JPS63164597A - Image pickup device for stereoscopic vision - Google Patents

Image pickup device for stereoscopic vision

Info

Publication number
JPS63164597A
JPS63164597A JP61311524A JP31152486A JPS63164597A JP S63164597 A JPS63164597 A JP S63164597A JP 61311524 A JP61311524 A JP 61311524A JP 31152486 A JP31152486 A JP 31152486A JP S63164597 A JPS63164597 A JP S63164597A
Authority
JP
Japan
Prior art keywords
signal
signals
circuit
solid
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61311524A
Other languages
Japanese (ja)
Inventor
Hiroo Takemura
裕夫 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61311524A priority Critical patent/JPS63164597A/en
Publication of JPS63164597A publication Critical patent/JPS63164597A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the accuracy of performance with a simple constitution by alternately switching the output signals of a 1st and 2nd solid image pickup elements every picture to process the signals and setting up a signal storing time more than the time of one picture. CONSTITUTION:The solid state image pickup elements 14, 15 in a 1st and 2nd case bodies 10, 11 are driven by a driving pulse outputted from a driving circuit 21 correspodingly to a synchronizing signal outputted from a synchronizing signal generating circuit 22. Shift pulses are alternately impressed to respective elements 14, 15 in each field and the photodiode accumulating time of the signal can be secured in one frame period until the impression of the succeeding field shifting pulse. The signals are switched every 60Hz by a switch circuit 16 and successively sent to a luminance signal processing circuit 18 and a color separating circuit 19. Consequently, right and left eye signals are obtained and a stereoscopic vision image can be obtained by using a liquid crystal shutter for switching right and left signals.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明はビデオカメラとして用いられる立体視用撮像
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a stereoscopic imaging device used as a video camera.

(従来の技術) 従来、立体視像を撮像する立体視用撮像装置としては、
少なくとも1台に外部同期機能を有する一対のテレビジ
ョンカメラを所定の間隔を有して配置し、このテレビジ
ョンカメラの出力信号を交互に切換え制御することによ
り、立体視用の右眼及び左眼用画像信号を得るように構
成されていた。すなわち、2台のテレビジョンカメラは
その水平・垂直駆動パルスが同期され、そのうち垂直同
期パルスにより例えば奇数フィールドで一方のテレビジ
ョンカメラの画像信号を得、偶数フィールドで他方のテ
レビジョンカメラの画像信号を得るように切換えられる
。この場合、各テレビジョンカメラの出力信号は出力信
号のうち奇数あるいは偶数フィールドのいずれか一方の
1/2の出力信号が利用される。例えば一方のテレビジ
ョンカメラは第3図(a>に示すようにフィールドシフ
トパルスが60 Hz毎に加えられ、同図(b)に示す
ように1フイールド、60Toの期間で蓄積された信号
が同図(C)中実線で示すように30)Iz毎に一つお
きの右眼用画像信号として読出される。
(Prior Art) Conventionally, as a stereoscopic imaging device that captures a stereoscopic image,
A pair of television cameras, at least one of which has an external synchronization function, are arranged at a predetermined interval, and the output signals of the television cameras are alternately switched and controlled. It was configured to obtain image signals for In other words, the horizontal and vertical drive pulses of the two television cameras are synchronized, and the vertical synchronization pulses allow the image signal of one television camera to be obtained in odd fields, and the image signal of the other television camera to be obtained in even fields. It can be switched to obtain . In this case, as the output signal of each television camera, 1/2 of either the odd or even field of the output signal is used. For example, in one television camera, field shift pulses are applied every 60 Hz as shown in Figure 3 (a), and the signals accumulated over a period of 60 To for one field are the same as shown in Figure 3 (b). As shown by the solid line in Figure (C), every 30) Iz is read out as every other right eye image signal.

同時に、他方のテレビジョンカメラは一方と同期して同
図(d)に示すようにフィールドシフトパルスが608
!毎に加えられ、同図(e)に示すように1フイールド
、60Hzの期間で蓄積された信号が同図(f)に示す
ように30石毎に一つおきの左眼用画像信@(同図(f
)中実線で示す)として読出される。
At the same time, the other television camera is synchronized with the one and the field shift pulse is 608 as shown in (d) of the same figure.
! As shown in the figure (e), the signals accumulated in one field and a period of 60 Hz are added every other left eye image signal @( The same figure (f
) is read out as (indicated by a solid line).

