner surface of the transport pipe 2 are connected via the clamping piece 9. It was made to be strongly integrated.

いま、この締付力の増大について第6図により説明すれ
ば、次の通りである。
The increase in tightening force will now be explained with reference to FIG. 6.

図において、Fは油圧シリンダ8による引張力、Sはd
部の角度とすれば、引張力Fは力P及びQの2つの力に
分解できる。従って、d面に作用する締付力は輸送管2
の内面に作用する力Qと同じく方向反対の反力がd面に
締付力として作用する。
In the figure, F is the tensile force exerted by the hydraulic cylinder 8, and S is d
The tensile force F can be decomposed into two forces, P and Q. Therefore, the clamping force acting on the d-plane is
A reaction force in the same direction as the force Q acting on the inner surface of , acts on the d surface as a tightening force.

また、d面に垂直な力はPと同じであり、それぞれQ=
F/TANs、P=F/5INsで計算される。
Also, the force perpendicular to the d-plane is the same as P, and each Q=
F/TANs, P=F/5INs.

従って、d部のテーパーを適当に選択して設計すれば、
破砕管1に対する締付力を極めて大きく取ることが可能
であり、特に先導管のように、輸送用スクリューオーガ
7の外径はなるべく大きく、しかも輸送管2の外径を決
められて油圧シリンダ=15− 8の大きさが制限される小型の先導管においては極めて
有効である。
Therefore, if the taper of the d part is appropriately selected and designed,
It is possible to obtain an extremely large clamping force on the crushing tube 1, and in particular, as in the case of a leading tube, the outer diameter of the transportation screw auger 7 is as large as possible, and the outer diameter of the transportation tube 2 can be determined, making it possible to use a hydraulic cylinder. It is extremely effective for small leading pipes where the size of the 15-8 is limited.

〔発明の効果〕〔Effect of the invention〕

本発明は上述の通りであるから、穿孔装置における先導
管の方向制御方式及びこの方式を用いた先導管の方向制
御装置として好適である。
Since the present invention is as described above, it is suitable as a direction control method for a leading pipe in a drilling device and a direction controlling device for a leading pipe using this method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は先導管の縦断面図、第2図及び第3図は先導管
方向制御に対する説明図、第4図は先導管の穿孔刃体の
正面図、第5図に第1図X部の断面を示し、また、第6
図は締付片のd部テーパー面に作用する力の説明図であ
る。
Figure 1 is a longitudinal sectional view of the leading pipe, Figures 2 and 3 are explanatory diagrams for controlling the direction of the leading pipe, Figure 4 is a front view of the piercing blade of the leading pipe, and Figure 5 shows the section X in Figure 1. It also shows the cross section of the sixth
The figure is an explanatory diagram of the force acting on the d-portion tapered surface of the tightening piece.

Claims (1)

