JPS63164004A - Magnetic field generator - Google Patents

Magnetic field generator

Info

Publication number
JPS63164004A
JPS63164004A JP30859886A JP30859886A JPS63164004A JP S63164004 A JPS63164004 A JP S63164004A JP 30859886 A JP30859886 A JP 30859886A JP 30859886 A JP30859886 A JP 30859886A JP S63164004 A JPS63164004 A JP S63164004A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic core
magnetic field
core extension
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30859886A
Other languages
Japanese (ja)
Inventor
Hideo Ando
秀夫 安東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30859886A priority Critical patent/JPS63164004A/en
Publication of JPS63164004A publication Critical patent/JPS63164004A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10534Heads for recording by magnetising, demagnetising or transfer of magnetisation, by radiation, e.g. for thermomagnetic recording
    • G11B11/10536Heads for recording by magnetising, demagnetising or transfer of magnetisation, by radiation, e.g. for thermomagnetic recording using thermic beams, e.g. lasers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

PURPOSE:To generate a sufficiently strong magnetic field, to reduce power consumption and heat and to improve the mount efficiency by decreasing the surface area of a magnetic core extension part more than the surface area of a yoke part. CONSTITUTION:A magnetic field generator 30 giving a magnetic field perpendicular to a magneto-optical recording medium 20 consists of a magnetic core mounted with an electromagnetic coil 32, a magnetic core extension part 36 of wedge form and a yoke part 38. Then the surface area of the magnetic core extension part 36 is selected so as to be smaller than the surface area of the yoke part 38. Thus, the magnetic potential of the magnetic core extension part 36 is selected sufficiently higher and a sufficiently strong magnetic field is given to a recording medium 20. Since a heat sink 42 is provided to the magnetic core extension part 36, the temperature rise in energizing the coil 32 is suppressed, the power consumption is decreased attended therewith and the height is small and the mount efficiency is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、磁界を記録媒体に与えながら光ビームで記
録媒体に情報を記録或いは、記録媒体から情報を消去す
る光磁気記録再生装置に用いられる磁界を発生する磁界
発生装置の改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to a magneto-optical recording/reproducing device that records information on or erases information from a recording medium using a light beam while applying a magnetic field to the recording medium. The present invention relates to an improvement of a magnetic field generating device that generates a magnetic field.

r従来技術1 光磁気記録を用いた情報記録再生装置どして二1ンピュ
ータの外部メモリ、書換え可能なビデオディスク装置、
画0ファイル装置、再生録音可能なりADタイプのコン
パクト・ディスク装置或いは、j4換え可能な嘉密度記
録光磁気カードがあり、これらの開発が最近進められて
いる。この光磁気情報記録再生装置にJ5いては、情報
記録媒体の記録面に対して垂直に静磁界を与え、更に情
報記録媒体の記録膜面に集東性の光ビームを照q・1シ
てキューリ一点を越える温度或いは、保磁力が外部磁界
よりも小さくなる温度まで加熱し、その領域における磁
区の磁気モーメントを反転することによって・Fi報を
記録或いは、消去するようにしている。
rPrior art 1 Information recording and reproducing devices using magneto-optical recording, external memory for computers, rewritable video disc devices, etc.
There are image zero file devices, AD type compact disk devices capable of playback and recording, and J4 exchangeable J4 density recording magneto-optical cards, and these have been recently developed. This magneto-optical information recording/reproducing device J5 applies a static magnetic field perpendicularly to the recording surface of the information recording medium, and further illuminates the recording film surface of the information recording medium with an east-focused light beam. Fi information is recorded or erased by heating to a temperature exceeding the Curie point or to a temperature at which the coercive force becomes smaller than the external magnetic field, and reversing the magnetic moment of the magnetic domain in that region.

このような装置において磁界を記録媒体に与える方法と
して集束性光ビームが照射され、ビーム・スポットが形
成される領域の回りにのみに磁界を局所的に与える方法
及び情報のアクセスの為に集束性光ビームが移動され、
集束性光ビームが照射可能な全ての範囲に亙って磁界を
一様に印加し続ける方法がある。
In such a device, a method of applying a magnetic field to a recording medium is to apply a focused light beam locally only around the area where a beam spot is formed, and a method of applying a magnetic field locally to a recording medium for accessing information. the light beam is moved,
There is a method of uniformly applying a magnetic field over the entire range that can be irradiated with a focused light beam.

局所的磁界印加方法を採用した従来の磁界発生装置にあ
っては、第5図に示すように箱型の磁気@)9部として
のヨー912内に突出した磁心部14に電磁コイル16
が巻回きれて形成されている。
In a conventional magnetic field generating device that employs a local magnetic field application method, as shown in FIG.
It is formed by completely winding.

この光磁界発生装置においては、磁心部14及びヨーク
12の端面14A、12Aが磁気記録媒体の記録膜面に
対向して配置され、電磁コイル16に電流が供給される
と、磁束放出部としての磁心部14の端面1/IAから
放出きれた磁束が光磁気記録媒体の記録膜面を肖通して
広がり磁心部14の端面14Aを囲むヨーク12の端面
12Aに帰還される。従って、光磁気記録媒体の記録n
9面に!直な磁界がこの記録膜面に局所的 に印加される。局所的磁界印加方法を採用した場合には
、磁界発生装置の磁心端面及びヨーク端面14A、12
Aの長手方向の長さが磁界を印加すべき局所領域の長さ
に定められ、磁界発生装置自体が小形に形成されている
In this magneto-optical field generator, the end faces 14A and 12A of the magnetic core 14 and the yoke 12 are disposed to face the recording film surface of the magnetic recording medium, and when a current is supplied to the electromagnetic coil 16, the end faces 14A and 12A of the magnetic core 14 and the yoke 12 are arranged to face the recording film surface of the magnetic recording medium. The magnetic flux emitted from the end surface 1/IA of the magnetic core section 14 spreads through the recording film surface of the magneto-optical recording medium and is returned to the end surface 12A of the yoke 12 surrounding the end surface 14A of the magnetic core section 14. Therefore, the recording n of the magneto-optical recording medium
On page 9! A direct magnetic field is locally applied to this recording film surface. When the local magnetic field application method is adopted, the magnetic core end face and yoke end face 14A, 12 of the magnetic field generator
The length in the longitudinal direction of A is determined to be the length of a local area to which a magnetic field is to be applied, and the magnetic field generating device itself is formed in a small size.

