JPS63165028A - Manufacture of corrosion resistant double pipe - Google Patents

Manufacture of corrosion resistant double pipe

Info

Publication number
JPS63165028A
JPS63165028A JP30822386A JP30822386A JPS63165028A JP S63165028 A JPS63165028 A JP S63165028A JP 30822386 A JP30822386 A JP 30822386A JP 30822386 A JP30822386 A JP 30822386A JP S63165028 A JPS63165028 A JP S63165028A
Authority
JP
Japan
Prior art keywords
pipe
tube
inner tube
inner pipe
outer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30822386A
Other languages
Japanese (ja)
Inventor
Isao Takada
高田 庸
Akira Kato
章 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP30822386A priority Critical patent/JPS63165028A/en
Publication of JPS63165028A publication Critical patent/JPS63165028A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Heat Treatment Of Articles (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To obtain the corrosion resistant double pipe having no rupture caused on the way of the expansion of an inner pipe nor variation in the thickness by respectively specifying the material of an outer pipe and inner pipe, inserting the inner pipe into the outer pipe and expanding the inner pipe with its pressurization by heating it at a specific temp. CONSTITUTION:A carbon steel, low alloy steel or an austenite stainless steel is selected as the material for an outer pipe 1 and on the other hand the outer pipe 1, inner pipe 2 are respectively prepared by selecting the Ti, Zr and these alloy steels excellent in a corrosion resistance and having smaller thermal expansion coefft. than that of the material of the outer pipe 1 as the material for the inner pipe 2. A clad pipe is then made by inserting the inner pipe 2 into the outer pipe 1, heated at 350-800 deg.C, the inner pipe 2 is expanded with its pressurization simultaneously and a corrosion resistant double pipe is obtd. by compactly fixing the inner pipe 2 and outer pipe 1 by cooling them thereafter.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、耐食性二重管の製造方法に関するものであり
、特に安価な材料からなる外管と海水、化学薬品などに
対し耐食性に優れた高価な材料からなる内管との耐食性
二重管を製造する方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for manufacturing a corrosion-resistant double-walled pipe, and in particular, an outer pipe made of an inexpensive material and a double-walled pipe that has excellent corrosion resistance against seawater, chemicals, etc. The present invention relates to a method of manufacturing a corrosion-resistant double pipe with an inner pipe made of expensive material.

〈従来の技術〉 管は、その用途により種々の特性が要求されるので、こ
れらの特性を満足する素材をもって製造されている。近
年産業の発達、特に化学工業およびその周辺あるいは関
連技術の発達により管に要求される特性は多様かつ苛酷
になり、1種類の管材料をもって、要求される特性をす
べて満足させるためには、非常に高価な材料を使用せざ
るを得ないのが現状である。
<Prior Art> Pipes are required to have various properties depending on their use, so they are manufactured using materials that satisfy these properties. In recent years, due to the development of industry, especially the development of the chemical industry and related technologies, the characteristics required of pipes have become more diverse and severe, and in order to satisfy all of the required characteristics with one type of pipe material, it is extremely difficult. Currently, expensive materials have to be used.

一方、上記高価な材料を使用することによる管のコスト
の上昇を抑制するため、それぞれ異なった特性を有する
複数の材料を複合させた多層管の製造方法が種々提案さ
れて・いる、外管の内側に内管を挿入して重ねあわせ管
とし、この重ねあわせ管を加熱し、同時に内管を気体に
より加圧して拡管することにより二重管を製造する方法
が、特開昭58−112612号に開示されている。こ
の特開昭58−112612号の発明は内管の材料とし
て外管の材料より熱膨張係数の小さいものを選定し、重
ねあわせ管を加熱し、同時に内管を気体で加圧、拡管し
、次いで冷却することにより内管と外管とを締結させる
方法に関するものである。
On the other hand, in order to suppress the increase in tube costs due to the use of the above-mentioned expensive materials, various methods have been proposed for manufacturing multilayer tubes, each of which is a composite of multiple materials with different characteristics. JP-A No. 58-112612 discloses a method of manufacturing a double tube by inserting an inner tube inside to form a stacked tube, heating the stacked tube, and simultaneously expanding the inner tube by pressurizing the inner tube with gas. has been disclosed. The invention disclosed in JP-A-58-112612 selects a material with a smaller thermal expansion coefficient than that of the outer tube as the material for the inner tube, heats the stacked tubes, and simultaneously pressurizes and expands the inner tube with gas. The present invention relates to a method of joining an inner tube and an outer tube by cooling the tube.