ところが、上記立体視用撮像装置では、その構成上、テ
レビジョンカメラの出力信号のうち1/2の出力信号を
利用せずに捨てることとなるために、S/Nが低いとい
う問題を有していた。
However, the stereoscopic imaging device described above has a problem of low S/N because, due to its configuration, 1/2 of the output signal of the television camera is discarded without being used. was.

そこで、上記立体視撮像装置に1フイールドメモリ及び
加算器を備え、出力信号のうち捨てられる1/2の出力
信号(例えば偶数フィールド信号)を1フイ一ルド期間
メモリして続出用の1/2の出力信号(例えば奇数フィ
ールド信号)に加算する手段が考えられている。
Therefore, the above-mentioned stereoscopic imaging device is equipped with a one-field memory and an adder, and one-half of the output signal to be discarded (for example, an even field signal) is stored for one field period, and one-half of the output signal for subsequent output is stored. Means for adding to an output signal (for example, an odd field signal) have been considered.

しかしながら、上記1フイールドメモリや加算器を用い
る手段では、信号が従来の2倍となり、6dBS/Nが
増加されるが、ランダム雑音は相関関係を有しないため
に、実質3dBS/Nが改善されるだけで、構成部品の
増加により大形になると共に、高価になるという不具合
を有することとなるものであった。
However, in the above-mentioned method using one-field memory or adder, the signal is twice as large as the conventional one, increasing the 6 dBS/N, but since random noise has no correlation, the actual 3 dBS/N is improved. However, due to the increase in the number of component parts, it becomes larger and more expensive.

(発明が解決しようとする問題点) この発明は上記の出力信号の有効利用が図られていない
点を解決するためになされたもので、簡易な構成で、か
つ、性能の高精度化を図り得るようにした立体視用撮像
装置を提供することを目的とする。
(Problems to be Solved by the Invention) This invention was made in order to solve the above-mentioned problem that the output signal is not used effectively, and has a simple configuration and high precision performance. It is an object of the present invention to provide a stereoscopic imaging device that can obtain stereoscopic vision.

[発明の構成] (問題点を解決するための手段及び作用)この発明は光
学系に対応して固体撮像素子が設けられ、所定の間隔を
有して配設された第1及び第2の撮像部と、この第1及
び第2の固体撮像素子を駆動制御する駆動手段と、前記
固体撮像素子の出力信号を1画面毎に交互に切換えて画
像信号を得る信号処理手段とを備え、前記固体撮像素子
の出力信号の信号蓄積時間を前記1画面の期間以上に設
定することにより、前記固体撮像素子の出力信号の有効
利用を実現したものである。
[Structure of the Invention] (Means and Effects for Solving the Problems) This invention provides a solid-state image pickup device corresponding to an optical system, and a first and a second solid-state image pickup device arranged at a predetermined interval. comprising an imaging section, a driving means for driving and controlling the first and second solid-state imaging devices, and a signal processing means for obtaining an image signal by alternately switching the output signal of the solid-state imaging device for each screen; By setting the signal accumulation time of the output signal of the solid-state image sensor to be longer than the period of one screen, effective use of the output signal of the solid-state image sensor is realized.

(実施例) 以下、この発明の実施例について、図面を参照して詳細
に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図はこの発明の一実施例に係る立体視用撮像装置を
示すもので、図中10.11は右眼及び左眼用の撮像部
を形成する第1及び第2の筐体で、例えば人間の右眼と
左眼の間隔と略同様に約50mm〜100mm程度の間
隔を有して設置される。
FIG. 1 shows a stereoscopic imaging device according to an embodiment of the present invention, in which reference numerals 10 and 11 denote first and second casings forming imaging sections for the right eye and the left eye, For example, they are installed with an interval of approximately 50 mm to 100 mm, which is approximately the same as the interval between the right eye and left eye of a human being.