これに対して全範囲磁界印加方法を採用した従来の磁界
発生装置にあっては、第6図に示すように断面コ字状の
磁気帰還部としてのヨーク12内に突出し、ヨーク12
に略平行に延びる磁心部14に電磁コイル16が巻回さ
れて形成されている。
On the other hand, in a conventional magnetic field generating device that employs a full range magnetic field application method, as shown in FIG.
An electromagnetic coil 16 is formed by being wound around a magnetic core portion 14 that extends substantially parallel to the magnetic core 14 .

この磁界発生tA置においては、同社に磁心部14及び
ヨーク12の並列された端面14A、12Aが光磁気記
録媒体の記録膜面に対向して配置され、電磁コイル16
に電流が供給されると、磁束放出部としての磁心部14
の端面14Aから放出された磁束が光磁気記録媒体の記
録膜面を貞通して磁心部14の端面14Aの両側に配置
されたヨーク12の端面12Aに帰還される。従って、
同4′jに光磁気記録媒体の記録膜面に垂直な磁界がこ
の記録膜面の光ビーム照射可能な全範囲に印加される。
At this magnetic field generation position tA, the parallel end faces 14A and 12A of the magnetic core 14 and yoke 12 are arranged to face the recording film surface of the magneto-optical recording medium, and the electromagnetic coil 16
When a current is supplied to the magnetic core part 14 as a magnetic flux emitting part,
The magnetic flux emitted from the end surface 14A of the magneto-optical recording medium passes through the recording film surface of the magneto-optical recording medium and is returned to the end surface 12A of the yoke 12 disposed on both sides of the end surface 14A of the magnetic core 14. Therefore,
At 4'j, a magnetic field perpendicular to the recording film surface of the magneto-optical recording medium is applied to the entire range of the recording film surface that can be irradiated with the light beam.

全範囲磁界印加方法を採用した場合には、磁界発生装置
の磁心端面及びヨーク端面14A、12Aの幅及び長さ
が互いに略等しくなるように定められ、磁界発生装置の
磁心端面及びヨーク端面14A、12Aの長手方向の長
さが情報記録媒体の光磁気記録面磁界の長さよりも大ぎ
く定められ、磁界発生装置自体が比較的大きく形成され
る。
When the full range magnetic field application method is adopted, the width and length of the magnetic core end face and yoke end faces 14A and 12A of the magnetic field generator are determined to be approximately equal to each other, and the magnetic core end face and yoke end face 14A of the magnetic field generator, The length in the longitudinal direction of 12A is determined to be much larger than the length of the magnetic field on the magneto-optical recording surface of the information recording medium, and the magnetic field generating device itself is formed relatively large.

[発明が解決しようとしている問題点コ局所的磁界印加
方法を採用した第5図に示びょうな従来の磁界発生装置
にあっては、磁界が局所的に印加されることから光ビー
ムの移動にとらないこの磁界発生装置しまた移動するこ
とを要し、移動1横が複雑化するという問題点がある。
[Problems to be Solved by the Invention] In the conventional magnetic field generating device shown in FIG. 5, which adopts a local magnetic field application method, since the magnetic field is applied locally, there is a problem with the movement of the light beam. This magnetic field generating device is required to be moved, and there is a problem in that the horizontal movement becomes complicated.

これに対して全範囲磁界印加方法を採用した第6図に示
すような従来の磁界発生装置にあっては、磁界発生装置
を移動させることを要しないが、次のような問題点があ
る。
On the other hand, a conventional magnetic field generating device as shown in FIG. 6 which employs a full range magnetic field application method does not require the magnetic field generating device to be moved, but has the following problems.

(1)消費電力が大きいという問題がある。即ち、情報
記録媒体に対して大ぎな磁界を与えようとすると、電磁
コイルから大きな起磁力が発生されることが必要である
が、この起磁力は、電磁コイルの総合数Nとこの電磁コ
イルに流す電流Iの槓N×Iで定まる。またこの電磁コ
イルで8!iX1される濁費雷力Pは、電磁コイルの抵
抗Rである場合にいP=IXR2どなる。第6図に示さ
れる磁界発生装置においては、磁心部の長手方向の長さ
は、光磁気記録媒体の記録膜面の長さに対応して定めら
れることから、外周の長さが比較的長く定められる。従
って、磁心部14の回りにNターン巻回される電磁コイ
ルの導線の全長は、極めて長くなり、電磁コイルの抵抗
値Rがそれにともなって大きくなり、必要とされる消費
電力もまた大きくなってしまう。電磁コイルの抵抗Rを
小さくする為に、′IJ線の線形を大きくすると、電磁
コイルを収納する空間の大きさが予め定まっている場合
には。
(1) There is a problem that power consumption is large. In other words, in order to apply a large magnetic field to an information recording medium, it is necessary to generate a large magnetomotive force from the electromagnetic coil, but this magnetomotive force is determined by the total number N of electromagnetic coils and the magnetic coil. It is determined by N×I of the current I to flow. 8 again with this electromagnetic coil! When the power of lightning P calculated by iX1 is the resistance R of the electromagnetic coil, P=IXR2. In the magnetic field generator shown in FIG. 6, the length of the magnetic core in the longitudinal direction is determined corresponding to the length of the recording film surface of the magneto-optical recording medium, so the length of the outer circumference is relatively long. determined. Therefore, the total length of the conductor wire of the electromagnetic coil wound N turns around the magnetic core 14 becomes extremely long, the resistance value R of the electromagnetic coil increases accordingly, and the required power consumption also increases. Put it away. In order to reduce the resistance R of the electromagnetic coil, if the linearity of the 'IJ line is increased, if the size of the space in which the electromagnetic coil is accommodated is predetermined.

巻回数Nが小さくなってしまう問題がある。また、巻回
数Nが小さくなった場合に所定の起磁力を得ようとする
と、電磁コイルに大きな電流を供給しなければならず、
め¥!電力がやはり大きくなってしまう問題がある。
There is a problem that the number of turns N becomes small. Furthermore, in order to obtain a predetermined magnetomotive force when the number of turns N becomes small, a large current must be supplied to the electromagnetic coil.
Me ¥! There is a problem that the power consumption increases.

(2)発熱部が大きいという問題がある。即ち、上述し
たようにdり費電力が大きい場合には、それにともない
発熱部ら大きくなってしまう。磁界発生HfRの発熱部
であるコイル及びこのコイルからの熱が伝達される磁心
部及びヨークは、光磁気記録媒体に十分に近接して対向
されている為、磁気発生装置からの熱が光磁気記録媒体
に伝達され、光磁気記録媒体が熱変形されたり、或いは
、記録された情報が間欠されたりする虞れがある。
(2) There is a problem that the heat generating part is large. That is, as described above, when the power consumption is large, the heat generating portion also becomes larger. The coil, which is the heat generating part of the magnetic field generating HfR, and the magnetic core and yoke to which the heat from the coil is transferred are opposed to the magneto-optical recording medium sufficiently close to each other, so that the heat from the magnetic generator is transferred to the magneto-optical recording medium. There is a risk that the information will be transmitted to the recording medium, causing the magneto-optical recording medium to be thermally deformed, or that the recorded information will be interrupted.