【特許請求の範囲】 1 穿孔装置における先導管の方向制御方式において、
先導管と装置本体との接合面を斜面としてこの部を方向
制御部とし、先導管の上向方向制御角度が零度又は僅か
上向方向で、下向方向を所定角度振れるようにしたこと
を特徴とする先導管の方向制御方式。 2 先端部に穿孔刃体を固定し内部に羽根が異径且つ偏
心して設けられたスクリューオーガを配した破砕管を先
導管とし、該破砕管の後端面と穿孔装置本体の輸送管の
先端面との接合面を斜面に形成して油圧シリンダ等によ
り緊締、開放自在にし、前記スクリューオーガの後端部
を前記輸送管内に配した輸送用オーガの先端部に自在接
手により接続すると共に前記破砕管の内面に突起を形成
して前記スクリューオーガの羽根端部が前記突起に当接
、分離可能に位置付けし、前記油圧シリンダ等による前
記接合面の緊締時には前記スクリューオーガを回転して
もその羽根端部が前記突起に当接せず、前記接合面を開
放してスクリューオーガを回転すればその羽根端部が前
記突起に当接し破砕管を回転させて輸送管との連結角度
を変化させ、破砕管の方向を上向方向角度が零度又は僅
か上向方向で、下向方向を所定角度振れるようにしたこ
とを特徴とする穿孔装置における先導管の方向制御装置
。 3 先端部に穿孔刃体を固定し内部にスクリューオーガ
を配した破砕管を先導管とし、該破砕管の後端面と穿孔
装置本体の輸送管の先端面との接合面を斜面に形成して
油圧シリンダ等により緊締、開放自在にし、前記スクリ
ユーオーガの後端部を前記輸送管内に配した輸送用オー
ガの先端部に自在接手により接続すると共に前記破砕管
の内面に突起を形成して前記スクリューオーガの羽根端
部が前記突起に当接、分離可能に位置付けする一方、輸
送管内に泥水輸送管を配して破砕管内に泥水を供給する
ようにし、且つ輸送用オーガの中間適宜の個所の軸にば
ね式などの弁方式による圧力保持機構を配設し、前記油
圧シリンダ等による前記接合面の緊締時には前記スクリ
ューオーガを回転してもその羽根端部が前記突起に当接
せず、前記接合面を開放してスクリューオーガを回転す
ればその羽根端部が前記突起に当接し破砕管を回転させ
て輸送管との連結角度を変化させ、破砕管の方向を上向
方向角度が零度又は僅か上向方向で、下向方向を所定角
度振れるようにしたことを特徴とする穿孔装置における
先導管の方向制御装置。 4 破砕管の後端部外周壁面をテーパー状に形成し、外
壁面と輸送管の内壁との間に締付片を配して、該締付片
を輸送管に設けた油圧シリンダにより引張ることにより
、破砕管と輸送管を一体化するようにしたことを特徴と
する特許請求の範囲第2項又は第3項に記載の装置。
[Claims] 1. In a direction control system for a leading pipe in a drilling device,
The joint surface between the leading pipe and the main body of the device is made a slope, and this part is used as a direction control part, so that the leading pipe can swing downward by a predetermined angle while the upward direction control angle is 0 degrees or slightly upward. A directional control method for the leading pipe. 2 A crushing tube with a punching blade fixed to the tip and a screw auger with blades of different diameters and eccentrically installed inside is used as the leading tube, and the rear end surface of the crushing tube and the tip surface of the transport tube of the punching device main body The joint surface with the screw auger is formed into a slope so that it can be tightened and opened by a hydraulic cylinder, etc., and the rear end of the screw auger is connected to the tip of a transport auger placed in the transport pipe by a universal joint, and the crushing pipe A protrusion is formed on the inner surface of the screw auger, and the blade end of the screw auger is positioned so that it can come into contact with and separate from the protrusion, and when the joint surface is tightened by the hydraulic cylinder or the like, even when the screw auger is rotated, the blade end does not come into contact with the protrusion. If the screw auger is rotated with the joining surface open without the blade abutting against the protrusion, the blade end will abut against the protrusion, rotating the crushing tube, changing the connection angle with the transport pipe, and crushing. 1. A direction control device for a leading pipe in a drilling device, characterized in that the direction of the pipe can be swung at an upward angle of zero or a slight upward direction, and a downward direction at a predetermined angle. 3. A crushing tube with a punching blade fixed to the tip and a screw auger arranged inside is used as a leading tube, and the joint surface between the rear end surface of the crushing tube and the tip surface of the transport tube of the punching device main body is formed into an inclined surface. The screw auger can be tightened and opened freely by a hydraulic cylinder or the like, and the rear end of the screw auger is connected to the tip of a transport auger placed in the transport pipe by a flexible joint, and a protrusion is formed on the inner surface of the shredding pipe. While the blade end of the screw auger is positioned so as to be able to come into contact with and separate from the protrusion, a muddy water transport pipe is arranged within the transport pipe to supply muddy water into the crushing pipe, and at an appropriate point in the middle of the transport auger. A pressure holding mechanism using a valve type, such as a spring type, is disposed on the shaft, and when the joint surface is tightened by the hydraulic cylinder or the like, even if the screw auger is rotated, its blade end does not come into contact with the protrusion. When the joint surface is opened and the screw auger is rotated, the blade end comes into contact with the protrusion, rotates the crushing tube, changes the connection angle with the transport tube, and changes the direction of the crushing tube so that the upward direction angle is zero or A direction control device for a leading pipe in a drilling device, characterized in that it can swing slightly upward and downward by a predetermined angle. 4 Forming the outer circumferential wall surface of the rear end of the crushing tube into a tapered shape, disposing a tightening piece between the outer wall surface and the inner wall of the transport pipe, and pulling the tightening piece with a hydraulic cylinder provided on the transport pipe. The apparatus according to claim 2 or 3, wherein the crushing tube and the transport tube are integrated.
JP30886086A 1986-12-26 1986-12-26 Direction control system of head pipe in boring device and direction controller for head pipe using said system Pending JPS63165695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30886086A JPS63165695A (en) 1986-12-26 1986-12-26 Direction control system of head pipe in boring device and direction controller for head pipe using said system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30886086A JPS63165695A (en) 1986-12-26 1986-12-26 Direction control system of head pipe in boring device and direction controller for head pipe using said system