本発明は、特開昭58−112612号の発明を改良し
た発明であり、内管に海水、化学薬品などに対し耐食性
に優れた高価なTi 、 Zrおよびこれらの合金を用
い、外管に安価な炭素鋼、低合金鋼、オーステナイト系
ステンレス鋼を用いた安価で耐食性に優れた二重管の製
造方法に関するものである。
The present invention is an improvement on the invention disclosed in JP-A No. 58-112612, in which the inner tube is made of expensive Ti, Zr, and alloys thereof, which have excellent corrosion resistance against seawater and chemicals, and the outer tube is made of inexpensive Ti, Zr, and alloys thereof. The present invention relates to a method for manufacturing double-walled pipes that are inexpensive and have excellent corrosion resistance using carbon steel, low-alloy steel, and austenitic stainless steel.

〈発明が解決しようとする問題点〉 二重管の内管として耐食性に優れたTi 、 Zrまた
はこれらの合金を選び、外管として炭素鋼、低合金鋼、
またはオーステナイト系ステンレス鋼を選び先行発明の
方法で、耐食性二重管を製造しようとする場合、外管内
に内管を円滑に挿入するためには、管の曲がりも考慮す
ると内管直径の2%以上の間隙が必要となる。したがっ
て内管を拡管して外管の内側に密着させた場合、内管は
半径方向に2%以上の伸び歪みを受ける。ここで、重ね
あわせ管の加熱温度が不適切な場合、内管が拡管途中に
半径方向と軸方向との両方が合成された応力方向(管軸
に対して45°の方向に近い)に局部的に肉厚減少部が
生じて破断することが多く、また破断に至らなくとも肉
厚減少部による内管の肉厚変動が生じ、規格の寸法公差
を満足させるのが困難となるという問題点があった。
<Problems to be solved by the invention> Ti, Zr, or an alloy thereof with excellent corrosion resistance is selected for the inner tube of the double tube, and carbon steel, low alloy steel, or an alloy thereof is selected for the outer tube.
Alternatively, when austenitic stainless steel is selected and a corrosion-resistant double pipe is manufactured using the method of the prior invention, in order to smoothly insert the inner pipe into the outer pipe, 2% of the inner pipe diameter is required, taking into account the bending of the pipe. A gap larger than this is required. Therefore, when the inner tube is expanded and brought into close contact with the inside of the outer tube, the inner tube is subjected to an elongation strain of 2% or more in the radial direction. Here, if the heating temperature of the stacked tubes is inappropriate, the inner tube may be locally stressed in the direction of combined stress in both the radial and axial directions (close to 45 degrees to the tube axis) during tube expansion. The problem is that the reduced wall thickness often occurs and breaks, and even if the pipe does not break, the reduced wall thickness causes variations in the wall thickness of the inner tube, making it difficult to meet the dimensional tolerances of the standard. was there.

本発明は、先行発明の問題点を解決し、内管の拡管途中
に生ずる破断や肉厚変動のない二重管の製造方法を提供
するためになされたものである。
The present invention has been made in order to solve the problems of the prior invention and to provide a method for manufacturing a double-walled pipe without breakage or wall thickness variation that occurs during expansion of the inner pipe.