(3〕磁界発生装置のサイズが大形化してしまうという
問題がある。特に、光記録面に垂直な方向に沿った磁界
発生装置の高さが大きくなる問題がある。記録面上の磁
気密度を8くしようとすると、磁心の幅を十分に小さく
し、磁心及びヨークの昌さを十分に高くして光記録面に
垂直な方向に沿って電磁コイルの各ターンを配列するこ
とが必要とされる。このような4ん造では、必然的に装
置の慇さが大きくなってしまう問題がある。磁気記録媒
体上に高さがある磁界発生装置が配置される場合には、
情報記録再生装置自体の大形化をJnき、設計上の制約
を受けることとなる。
(3) There is a problem that the size of the magnetic field generator increases. In particular, there is a problem that the height of the magnetic field generator along the direction perpendicular to the optical recording surface increases.Magnetic density on the recording surface 8, it is necessary to make the width of the magnetic core sufficiently small, the thickness of the magnetic core and yoke sufficiently high, and arrange each turn of the electromagnetic coil along the direction perpendicular to the optical recording surface. In such a four-frame structure, there is a problem that the device inevitably becomes bulky.When a magnetic field generating device with a height is placed above the magnetic recording medium,
This increases the size of the information recording and reproducing apparatus itself, and is subject to design constraints.

[問題を解決する為の手段] この発明の磁界発生装置においては、磁性体で作られた
磁心部と、この磁心部に巻回されたコイルと、この磁心
部の一端から延出され、磁性体で作られた磁心延長部と
、前記磁心部の他端に磁気的に連結され、しかも情報の
記録或いは、潤去が可能な情報記録媒体が配置されるべ
き空間を介して前記磁心延長部から放出された磁束が帰
フされるヨーク部とをFJ、@シ、前記磁心延長部の人
面栢が11α記ヨ一ク部の表面積より6小さく定められ
ている。好ましい実施例においては、前記磁心延長部は
、放熱部を具備している。1rKJ記磁心部、前記磁心
延長部及びヨーク部から成る磁石4”4造休が分離可能
な構造を有し、少なくとも前記コイルへの通電時に前記
磁心部、+iQ記磁心延長部及びヨーク部が連結状態に
維持され、前記情報記録媒体の脱着時に磁石構造体が分
離される。また、7a形にするために磁心延長部34の
平坦な下面と磁石部34をほぼ平行にするととしにずら
して配置さ机る。
[Means for solving the problem] The magnetic field generating device of the present invention includes a magnetic core made of a magnetic material, a coil wound around the magnetic core, and a coil extending from one end of the magnetic core. a magnetic core extension made of a magnetic core, and a space that is magnetically connected to the other end of the magnetic core and in which an information recording medium on which information can be recorded or removed is placed. The yoke part to which the magnetic flux emitted from the magnetic flux is returned is FJ, and the human face area of the magnetic core extension part is set to be 6 smaller than the surface area of the yoke part in 11α. In a preferred embodiment, the core extension includes a heat sink. 1rKJ magnetic core part, magnetic core extension part, and yoke part have a structure in which the magnet 4"4 is separable, and at least when the coil is energized, the magnetic core part, +iQ magnetic core extension part, and yoke part are connected. The magnetic structure is maintained in this state, and the magnet structure is separated when the information recording medium is attached or detached.Furthermore, in order to form the 7a shape, the flat lower surface of the magnetic core extension part 34 and the magnet part 34 are made to be approximately parallel to each other, but they are staggered. It's a desk.

「作用J 磁心延長部の表面積がヨーク部の表面積よりも小さく定
められていることから、磁心延長部の磁位ポテンシIP
ルを十分に高く維持ザることが可能であり、情報記録媒
体に対して十分に強い磁界を与えることができる。また
、磁心延長部は、放熱部を具備していることから、電磁
コイルへの通電時における磁心延長部の温度1警を抑制
層ることができ、効率的に磁界を情報記録媒体にLjえ
ることができる。更に、磁心部、磁心延長部及びヨーク
部から成る磁石構造体が分離可能なゼ4造を右している
ことから、・n報記8媒体の磁界発生装置への装着が容
易となる。
"Effect J Since the surface area of the magnetic core extension is determined to be smaller than the surface area of the yoke, the magnetic potential IP of the magnetic core extension
It is possible to maintain a sufficiently high magnetic field, and a sufficiently strong magnetic field can be applied to the information recording medium. In addition, since the magnetic core extension part is equipped with a heat dissipation part, it is possible to suppress the temperature of the magnetic core extension part when electricity is applied to the electromagnetic coil, and to efficiently transfer the magnetic field to the information recording medium. be able to. Furthermore, since the magnet structure consisting of the magnetic core part, the magnetic core extension part, and the yoke part has a separable structure, it becomes easy to attach the n-report 8 medium to the magnetic field generator.

(発明の実施例1 以下図面を参照してこの光明の実施例について説明する
(Embodiment 1 of the Invention An embodiment of this light will be described below with reference to the drawings.