Publications (1)

Publication Number Publication Date
JPS63165695A true JPS63165695A (en) 1988-07-08

Family

ID=17986128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30886086A Pending JPS63165695A (en) 1986-12-26 1986-12-26 Direction control system of head pipe in boring device and direction controller for head pipe using said system

Country Status (1)

Country Link
JP (1) JPS63165695A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738896B2 (en) * 1974-10-07 1982-08-18
JPS5924492B2 (en) * 1978-07-18 1984-06-09 松下電器産業株式会社 Filling method of active material for batteries

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738896B2 (en) * 1974-10-07 1982-08-18
JPS5924492B2 (en) * 1978-07-18 1984-06-09 松下電器産業株式会社 Filling method of active material for batteries

Similar Documents

Publication Publication Date Title
US5242026A (en) Method of and apparatus for drilling a horizontal controlled borehole in the earth
JP2967924B2 (en) How to drill a rock layer horizontally
US6991047B2 (en) Wellbore sealing system and method
US4077481A (en) Subterranean mining apparatus
USRE37450E1 (en) Directional multi-blade boring head
US6585062B2 (en) Steerable directional drilling reamer
US6250403B1 (en) Device and method for enlarging a Bore
US3720272A (en) Apparatus and method for drilling an arcuate bore from ground surface under an obstruction to ground surface
US3546885A (en) Threaded pile for marine structure
KR101620976B1 (en) Floating crane fork rotation is available for drill core bond
USRE37975E1 (en) Directional boring head with blade assembly
JPS63165695A (en) Direction control system of head pipe in boring device and direction controller for head pipe using said system
CN202788622U (en) Horizontal directional drilling power broaching drilling tool provided with automatic resetting pressure relief device
CN209724270U (en) A kind of intraductal atmospheric pressure opening bit
CN104032827B (en) Blow-off line desilting is bored
US9290993B2 (en) Method and system for installation of in-ground conduit
CN201802313U (en) Combined rock reamer
KR200419260Y1 (en) A beat for sewer pipe propeling unit
JPS594029B2 (en) Penetration piping method and equipment that simultaneously strengthens the consolidation of the ground
US8011449B2 (en) Method and apparatus for directional drilling
JP2006045839A (en) Well device having fluid injecting and recovering functions, and method of setting the well device
JP2004232304A (en) One-way tunneling universal pipe-jacking tool, one-way tunneling pipe-jacking method and laying construction method for pipe
CN108979579B (en) Auxiliary windowing process for directional blasting perforation of thick-wall casing
Wen A Novel and High-Efficiency Reaming Assembly for Underground Pipelines Pulling Back Laying in Horizontal Directional Drilling
JP7032152B2 (en) Bit for drilling