この第1及び第2の筐体10.11には撮像レンズ12
.13及びCOD等の固体i機素子14゜15が例えば
光学ローパスフィルタ、色ガラスフィルタを介在して略
同様に配設される。この第1及び第2の筐体10.11
の固体撮像素子14゜15は各出力端が例えばケーブル
を介して分離して配設される信号処理部のスイッチ回路
16に接続され、このスイッチ回路16の出力端にはプ
リアンプ17が接続される。このプリアンプ17の出力
端には輝度(Y)信号処理回路18及び色分離回路1つ
が接続され、この輝度信号処理回路18及び色分離回路
19の各出力端にはカラーエンコーダ20の第1及び第
2の入力端が接続される。また、上記固体撮像素子14
.15の各入力端には駆動回路21が接続される。この
駆動回路21は同期信号発生回路22に接続され、この
同期信号発生回路22の同期駆動パルス信号に応動して
上記固体撮像素子14.15に対して所定の駆動パルス
信号を出力する。
The first and second housings 10.11 include an imaging lens 12.
.. 13 and solid-state i-devices 14 and 15 such as COD are arranged in substantially the same manner with an optical low-pass filter and a colored glass filter interposed therebetween. This first and second housing 10.11
The output terminals of the solid-state imaging devices 14 and 15 are connected, for example, to a switch circuit 16 of a signal processing section that is separately arranged via a cable, and a preamplifier 17 is connected to the output terminal of the switch circuit 16. . A luminance (Y) signal processing circuit 18 and one color separation circuit are connected to the output terminal of the preamplifier 17, and a first and a color separation circuit of the color encoder 20 are connected to each output terminal of the luminance signal processing circuit 18 and color separation circuit 19. 2 input terminals are connected. Further, the solid-state image sensor 14
.. A drive circuit 21 is connected to each input terminal of 15. This drive circuit 21 is connected to a synchronization signal generation circuit 22, and outputs a predetermined drive pulse signal to the solid-state image sensor 14, 15 in response to a synchronization drive pulse signal of this synchronization signal generation circuit 22.

さらに、図中23はACI OOVの交流電源が供給さ
れて所望の電源圧を発生する電源回路である。
Furthermore, 23 in the figure is a power supply circuit to which AC power of ACI OOV is supplied and generates a desired power supply voltage.

上記構成により、第1及び第2の筺体10゜11の固体
撮像素子14.15は同期信号発生回路22の同期駆動
パルス信号に対応して駆動回路21から出力される駆動
パルス信号に同期して駆動されると、その各感光面(図
示せず)に対して撮像レンズ12.13で捕えた光学像
が結像される。同時に、各固体撮像素子14.15には
そのうち一方の右眼用固体撮像素子14に例えば2図(
a)に示すように通常の2倍の間隔例えば奇数フィール
ド毎に垂直同期パルスに同期するフィールドシフトパル
スが印加され、他方の左眼用固体撮像素子15には同図
(d)に示すように通常の2倍の間隔例えば奇数フィー
ルド毎に垂直同期パルスに同期するフィールドシフトパ
ルスが印加される。このフィールドシフトパルスは固体
撮像素子14.15の感光面に配列されたフォトダイオ
ードに光が当たることにより后妃された信号電界を垂直
転送部に移し換えることにより、それまでに蓄積された
電界をフォトダイオードより移し換えて、該空になった
フォトダイオードを再び蓄積状態に制御せしめる。これ
により、上記固体撮像素子14,15はそのフォトダイ
オードの蓄積時間が同図(b)及び(e)に示すように
次のフィールドシフトパルスが印加されるまでの1フレ
一ム期間において確保され、その蓄積時間において信号
を蓄積する。しかして、上記垂直転送部に移された右及
び左眼用出力信号は同図(C)及び(f)に示すように
1フイールドの信号となり、信号処理部のスイッチ回路
16に入力される。このスイッチ回路16は入力信号を
例えば60 Hz毎に発生する垂直同期パルスによりス
イッチングしてプリアンプ17に右及び左信号として順
に出力する。この右及び左信号は輝度信号処理回路18
で輝度信号処理が施されると共に、色分離回路19で色
分離が行われて、高帯域の輝度信号と狭帯域のR−G−
B信号とになされ、カラーエンコーダ20で通常のNT
SC信号に変換されて出力される。これにより、第1及
び第2の筺体10゜11の撮像レンズ12.13で捕え
た光学像は同期関係にある右眼及び左眼画像信号として
得られ、ここに例えばカラー受像機に入力して左右をス
イッチする液晶シャッタを用いることで、立体視像が実
現される。
With the above configuration, the solid-state image sensors 14 and 15 of the first and second housings 10 and 11 are synchronized with the drive pulse signal output from the drive circuit 21 in response to the synchronous drive pulse signal of the sync signal generation circuit 22. When driven, an optical image captured by the imaging lens 12, 13 is formed on each photosensitive surface (not shown). At the same time, each of the solid-state image sensors 14 and 15 is connected to one of the right-eye solid-state image sensors 14, for example, as shown in FIG.
As shown in (a), a field shift pulse synchronized with the vertical synchronization pulse is applied at twice the normal interval, for example, every odd field, and to the other left-eye solid-state image sensor 15, as shown in (d) of the same figure, A field shift pulse synchronized with the vertical synchronizing pulse is applied at twice the normal interval, for example, every odd field. This field shift pulse transfers the signal electric field generated by light hitting the photodiodes arranged on the photosensitive surface of the solid-state image sensor 14, 15 to the vertical transfer section, thereby converting the electric field accumulated up to that point into a photo. The photodiode is replaced with a diode, and the empty photodiode is again controlled to an accumulation state. As a result, the solid-state image sensors 14 and 15 have a photodiode storage time that is secured in one frame period until the next field shift pulse is applied, as shown in FIGS. , accumulates the signal during that accumulation time. As a result, the right and left eye output signals transferred to the vertical transfer section become one-field signals as shown in (C) and (f) of the same figure, and are input to the switch circuit 16 of the signal processing section. This switch circuit 16 switches the input signal using a vertical synchronizing pulse generated every 60 Hz, and sequentially outputs the signal to the preamplifier 17 as right and left signals. These right and left signals are transmitted to the luminance signal processing circuit 18.
Luminance signal processing is performed in the color separation circuit 19, and color separation is performed in the color separation circuit 19 to separate a high-band luminance signal and a narrow-band R-G-
B signal and the color encoder 20 outputs the normal NT signal.
It is converted into an SC signal and output. As a result, the optical images captured by the imaging lenses 12.13 of the first and second housings 10.11 are obtained as right-eye and left-eye image signals in a synchronous relationship, and are input into, for example, a color receiver. A stereoscopic image is achieved by using a liquid crystal shutter that switches left and right.