第1図は、この発明の一実施例に係る磁界発生装置を概
略的に示す断面図であって情報記録再生装置にa>いて
情報が光磁気記録媒体に記録される際或いは、情報が光
磁気配Q媒体から潤ムされる際における光磁気記録媒体
に対する磁界発生装置の配置関係を示している。また、
第2図は、第1図に示された磁界発生装置及びその周辺
は憫を異略的に示す情報記録再生装置の一部破断斜視図
及び第3図は、第1図に示された磁界発生装置を概略的
に示す断面図であって光磁気記録媒体が収納されたカセ
ット−が情報記録再生装置に脱着される際におG−Jる
光磁気記録媒体に対する磁界発生装置の配置関係を示し
ている。光磁気記録媒体20は、第1図に示すように一
対の透明基板22がエアーギャップを介して対向されて
接合されたサンドインチRa造を有し、その内面に光磁
気記録膜24が形成されている。また、エアーギャップ
が接着材で充填されている侮造もある。通常この情報記
録媒体20は、光ディスクと称せられるように円盤状に
形成されているが、これに限らず種々のgl例えば、カ
ード状等の形状を取り得る。また、情報記録媒体20は
、第1図に示すような補選に限らず、種々の構造を取る
ことが予想される。この情報記録媒体20は、図示せぬ
移送目橘によって第3図に図示するようにカセット26
に収納されて或い゛は、そのまま情報記録再生装置の挿
入口から挿入され、光ヘッド28の対物レンズ25上に
配置され、また挿入口から排出される。磁界発生装置3
0は、この挿入時或いは、排出時にJ3ける情報記録媒
体20の挿入及び排出動作を用言しないように図示せぬ
分離1桶によって分漏可能な桶造を有している。即ち、
この磁界発生装置は、第4図に示すような電磁コイル3
2が装着された角柱状或いは、板状の磁心34及び情報
記録媒体20に対して磁界を放出する作用を有するこの
回心から延出され先端に向かうに従ってJ7さが減少す
るくさび型の磁心延長部36が一体的に磁性体で磁束導
出部37として形成され、この磁束導出部37の一端が
磁心延長部から放出された磁束が帰還される台座として
のヨーク部38の上面部に脱着可能に構成され、情報記
録媒体20の挿入及び排出時には、磁束導出部37がヨ
ーク部38から分離されて上方に偏倚される。情報記録
媒体20がカセッI・26に収納されている場合には、
挿入動作中にカセット26のカセット窓40が間き、カ
セット26が情報記録再生装置中に装着されて情報記録
媒体20がターンテーブル42上にターンテーブル42
とともに回転可能に支持される。
FIG. 1 is a cross-sectional view schematically showing a magnetic field generating device according to an embodiment of the present invention, and is used when information is recorded on a magneto-optical recording medium in an information recording/reproducing device, or when information is optically recorded. It shows the arrangement of the magnetic field generating device with respect to the magneto-optical recording medium when it is lubricated by the magnetically distributed Q medium. Also,
FIG. 2 is a partially cutaway perspective view of the information recording and reproducing device showing the magnetic field generating device shown in FIG. 1 and its surroundings, and FIG. FIG. 2 is a cross-sectional view schematically showing the generator, showing the arrangement of the magnetic field generator with respect to the magneto-optical recording medium when the cassette containing the magneto-optical recording medium is attached to and removed from the information recording/reproducing apparatus. It shows. As shown in FIG. 1, the magneto-optical recording medium 20 has a sandwich Ra structure in which a pair of transparent substrates 22 are bonded to each other with an air gap in between, and a magneto-optical recording film 24 is formed on the inner surface of the substrate. ing. In some cases, the air gap is filled with adhesive. Usually, the information recording medium 20 is formed in a disk shape so as to be called an optical disk, but the information recording medium 20 is not limited to this and may take various shapes such as a card shape. Further, it is expected that the information recording medium 20 will have various structures other than the supplementary one shown in FIG. This information recording medium 20 is transferred to a cassette 26 as shown in FIG.
Alternatively, the optical disc may be inserted as is from the insertion port of the information recording/reproducing apparatus, placed on the objective lens 25 of the optical head 28, and then ejected from the insertion port. Magnetic field generator 3
0 has a tub structure that allows leakage to occur with a separate tub (not shown) so as not to overstate the insertion and ejection operations of the information recording medium 20 at the time of insertion or ejection. That is,
This magnetic field generating device consists of an electromagnetic coil 3 as shown in FIG.
2 attached thereto, and a wedge-shaped magnetic core extension part that has the function of emitting a magnetic field to the information recording medium 20 and extends from this center and decreases in J7 toward the tip. 36 is integrally formed with a magnetic material as a magnetic flux deriving part 37, and one end of this magnetic flux deriving part 37 is configured to be removably attached to the upper surface of a yoke part 38 serving as a pedestal to which the magnetic flux emitted from the magnetic core extension part is returned. When the information recording medium 20 is inserted or ejected, the magnetic flux deriving section 37 is separated from the yoke section 38 and biased upward. When the information recording medium 20 is stored in the cassette I/26,
During the insertion operation, the cassette window 40 of the cassette 26 opens, the cassette 26 is inserted into the information recording and reproducing apparatus, and the information recording medium 20 is placed on the turntable 42.
and is rotatably supported.

カセッ1−26の装着動作が終了すると、磁束導出部3
7が降下され、磁束導出部37がカセット窓40内に侵
入されて消去或いは、記録可能な状態となる。この消去
或いは、記録可能な状態においては、対物レンズ25が
情報記録媒体20の光磁気記録膜面24に対向され、し
からこの対物レンズ25がガイド偲備21上を移動して
対物レンズ25で集束された光ビームが照射されること
が可能な光磁気記録膜24上の領域に相当する範囲外に
まで、磁心延長部36が延在され、その平坦な下面が光
磁気記録膜24の光ビーム照射可能領域に対向される。
When the mounting operation of the cassette 1-26 is completed, the magnetic flux deriving section 3
7 is lowered, and the magnetic flux deriving section 37 enters into the cassette window 40, making it possible to erase or record. In this erasing or recordable state, the objective lens 25 is opposed to the magneto-optical recording film surface 24 of the information recording medium 20, and then the objective lens 25 moves on the guide support 21 so that the objective lens 25 The magnetic core extension part 36 extends outside the area corresponding to the area on the magneto-optical recording film 24 that can be irradiated with the focused light beam, and its flat lower surface is exposed to the light of the magneto-optical recording film 24. It faces the beam irradiation area.

このような状態で電磁コイル32に電流が供給されて電
磁コイル32が附勢されると、磁心34から磁束が磁心
延長部36に供給され、磁心延長部36の下面から光磁
気記録膜24の光ビーム照射可能領域に向かって放出さ
れる。
When current is supplied to the electromagnetic coil 32 in this state and the electromagnetic coil 32 is energized, magnetic flux is supplied from the magnetic core 34 to the magnetic core extension 36, and the magneto-optical recording film 24 is exposed from the bottom surface of the magnetic core extension 36. The light beam is emitted toward the irradiable area.

従って、光磁気記録膜24は、その面に垂直な磁束に曝
される。光磁気配Q膜24膜をC5通した磁束は、空間
を通り、ヨーク38に侵入し、このヨークに磁気的及び
1械的に連結された磁心34に帰還される。
Therefore, the magneto-optical recording film 24 is exposed to magnetic flux perpendicular to its surface. The magnetic flux that has passed through the magneto-optical Q film 24 C5 passes through the space, enters the yoke 38, and is returned to the magnetic core 34 that is magnetically and mechanically connected to this yoke.