く問題点を解決するための手段〉 発明者らは、拡管時に破断がおきないように二重管を製
造するために、小型試験片による内管材料Ti 、 Z
rの高温引張特性の検討、およびそれに基づいた二重管
の製造実験を重ね、Ti 、 Zrの小型試験片による
熱間引張試験において肉厚の減少が小さく、かつ幅方向
が大きく収縮して破断する温度範囲すなわち350〜8
00℃に重ねあわせ管を加熱し、ついで内管を気体によ
り加圧拡管することにより、内管の破断および肉厚の変
動がなく二重管を製造することができるとの知見を得、
この知見に基づいて本発明をなすに至った。
Means for Solving Problems〉 In order to manufacture a double-walled pipe so as to prevent breakage during pipe expansion, the inventors developed inner pipe materials using small test pieces of Ti and Z.
After examining the high-temperature tensile properties of R and conducting double-pipe manufacturing experiments based on the results, we found that in hot tensile tests using small test pieces of Ti and Zr, the decrease in wall thickness was small, and the width direction contracted significantly and broke. temperature range i.e. 350~8
It was discovered that by heating the stacked tubes to 00°C and then expanding the inner tube under pressure with gas, it was possible to manufacture a double-layered tube without breaking the inner tube or changing the wall thickness.
The present invention was made based on this knowledge.

本発明は、外管の内側に内管を挿入して外管と内管とを
重ねあわせて結合する二重管の製造方法において、外管
の材料として炭素鋼、低合金鋼またはオーステナイト系
ステンレス鋼を選定し、一方内管の材料として耐食性に
優れ前記夕(管の材料より熱膨張係数が小さいTi、Z
rおよびそれらの合金鋼を選定して外管、内管をそれぞ
れ製作し、ついで外管内に内管を挿入して、重ねあわゼ
管とし、その重ねあわせ管を350〜800℃に加熱し
、同時に内管を加圧して拡管し、その後冷却して内管と
外管とを緊密に固着させる耐食性二重管の製造方法であ
る。
The present invention provides a method for manufacturing a double tube in which an inner tube is inserted inside an outer tube and the outer tube and the inner tube are overlapped and connected, and the outer tube is made of carbon steel, low alloy steel, or austenitic stainless steel. Steel was selected as the material for the inner tube, while Ti and Z, which have excellent corrosion resistance and have a smaller coefficient of thermal expansion than the tube material, were selected.
r and their alloy steels are selected to produce an outer tube and an inner tube, respectively, and then the inner tube is inserted into the outer tube to form a laminated tube, and the laminated tubes are heated to 350 to 800°C. This is a method of manufacturing a corrosion-resistant double-walled pipe in which the inner pipe is simultaneously pressurized and expanded, and then cooled to tightly bond the inner pipe and outer pipe.

く作 用〉 本発明の要旨は、外管の材料として炭素鋼、低合金鋼、
またはオーステナイト系ステンレス鋼を選定し、内管の
材料として外管の材料より熱膨張係数の小さいTiまた
はZrを選定して外管内に内管を挿入して重ねあわセ管
とし、この重ねあわせ管を加熱し、同時に内管を気体に
より加圧して拡管し、次いで冷却することにより内管と
外管を緊密に固着させる二重管の製造過程において、重
ねあわせ管の加熱を350〜800℃で行うことにある
Function> The gist of the present invention is that carbon steel, low alloy steel,
Alternatively, select austenitic stainless steel, select Ti or Zr, which has a smaller coefficient of thermal expansion than the material of the outer tube, as the material for the inner tube, and insert the inner tube into the outer tube to form an overlapped tube. In the manufacturing process of double-layered tubes, in which the inner tube is heated, the inner tube is expanded by pressurizing it with gas, and then the inner tube and outer tube are tightly bonded by cooling, the stacked tubes are heated at 350 to 800℃. It's about doing.

ここで、外管の材料を炭素鋼、低合金鋼、またはオース
テナイト系ステンレス鋼としたのは外管と内管の熱膨張
係数の差を利用して二重管を製造する本発明の方法とし
て外管材には比較的熱膨張係数の大きい材料を選定する
必要があり、また管として必要な硬度、低価格を考慮し
たからである。
Here, the material of the outer tube is carbon steel, low alloy steel, or austenitic stainless steel because the method of the present invention manufactures a double tube by utilizing the difference in the coefficient of thermal expansion between the outer tube and the inner tube. This is because it is necessary to select a material with a relatively large coefficient of thermal expansion for the outer tube material, and also takes into consideration the hardness required for the tube and low cost.