このように、上記立体視用撮像装置は1フレ一ム期間に
蓄積した信号電荷を1回のフィールドシフトパルスで読
出すように構成したことにより、従来のものに比して信
号蓄積期間が2倍になるため、それに応じて信号量が2
倍となり、可及的に感度が向上する。また、これによれ
ば、ノイズレベルの変化がないために、従来のようにメ
モリや加算器を用いて感度を向上するものに比して構成
部品の簡略化が図かれ、しかもS/Nが3おから6おま
で向上することとなる。
In this way, the stereoscopic imaging device is configured to read out the signal charge accumulated in one frame period with one field shift pulse, so that the signal accumulation period is two times shorter than that of the conventional device. Since the signal amount is doubled, the signal amount is doubled accordingly.
This increases the sensitivity by as much as possible. In addition, since there is no change in the noise level, the components can be simplified compared to conventional methods that use memory and adders to improve sensitivity, and the S/N ratio is also low. It will improve from 3o to 6o.

また、上記実施例では右眼用固体撮像素子14の出力信
号を奇数フィールドとし左眼用固体撮像素子15の出力
信号を偶数フィールドに対応させ、信号蓄積時間を2フ
イールド(1フレーム)期r1に設定するように構成し
た場合で説明したが、このフィールドの奇偶の逆も構成
可能である。この場合、信号蓄積時間は1フイールド(
1画面)期間以上に設定することにより、やはり有効な
効果を期待できる。
Further, in the above embodiment, the output signal of the solid-state image sensor 14 for the right eye corresponds to an odd field, the output signal of the solid-state image sensor 15 for the left eye corresponds to an even field, and the signal accumulation time is set to 2 fields (1 frame) period r1. Although the explanation has been given on the case where the field is configured to be set, it is also possible to configure the reverse of the odd-even state of this field. In this case, the signal accumulation time is one field (
By setting it to a period longer than 1 screen), effective effects can still be expected.

さらに、上記実施例では、NTSC方式に適用した場合
で説明したが、これに限ることなく、PAL方式、SE
CAM方式等においても適用可能で、同様の効果を期待
できる。よって、この発明は上記実施例に限ることなく
、その他、この発明の要旨を逸脱しない範囲で種々の変
形を実施し得ることはいうまでもない。
Furthermore, in the above embodiment, the case where the application is applied to the NTSC system has been explained, but the invention is not limited to this, and the PAL system, the SE system, etc.
It is also applicable to the CAM method, etc., and similar effects can be expected. Therefore, it goes without saying that the present invention is not limited to the above embodiments, and that various modifications can be made without departing from the spirit of the invention.