尚、上述した実施例において磁心及び磁心延長部36の
平坦な下面とを略平行にするとと6に段差を設cノ磁心
延長部36の平坦な下面を電磁コイル32の下面に近接
して配置することににり全体の厚さを薄くすることがで
きる。
In addition, in the embodiment described above, if the magnetic core and the flat lower surface of the magnetic core extension part 36 are made substantially parallel, a step is provided at 6 and the flat lower surface of the magnetic core extension part 36 is placed close to the lower surface of the electromagnetic coil 32. By doing so, the overall thickness can be reduced.

上述した実施例においては、磁界発生装置は、磁束導出
部37がヨーク部38から分離8れる補選をイ1してい
るが、このような@造に限らず磁束導出部37がヨーク
部38に固定きれ、磁束導出部37の磁心延長部36の
一部が分離可能に構成されても良く、また、磁心部3/
Iと磁心延長部36とB分離可能に結合されても良い。
In the above-mentioned embodiment, the magnetic field generating device has a supplementary structure in which the magnetic flux deriving part 37 is separated from the yoke part 38, but the magnetic flux deriving part 37 is not limited to such a structure. A part of the magnetic core extension part 36 of the magnetic flux deriving part 37 may be configured to be separable, and the magnetic core part 3/
I, the magnetic core extension part 36, and B may be separably coupled.

更に、ヨ1−り部自体が分離可能な411i造を有して
も良い。また、光磁気記録膜24に対して垂直に磁束を
発生させる為に磁心延長部36は、図示覆るように平坦
な下面を有する板状に形成されることが好ましいが、板
状に限られず角柱状或いは、同社状に形成されても良い
Furthermore, the yaw portion itself may have a 411i structure that can be separated. Further, in order to generate magnetic flux perpendicular to the magneto-optical recording film 24, the magnetic core extension part 36 is preferably formed in a plate shape with a flat lower surface as shown in the figure, but is not limited to a plate shape, and has an angular shape. It may be formed into a columnar shape or a columnar shape.

次に、第1図を参照して磁界発生装置の作用及びシJ作
原理について説明する。電磁コイル32の巻数をNとし
、電磁コイル32に供給される電流をIと1゛ると、電
磁コイル32から起磁力Vm=【Nが磁束導出部37に
発生される。磁束導出部37の磁心延長部36の表面か
ら磁束が発散され、ぞの磁力線が磁束導出部37からか
なり離れた空間にまで達づる。空間中に発散された磁力
線は、閉ループを描くように磁気帰コマ部としてのヨー
ク38に向かい、このヨーク38を介して磁束導出部3
7に帰還される。この」;うな磁界分布においては、磁
束導出部37の下面の近傍にその平坦な下面に対して垂
直な磁力線が生じ、この磁力線が情報記録媒体20の光
磁気記録膜24に垂直に与えられる。既に説明したJ、
うに磁気記録媒体20では、透明基板22上に磁気記録
膜24が形成され、磁束導出部37の下面は、磁気記録
膜24から僅かに雌されているが、この距離は、通常2
゜5〜4:○mrT1と小ざく、しかち磁束導出部37
の下面が比較的広い適切な幅、例えば、3mm以上及び
光磁気記録11924の光ビーム照射可能領域の長さよ
りも長い適切な長さ1例えば、20mm以上を有するこ
とから光磁気記録膜24に効率的に磁束がこの膜面に対
して垂直に印加させることができ、光ビームを照射可能
な光磁気配9膿24の領域の全てに均等な強さを有する
磁力線が印加される。磁束導出部37の幅は、情報記録
媒体20の回転中に生じる透明基板22の面ブレによっ
て光磁気記録膜24が上下動されることを考慮して定め
られる。即ち、光磁気記録膜24の上下動によって光磁
気配!8膜24上で磁界がそれ程度化せず、f11束導
出部37を通過する磁束を必要以上に大きくしないです
む範囲として磁束導出部37の幅は、2〜3Qmmの範
囲で定められる。
Next, the operation of the magnetic field generator and the principle of operation will be explained with reference to FIG. If the number of turns of the electromagnetic coil 32 is N, and the current supplied to the electromagnetic coil 32 is I and 1, then a magnetomotive force Vm=[N is generated from the electromagnetic coil 32 in the magnetic flux deriving section 37. Magnetic flux is emitted from the surface of the magnetic core extension part 36 of the magnetic flux deriving part 37, and the lines of magnetic force reach a space quite far away from the magnetic flux deriving part 37. The lines of magnetic force diverged in the space travel to the yoke 38 as a magnetic return member so as to draw a closed loop, and then flow through the yoke 38 to the magnetic flux derivation unit 3.
He will be returned on 7th. In this magnetic field distribution, magnetic lines of force perpendicular to the flat lower surface are generated in the vicinity of the lower surface of the magnetic flux deriving portion 37, and these lines of magnetic force are applied perpendicularly to the magneto-optical recording film 24 of the information recording medium 20. J, which has already been explained,
In the magnetic recording medium 20, the magnetic recording film 24 is formed on the transparent substrate 22, and the lower surface of the magnetic flux deriving part 37 is slightly spaced from the magnetic recording film 24, but this distance is usually 2.
゜5~4: ○mrT1 and small size, but magnetic flux derivation part 37
Since the lower surface has a relatively wide appropriate width, for example, 3 mm or more, and an appropriate length 1, for example, 20 mm or more, which is longer than the length of the light beam irradiable area of the magneto-optical recording 11924, the magneto-optical recording film 24 can be efficiently In other words, magnetic flux can be applied perpendicularly to this film surface, and lines of magnetic force with equal strength are applied to all areas of the magneto-optical distribution 24 that can be irradiated with the light beam. The width of the magnetic flux deriving portion 37 is determined in consideration of the vertical movement of the magneto-optical recording film 24 due to surface wobbling of the transparent substrate 22 that occurs during rotation of the information recording medium 20. That is, by vertically moving the magneto-optical recording film 24, the magneto-optical recording film 24 is moved up and down. The width of the magnetic flux deriving part 37 is set in a range of 2 to 3 Qmm so that the magnetic field on the 8 film 24 does not increase to that extent and the magnetic flux passing through the f11 flux deriving part 37 does not need to be increased more than necessary.

磁心延長部36とヨーク38間の磁位ポテンシャルの差
、即ち、起磁力は、Vrn=INτ′定まるが、磁心延
長部36及びヨーク38表面の磁位ボテンシPルは、そ
の表面積の関数として定まる。
The difference in magnetic potential between the magnetic core extension 36 and the yoke 38, that is, the magnetomotive force, is determined by Vrn=INτ', but the magnetic potential P on the surfaces of the magnetic core extension 36 and the yoke 38 is determined as a function of their surface areas. .