内管の材料としてTiまたはZrを選定したのは、内管
材としては外管の材料より熱膨張係数の小さい材料を選
定する必要があり、そのうえ海水、各fJl薬品、また
は酸類などに対する耐食性に優れているからである。
Ti or Zr was selected as the material for the inner tube because it was necessary to select a material with a smaller coefficient of thermal expansion than the material for the outer tube, and it also had excellent corrosion resistance against seawater, fJl chemicals, and acids. This is because

外管に内管を挿、大した重ねあわせ管の加熱温度を35
0〜800℃の範囲としたのは第1図に示すようにTi
およびZrともこの温度範囲における引張試験において
、試験片の大きい幅絞り率を示し、第1図に示すように
、この温度範囲で二重管を製造した場合のみに、内管の
破断または肉厚変動が生じないからである。
Insert the inner tube into the outer tube and heat the large stacked tubes to 35
As shown in Figure 1, the range of 0 to 800°C is
In the tensile test in this temperature range, both Zr and Zr showed a large reduction in width of the test piece, and as shown in Figure 1, only when double-walled pipes were manufactured in this temperature range did inner pipe breakage or wall thickness increase. This is because no fluctuation occurs.

ここで第2図は、二重管の内管とすべき外径581、肉
厚1.5 nのTi管および外径58龍、肉厚1 、0
 asのZr管より幅15龍、長さ 120龍の試験片
を製作し高温、高速引張試験機により30脂秒のひずみ
速度で引張破断させた後の(L〜W) /W。×100
(%)(L:15龍、W:破断後の幅)を試験温度に対
してプロットしたものである。
Here, FIG. 2 shows a Ti tube with an outer diameter of 581 and a wall thickness of 1.5 nm, which should be the inner tube of the double tube, and a Ti tube with an outer diameter of 58 mm and a wall thickness of 1 and 0.
A test piece with a width of 15 mm and a length of 120 mm was prepared from an AS Zr tube and tensile fractured at a strain rate of 30 fat seconds using a high-temperature, high-speed tensile tester (L~W)/W. ×100
(%) (L: 15 times, W: width after rupture) is plotted against the test temperature.

第1図は外管としてC: 0.22重量%(以下%)、
Si : 0.31%、 Mn ! 0.52%、 C
r : 1.02%、Mo : 0.60%を含有する
外径73.0鶴、肉厚6.351、長さ6000+nの
低合金継目無鋼管を選定し、内管として外径58.0m
m、肉厚1.5酊、長さ6000■−のTIG溶接Ti
管または外径5B、0I11゜肉厚1.01脂、長さ6
000のTIG溶接Zr管を選定し第3図に模式的に示
す製造装置により、重ねあわせ管の片端より誘導加熱コ
イルで加熱温度を変化させて順次、帯域加熱をしながら
このコイルをもう一方の管端に移動させ、同時に内管を
気体で加圧、拡管さセて製造した場合の二重管長さ方向
中央部20(1m−の間における内管の最小肉厚と重ね
あわせ管加熱温度との関係を示したものである。
Figure 1 shows the outer tube as C: 0.22% by weight (hereinafter referred to as %),
Si: 0.31%, Mn! 0.52%, C
A low-alloy seamless steel tube with an outer diameter of 73.0 m, a wall thickness of 6.351, and a length of 6000 + n containing r: 1.02% and Mo: 0.60% was selected, and the inner pipe had an outer diameter of 58.0 m.
m, wall thickness 1.5 mm, length 6000 mm - TIG welded Ti
Pipe or outer diameter 5B, 0I11゜wall thickness 1.01 fat, length 6
000 TIG welded Zr tube was selected, and using the manufacturing equipment schematically shown in Fig. 3, the heating temperature was changed using an induction heating coil from one end of the stacked tubes, and while band heating was performed, this coil was heated to the other end. The minimum wall thickness of the inner tube in the longitudinal direction center part 20 (1 m-) of the double tube and the stacked tube heating temperature when the inner tube is manufactured by moving it to the tube end and simultaneously pressurizing the inner tube with gas and expanding the tube. This shows the relationship between

〈実施例〉 次に、本発明の実施例について説明する。<Example> Next, examples of the present invention will be described.