[発明の効果コ 以上詳述したように、この発明によれば、簡易な構成で
、かつ、性能の高精度化を図り得るようにした立体視用
撮像装置を提供することができる。
[Effects of the Invention] As described in detail above, according to the present invention, it is possible to provide a stereoscopic imaging device that has a simple configuration and can achieve high precision performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係る立体視用撮像装置を
示す回路構成図、第2図は第1図の動作を説明するため
に示したタイミングチャート、第3図の従来の立体視撮
像装置を説明するために示したタイミングチャートであ
る。 10.11・・・第1及び第2の筐体、12.13・・
・撮像レンズ、14.15・・・固体撮像素子、16・
・・スイッチ回路、17・・・プリアンプ、18・・・
輝度信号処理回路、19・・・色分離回路、20・・・
カラーエンコーダ、21・・・駆動回路、22・・・同
期信号発生回路、23・・・電源回路。 出願人代理人 弁理士 鈴江武彦 固体撮像素子15の (f)出力信号 (f)左側出力信号 第2図 第3図
FIG. 1 is a circuit configuration diagram showing a stereoscopic imaging device according to an embodiment of the present invention, FIG. 2 is a timing chart shown to explain the operation of FIG. 1, and FIG. 3 is a conventional stereoscopic imaging device. 3 is a timing chart shown to explain the imaging device. 10.11...first and second casings, 12.13...
・Imaging lens, 14.15... Solid-state image sensor, 16.
...Switch circuit, 17...Preamplifier, 18...
Luminance signal processing circuit, 19... Color separation circuit, 20...
Color encoder, 21... Drive circuit, 22... Synchronization signal generation circuit, 23... Power supply circuit. Applicant's representative Patent attorney Takehiko Suzue (f) Output signal of solid-state image sensor 15 (f) Left side output signal Fig. 2 Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 光学系に対応して固体撮像素子が設けられ、所定の間隔
を有して配設された第1及び第2の撮像部と、この第1
及び第2の固体撮像素子を駆動制御する駆動手段と、前
記固体撮像素子の出力信号を1画面毎に交互に切換えて
画像信号を得る信号処理手段とを具備し、前記固体撮像
素子の出力信号の信号蓄積時間を前記1画面の期間以上
に設定したことを特徴とする立体視用撮像装置。
A solid-state imaging device is provided corresponding to the optical system, and first and second imaging units are arranged with a predetermined interval;
and a driving means for driving and controlling the second solid-state image sensor, and a signal processing means for obtaining an image signal by alternately switching the output signal of the solid-state image sensor for each screen, and the output signal of the solid-state image sensor is A stereoscopic imaging device, characterized in that the signal accumulation time is set to be longer than the period of one screen.
JP61311524A 1986-12-25 1986-12-25 Image pickup device for stereoscopic vision Pending JPS63164597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61311524A JPS63164597A (en) 1986-12-25 1986-12-25 Image pickup device for stereoscopic vision

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61311524A JPS63164597A (en) 1986-12-25 1986-12-25 Image pickup device for stereoscopic vision

Publications (1)

Publication Number Publication Date
JPS63164597A true JPS63164597A (en) 1988-07-07

Family

ID=18018273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61311524A Pending JPS63164597A (en) 1986-12-25 1986-12-25 Image pickup device for stereoscopic vision

Country Status (1)

Country Link
JP (1) JPS63164597A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117994A (en) * 1984-11-13 1986-06-05 Toshiba Corp Stereo television camera device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117994A (en) * 1984-11-13 1986-06-05 Toshiba Corp Stereo television camera device

Similar Documents

Publication Publication Date Title
EP0374253B1 (en) Three-dimensional imaging device
US4839734A (en) Solid-state imaging device having high-speed shutter function
US7920176B2 (en) Image generating apparatus and image regenerating apparatus
US20070013807A1 (en) Digital camera
US5298734A (en) Solid state image pickup apparatus with shutter signal and overflow drain
JP2012133185A (en) Imaging apparatus
JPH0831979B2 (en) Image recording camera and signal processing method thereof
JP2010161739A (en) Compound-eye imaging apparatus, and imaging control method
JPS63177664A (en) Electronic still camera
JPS63164597A (en) Image pickup device for stereoscopic vision
JP2582761B2 (en) Stereoscopic imaging device
WO2013031348A1 (en) Imaging device
JP2692535B2 (en) Solid-state imaging device for capturing strobe images
JP2009225023A (en) Solid-state imaging device
JP4227203B2 (en) Imaging device
JPS5962275A (en) Method for driving solid-state image pickup device
JP2004153710A (en) Control method of imaging apparatus, and imaging apparatus
JP2889104B2 (en) Pulse generator
JPH0316476A (en) Image pickup element
JPH0193982A (en) Stereoscopic video pickup camera
JP2549653B2 (en) Solid-state image sensor camera
JPS6455998A (en) Stereoscopic television camera
JPH06165048A (en) High-sensitivity solid-state imaging device camera apparatus
JPS61117994A (en) Stereo television camera device
JPH11103472A (en) Method and device for photographing