ここで、磁心延長部36及びヨーク38表面の夫々から
磁位ポテンシャル零の無限遠までの磁気抵抗Rmが表面
積をSとしたとき、 Rm=1/2μo J7rS (但し、C,G、S eIlu単位系では、μo=1よ
りRm=1/2JπS) と仮定されるとすると、磁心延長部36の表面積が小さ
ければ小さい程磁位ボテンシPルが大きくなる。磁心延
2部36から放出され、雌れた空間からヨーク38に帰
還される全磁束は、一定であるから、磁心延長部36の
表面積が小さい方がより磁心延長部36上の磁束密度を
大きくすることができる。
Here, when the surface area of magnetic resistance Rm from each of the magnetic core extension part 36 and yoke 38 surface to infinity with zero magnetic potential is S, Rm=1/2 μo J7rS (However, in C, G, S eIlu units) In the system, if it is assumed that Rm=1/2JπS from μo=1), the smaller the surface area of the magnetic core extension 36, the larger the magnetic potential potency P becomes. Since the total magnetic flux emitted from the magnetic core extension part 36 and returned to the yoke 38 from the female space is constant, the smaller the surface area of the magnetic core extension part 36, the greater the magnetic flux density on the magnetic core extension part 36. can do.

上述の内容を下記に簡単なモデルを用いて数式的に説明
する。磁心延長部36及びヨーク38の表面積を人々S
c Syとし、磁心延長gs 36及びヨーク38から
磁位ポテンシャル零の無限遠までの磁気抵抗を夫々Rn
c、 RIIVとする。また、磁心t1部36から〕−
り38に向かう沿う磁束をΦtotal とし、磁心延
長部36の表面にJ3ける磁束密度をBC(0)で表す
。但し、単位は、C,G、S eI′llu単位系を用
いる。上述したように磁気抵抗Rmc。
The above content will be explained mathematically using a simple model below. The surface area of the magnetic core extension 36 and the yoke 38 is
c Sy, and the magnetic resistance from the magnetic core extension gs 36 and yoke 38 to infinity of zero magnetic potential is Rn, respectively.
c. RIIV. Also, from the magnetic core t1 part 36]-
The magnetic flux along the direction 38 is defined as Φtotal, and the magnetic flux density at J3 on the surface of the magnetic core extension 36 is expressed as BC(0). However, the units used are C, G, and SeI'llu units. As mentioned above, the magnetic resistance Rmc.

Rnyを下記(1)及び(2)式で仮定する。Assume that Rny is expressed by the following equations (1) and (2).

R11c=1/277C8c ・・・・(1)R1y=
1/2JyrSy ・・・・・(2)ここで、R1=1
/4μ口πro。
R11c=1/277C8c...(1) R1y=
1/2JyrSy...(2) Here, R1=1
/4μ口πro.

r口=(S/4π と見なした。It was assumed that r = (S/4π).

磁束Φtotalは、下記(3)式で表される。The magnetic flux Φtotal is expressed by the following equation (3).

Φtotal =Vm x (Rrnc+RIlly)
 −1=2”7rVIII X (1/JSc + 1
.’rsy )−’・・・・・・(3) ここで、Vnは、起磁力(■In−NI)である。
Φtotal = Vm x (Rrnc+RIlly)
−1=2”7rVIII X (1/JSc + 1
.. 'rsy)-' (3) Here, Vn is the magnetomotive force (■In-NI).

また、磁束密度Bc(0)は、(4)式で示される。Further, the magnetic flux density Bc(0) is expressed by equation (4).

Bc(0)−Φtotal −ニー5c=2(π xVI (1/JSc +1/J′Sr )−’/Sc
 −・・・・・・・(,1) ここで、磁心を技部36から距離dだ(プ離れた空間で
のg!?rH位面の総面積5((t)は、5(d)=4
π (ro+d)2 =4π (JSc/4rr+d  )2=<JSc+J
4π ・d)2 と仮定すると、その空17Bでの磁束密度Bc(d)は
、(5)式で示される。
Bc(0)-Φtotal-knee5c=2(π xVI (1/JSc +1/J'Sr)-'/Sc
−・・・・・・・・・(,1) Here, the distance d from the magnetic core is d(g!?rH in the space away from the magnetic core 36). )=4
π (ro+d)2 = 4π (JSc/4rr+d)2=<JSc+J
Assuming that 4π·d)2, the magnetic flux density Bc(d) in the air 17B is expressed by equation (5).

Bc(d)=Φtotal ÷5(d)=2s/”yr
 ・Vl# (−ysc +v’47r ・d )’x
 (1/JSc +1/Jsy )−1=2π−Vn+
 −8c −1 X (1+J47[/SC−d )’2x  (1/ 
JSc  +  1/JSy  )  °五・・・・(
5) 更に、空間磁界強廓H(d)は、μG=1よりH(0)
 =B(0) 、 H(d) =B(d)で得られる。
Bc(d)=Φtotal ÷5(d)=2s/”yr
・Vl# (-ysc +v'47r ・d)'x
(1/JSc +1/Jsy)-1=2π-Vn+
-8c -1 X (1+J47[/SC-d)'2x (1/
JSc + 1/JSy) °5...(
5) Furthermore, the spatial magnetic field intensity H(d) is H(0) from μG=1.
=B(0), H(d) =B(d).

5c)4πd2でしかも、Sy (scのとキニハ、(
5]式は、(6)式となり最大の磁界を情報記録媒体2
0の光磁気記録膜24に与えることができる。
5c) 4πd2 and Sy (sc and Kiniha, (
5] Equation becomes Equation (6), and the maximum magnetic field is determined by the information recording medium 2.
0 can be applied to the magneto-optical recording film 24.

!((d) =J4π/Sc xVn+ −−−・(6
)然しながう、Svが小さくなるに従ってH(d)が減
少し、5v=Scしかも、Sc:>4yrd2のときに
は、(5)式は、(7)式となり、(6)式で示される
最大の磁界の半分になってしまう。
! ((d) = J4π/Sc xVn+ --- (6
) However, as Sv becomes smaller, H(d) decreases, and when 5v=Sc and Sc:>4yrd2, equation (5) becomes equation (7), which is shown by equation (6). It becomes half of the maximum magnetic field.

H(d)=J7r/SCXVI ・−−−(7)上述の
解析から明らかなようにSc≦Sy即ち、磁心延長部3
6の表面積は、ヨーク38の表面積より小さくする必要
があることが理解される。また、(6)式及び(7)式
からScは、できるだけ小さくした方が良いが、必要以
上に小さくすると4πd2に対して小さくなるので、そ
れ程3cは、小さくすることができない。
H(d)=J7r/SCXVI ・---(7) As is clear from the above analysis, Sc≦Sy, that is, the magnetic core extension 3
It is understood that the surface area of 6 needs to be smaller than the surface area of yoke 38. Further, from equations (6) and (7), it is better to make Sc as small as possible, but if it is made smaller than necessary, it will become smaller than 4πd2, so 3c cannot be made that small.