第1表に示すような外管材料、内管材料、重ねあわせ管
の加熱温度、および内管の内圧で製造した場合の断面光
学顕微鏡観察による内管と外管との緊密度の良、否と長
さ方向中央部20on長さの範囲における内管肉厚の最
大値と最小値とを、重ねあわせ管の加熱温度が本発明の
範囲にある場合および範囲外の場合について同じく第1
表に示した。
The quality of tightness between the inner tube and the outer tube as determined by cross-sectional optical microscope observation when manufactured using the outer tube material, inner tube material, heating temperature of the stacked tubes, and internal pressure of the inner tube as shown in Table 1. and the maximum and minimum values of the inner tube wall thickness in the range of 20 on length at the central portion in the longitudinal direction, and the same first values for the case where the heating temperature of the stacked tubes is within the range of the present invention and the case where it is outside the range of the present invention.
Shown in the table.

なお、第1表における内管の加圧はすべてArガスボン
ベにより行った、 第1表に示すとおり本発明の範囲で加熱した場合のみに
、内管の肉厚変動がほとんどなく外管と内管の緊密度が
良好な二重管が得られている。
In addition, all the pressurization of the inner tube in Table 1 was performed using an Ar gas cylinder. A double tube with good tightness was obtained.

〈発明の効果〉 本発明は、海水、塩化物溶液、アルカリ、有機薬品、硝
酸、塩酸、および硫酸等に対し耐食性に優れた材料で、
高価なTiまたはZr単体管の代わりに安価なTiまた
はZr薄肉管と炭素鋼、低合金鋼、またはオーステナイ
ト系ステンレス鋼管との耐食性二重管を提供するもので
あり、その工業的価値は大きい。
<Effects of the Invention> The present invention is a material with excellent corrosion resistance against seawater, chloride solutions, alkalis, organic chemicals, nitric acid, hydrochloric acid, sulfuric acid, etc.
The present invention provides a corrosion-resistant double pipe made of an inexpensive Ti or Zr thin-walled pipe and a carbon steel, low alloy steel, or austenitic stainless steel pipe instead of an expensive Ti or Zr single pipe, and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、内管材料の高温高速引張試験における試験温
度と試験片の幅絞り率との関係を示す特性図、第2図は
、二重管製造時における重ねあわせ管の加熱温度と内管
の最小肉厚との関係を示す特性図、第3図は、二重管の
製造装置の模式図である。 1・・・外 管、 2・・・内 管、 3・・・シール
キャンプ、 4・・・誘導加熱コイル、 5・・・気体
送入管、6・・・内管圧力調整弁 特許出願人    川崎製鉄株式会社 第  2  図 試験温度(°C) 第  3  図 1−m−外管 2−m−内管 3−−−/−ルキャップ 4−m−誘導加熱コイル 5−m−気体送入管 6−一一内管圧力調整弁
Figure 1 is a characteristic diagram showing the relationship between the test temperature and the width reduction ratio of the test piece in a high-temperature, high-speed tensile test of inner tube material, and Figure 2 is a characteristic diagram showing the relationship between the heating temperature of the stacked tube and the inner diameter during double tube manufacturing. FIG. 3, a characteristic diagram showing the relationship with the minimum wall thickness of the pipe, is a schematic diagram of a double pipe manufacturing apparatus. DESCRIPTION OF SYMBOLS 1...Outer pipe, 2...Inner pipe, 3...Seal camp, 4...Induction heating coil, 5...Gas feed pipe, 6...Inner pipe pressure regulating valve Patent applicant Kawasaki Steel Corporation Fig. 2 Test temperature (°C) Fig. 1-m-outer tube 2-m-inner tube 3----/-le cap 4-m-induction heating coil 5-m-gas supply Pipe 6-11 Inner pipe pressure regulating valve