次に電磁コイル32の形状及び消費電力について考察す
る。第4図に示すようにコイルの長さη、導線を巻回し
て形成されるコイルの層厚λ、磁心部34の幅W及び厚
さtとする。くいずれし単位は、CIである。)また、
電磁コイル32に電流を供給しつづけた際の最大許容温
度上昇値をΔT[単位℃]とし、熱伝導係数をh=25
0/deQree −cm2とすうると最大消費電力P
 Iax  [W ]は、下記(8)式で与えられる。
Next, the shape and power consumption of the electromagnetic coil 32 will be considered. As shown in FIG. 4, the length η of the coil, the layer thickness λ of the coil formed by winding the conducting wire, the width W and the thickness t of the magnetic core portion 34 are assumed. The compression unit is CI. )Also,
The maximum allowable temperature rise value when continuing to supply current to the electromagnetic coil 32 is ΔT [unit: °C], and the thermal conductivity coefficient is h = 25.
0/deQree -cm2 and maximum power consumption P
Iax [W] is given by the following equation (8).

(平野義行 他;電子通信学界論文誌vo1.J60−
C,No11.PG84,1977を参照)Plax=
(2hΔT/<lX10’Xπ))・Xη (W+ t
 + 22) ・ ・ ・ ・ (8)更に、コイル導
線の尋電体線径をd[lll1]、被覆を含めた導線の
外径をにd[+mn]とし、コイル導線の体積抵抗率を
ρ[Ω−cn+ ]でコイルのa巻数をNとすると、コ
イル導線の抵抗値Rcは、(9)式で表される。
(Yoshiyuki Hirano et al.; Electronics and Communication Academic Journal vol. 1. J60-
C, No.11. (See PG84, 1977) Plax=
(2hΔT/<lX10'Xπ))・Xη (W+ t
+ 22) ・ ・ ・ ・ (8) Furthermore, the diameter of the conductor wire of the coil conductor is d[lll1], the outer diameter of the conductor including the coating is d[+mn], and the volume resistivity of the coil conductor is ρ. When the number of turns a of the coil is N in [Ω-cn+], the resistance value Rc of the coil conducting wire is expressed by equation (9).

Rc = (800ρN(W+t+2λ))/(πdり
・・・・(9) (8)式及び(9)式から電磁コイル32の最大許容電
流■laxは、下記(10)式で示され、まlζ最大起
磁力laxVmは、(11)式で示される。
Rc = (800ρN(W+t+2λ))/(πd...(9) From equations (8) and (9), the maximum allowable current ■lax of the electromagnetic coil 32 is shown by equation (10) below, or The lζ maximum magnetomotive force laxVm is expressed by equation (11).

l1lax = (1/ (2xlO’ ))x、rh
ΔT/ρ・(にd2 /Jλ)・・・・(10) nax Vm=N Inax = (1/200>×(
[1ΔT/ρ・η×λ/に)・・・・(11)但し、N
8(にd)2/100=ληとした。
l1lax = (1/ (2xlO'))x, rh
ΔT/ρ・(d2/Jλ)・・・(10) nax Vm=N Inax = (1/200>×(
[1ΔT/ρ・η×λ/)・・・(11) However, N
8(d)2/100=λη.

(8)式及び(11)式から小Fi費電力で大きな起磁
力を1!する方法について考察する。
From equations (8) and (11), a large magnetomotive force can be generated with a small Fi cost power of 1! Consider how to do this.

(11)式から最大起磁力maxVmは、磁心部34の
外径寸法(W、l:)に依存しないとかことが理解され
る。従って、(8)式で(W+ t )の値を小さくす
ることが消費電力を小さくして発熱を抑flilJする
第1の方法となる。しかし、磁心部34を形成している
材料の飽和磁束密度をSsとしたときにWtBS≧Φt
otalである必要がある。その為Φtotalを最少
限にしてめ費雷力を抑制する必要がある。従って、磁心
延長部36の長さを光ビーム検索されるべき情報記9g
X体の記録領域の長さよりも僅かに長くするだけに留め
、余分な磁束を発生する部分を出来る限り小ざくとどめ
ることが必要である。有効磁束放出部と磁心部との間の
連結部分表面から磁束が漏れ出ると、総日束Φtota
1を大きくすることとなるので、第1図に示ずように磁
心延長部36の延長線上であって磁心延長部36に近接
して磁心部34を設け、この磁心部34に電磁コイル3
2を配置することlメ好ましいこととなり、これにより
磁心延長 部36が実質的に有効磁束放出部として規定されること
となる。これを可能とする為には、磁心延長部36の平
坦な下面と磁心部34とを略平行にし、しかも少しずら
して配置すれば良い。
It is understood from equation (11) that the maximum magnetomotive force maxVm does not depend on the outer diameter dimension (W, l:) of the magnetic core portion 34. Therefore, reducing the value of (W+t) in equation (8) is the first method for reducing power consumption and suppressing heat generation. However, when the saturation magnetic flux density of the material forming the magnetic core part 34 is Ss, WtBS≧Φt
Must be otal. Therefore, it is necessary to suppress the mechanical cost and lightning force by minimizing Φtotal. Therefore, the length of the magnetic core extension 36 is the information 9g to be searched by the light beam.
It is necessary to make it only slightly longer than the length of the recording area of the X body, and to keep the portion that generates extra magnetic flux as small as possible. When magnetic flux leaks from the surface of the connecting part between the effective magnetic flux emitting part and the magnetic core part, the total daily flux Φtota
1, the magnetic core 34 is provided on the extension line of the magnetic core extension 36 and close to the magnetic core extension 36, as shown in FIG.
2, which substantially defines the core extension 36 as an effective flux emitting section. In order to make this possible, the flat lower surface of the magnetic core extension portion 36 and the magnetic core portion 34 may be made substantially parallel to each other, and may be arranged slightly offset from each other.