Claims (1)

【特許請求の範囲】[Claims] 外管の内側に内管を挿入して外管と内管とを重ねあわせ
て結合する二重管の製造方法において、外管の材料とし
て炭素鋼、低合金鋼またはオーステナイト系ステンレス
鋼を選定し、一方内管の材料として耐食性に優れ前記外
管の材料より熱膨張係数が小さいTi、Zrおよびそれ
らの合金鋼を選定して外管、内管をそれぞれ製作し、つ
いで外管内に内管を挿入して重ねあわせ管とし、その重
ねあわせ管を350〜800℃に加熱し、同時に内管を
加圧して拡管し、その後冷却して内管と外管とを緊密に
固着させることを特徴とする耐食性二重管の製造方法。
In the method of manufacturing a double tube, in which the inner tube is inserted inside the outer tube and the outer tube and inner tube are overlapped and joined together, carbon steel, low alloy steel, or austenitic stainless steel is selected as the material for the outer tube. On the other hand, as the material for the inner tube, Ti, Zr, and their alloy steels, which are excellent in corrosion resistance and have a smaller coefficient of thermal expansion than the material for the outer tube, are selected to manufacture the outer tube and the inner tube, respectively, and then the inner tube is placed inside the outer tube. It is characterized by inserting the tubes into stacked tubes, heating the stacked tubes to 350 to 800°C, simultaneously pressurizing the inner tubes to expand them, and then cooling them to tightly adhere the inner tubes and the outer tubes. A method for manufacturing corrosion-resistant double pipes.
JP30822386A 1986-12-26 1986-12-26 Manufacture of corrosion resistant double pipe Pending JPS63165028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30822386A JPS63165028A (en) 1986-12-26 1986-12-26 Manufacture of corrosion resistant double pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30822386A JPS63165028A (en) 1986-12-26 1986-12-26 Manufacture of corrosion resistant double pipe

Publications (1)

Publication Number Publication Date
JPS63165028A true JPS63165028A (en) 1988-07-08

Family

ID=17978406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30822386A Pending JPS63165028A (en) 1986-12-26 1986-12-26 Manufacture of corrosion resistant double pipe

Country Status (1)

Country Link
JP (1) JPS63165028A (en)

Similar Documents

Publication Publication Date Title
US4765529A (en) Method of manufacturing an externally clad tubular product
US5988484A (en) Clad tubular product and method of manufacturing same
US2763923A (en) Method of and transition member for weld uniting dissimilar metals
JP2005506200A (en) Composite billet for producing clad pipe and tube and method for producing the same
CA2920623C (en) Dual walled titanium tubing and methods of manufacturing the tubing
KR100256161B1 (en) High pressure fuel injection pipe for diesel internal combustion engine
JPH08184391A (en) Bellows pipe
US20080067214A1 (en) Dissimilar metal transition for superheater or reheater tubes
JPH0724577A (en) Butt welding method for clad tubes
JPS63165028A (en) Manufacture of corrosion resistant double pipe
CN116221509A (en) High-strength corrosion-resistant alloy composite oil pipe and manufacturing method thereof
JPS5936145B2 (en) pressure vessel
CN113941767B (en) Low-stress control method for high-carbon steel inertia axial friction welding joint
JPS607591B2 (en) Clad pipe production method
JP2595856B2 (en) Manufacturing method of seamless clad metal tube
US4881679A (en) Subassembly for use in manufacturing a tubular product
JP2000005816A (en) Multi-wound stainless steel pipe
JPH058057A (en) Manufacture of double metal tube
JP2001087805A (en) Composite sleeve made of sintered hard alloy
JPH03234314A (en) Manufacture of double tube
EP1025920A2 (en) A method for producing a multilayer thin-walled bellows of stainless steel
JPH02187280A (en) Manufacture of metallic duplex tube
JPS6076290A (en) Production of clad steel pipe
JPS59202117A (en) Production of double pipe
EP1025919A2 (en) Method for producing multilayer thin-walled bellows