情報記、9媒体20の光記9膜24には、既に述べたよ
うに磁心延長部36から放出された磁束が与えられるこ
とから、磁心延長部36とヨーク38間の距離を磁心延
長部36と磁心部34との間の距離に比べて大きくして
いる。これにより磁心延長部36とヨーク38との間に
ギャップが生じない。そのため、磁気抵抗の小さなギャ
ップを介して光磁気記録膜24に与えられない不必要な
磁束が生じず、総磁束Φjojalを出来る限り小さく
することができる。
Since the optical recording film 24 of the information recording medium 20 is given the magnetic flux emitted from the magnetic core extension part 36 as described above, the distance between the magnetic core extension part 36 and the yoke 38 is determined by the magnetic core extension part 36. The distance between the magnetic core portion 34 and the magnetic core portion 34 is made larger than that between the magnetic core portion 34 and the magnetic core portion 34. As a result, no gap is created between the magnetic core extension 36 and the yoke 38. Therefore, unnecessary magnetic flux that is not applied to the magneto-optical recording film 24 through the small gap of magnetoresistance is not generated, and the total magnetic flux Φjojal can be made as small as possible.

磁心延長部36は、既に述べたようにくさび状に形成さ
れているがこれは、次のような理由に琺づく。一般に磁
心延長部36の任意の点でその長軸に直交する磁心延長
部36の断面の面積は、その点から磁心部34とは反対
の先端至る外表面から放出される全磁束量を飽和磁束密
度3sで割った値よりも小ざくすることができない。こ
のことから先端に向かうに従って断面積を減少させて外
表面の面積を減少させた構造になるように磁心延長部3
6を形成し、空間に放出される磁束Φtota1を出来
る限り小さくしている。ここで磁心延長部36の幅を変
化させても断面積を減少させることができるが、その幅
を減少させる場合には、光記録膜24上の上下方向(光
磁気記録膜24に垂直な方向)及び左右方向(光記録膜
24上で円周に沿って移動した方向)で磁界強度変化が
鋭くなり、ビームの検索領域との間の位置合わせの精度
の要求が高くなることから好ましくない。
The magnetic core extension portion 36 is formed into a wedge shape as described above, and this is due to the following reasons. Generally, the area of the cross section of the magnetic core extension 36 perpendicular to the long axis at any point of the magnetic core extension 36 is the saturation magnetic flux, which is the total amount of magnetic flux emitted from the outer surface from that point to the tip opposite to the magnetic core 34. It cannot be made smaller than the value divided by the density 3s. From this, the magnetic core extension part 3 is designed to have a structure in which the cross-sectional area decreases toward the tip and the outer surface area decreases.
6, and the magnetic flux Φtota1 released into space is made as small as possible. Here, the cross-sectional area can also be reduced by changing the width of the magnetic core extension part 36, but when reducing the width, it is necessary to ) and in the left-right direction (the direction of movement along the circumference on the optical recording film 24), the magnetic field intensity changes sharply, which is undesirable because the requirement for precision in positioning the beam with the search area increases.

上述のように総磁束Φtotalの値を小さくするよう
に工夫してb (W+ t )を小さくするには、限界
がある。(8)式と(11)式とを比較するれば明らか
なように電磁コイル32の通電時の渇度上昇母Δ丁を小
さくして消費電力を小さくし、これに対して電磁コイル
34の形状を工夫して起磁力の効率を向上させることが
できる。(11)式からコイル長ηの値の変化は、電磁
コイルの厚みλの変化よりも大きく起磁力を変化させる
ことが理解される。従って、本願の磁界発生装置では、
電磁コイルの厚みλより6コイル長刀を大きく設定して
いる。即ち、起磁力VIa=NIは、巻数Nに比例する
が、−巻に要する線材の長さが長いと線材の一巻当りの
抵抗値が増加し、21!l費電力も大きくなってしまう
。その為、線材を何層にも巻回して外周における一巻の
長さを大きくするに代えて層数を少なくし、−巻の長さ
をできる限り小さくし、起磁力の向上を図っている。
As described above, there is a limit to how b (W+ t ) can be reduced by devising ways to reduce the value of the total magnetic flux Φtotal. As is clear from comparing equations (8) and (11), the power consumption is reduced by reducing the thirst increase mother Δd when the electromagnetic coil 32 is energized; The efficiency of magnetomotive force can be improved by devising the shape. It is understood from equation (11) that a change in the value of the coil length η changes the magnetomotive force more than a change in the thickness λ of the electromagnetic coil. Therefore, in the magnetic field generator of the present application,
The 6-coil length is set larger than the thickness λ of the electromagnetic coil. That is, the magnetomotive force VIa=NI is proportional to the number of turns N, but if the length of the wire required for -turning is long, the resistance value per turn of the wire increases, and 21! The cost of electricity also increases. Therefore, instead of winding the wire in many layers and increasing the length of each turn on the outer periphery, we reduce the number of layers and make the length of the turns as small as possible to improve the magnetomotive force. .

本願においては、温度上昇が小さな橘成を有するが、好
ましくは、第1図から第3図に示すように13い熱伝導
率を有する材料で作られた放熱部42例えば、アルミニ
ュームで作られた放熱板が磁心延長部36上に設けられ
る。この放熱部42には、図示Vるように多数の渦が形
成されてフィン41造に形成されている。従って、通電
時には、磁心延出部の温度の上昇を防止することができ
る。
In the present application, the heat dissipation part 42 is made of a material having a small temperature rise but preferably has a thermal conductivity of 13 as shown in FIGS. 1 to 3, for example made of aluminum. A heat sink is provided on the magnetic core extension 36. As shown in the figure, a large number of vortices are formed in the heat radiating portion 42 to form a fin 41 structure. Therefore, when electricity is applied, it is possible to prevent the temperature of the magnetic core extension from increasing.

以上のようにこの発明によれば、消費電力が小さく、こ
れに伴い発熱量も小さく、しかもその烏さが小さな実装
効率を向上させることができる磁界発生装置を提供する
ことができる。
As described above, according to the present invention, it is possible to provide a magnetic field generating device that has low power consumption, a correspondingly low calorific value, and is capable of improving mounting efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例に係る磁界発生装置を示
す概略断面図、第2図は、第1図に示す装置において情
報記&媒体を装着或いは、脱着する際の動作を示す断面
図、第3図は、第1図に示す磁界発生装置の斜視図、第
4図は、第1図に示される′MIIl!コイルを示ず斜
視図、第5図及び第6図は、従来の磁界発生装置を示す
斜視図である。 20・、・・・情報記録媒体、25・・・・対物レンズ
、28・・・・光ヘッド、34・・・・磁心、36・・
・・磁心延長部、37・・・・vA束導出部、38・・
・・ヨーク部、40・・・・放熱部 出願人代理人 弁理士 鈴江武β 第 5 因 脇    第6図
FIG. 1 is a schematic cross-sectional view showing a magnetic field generating device according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing the operation when attaching or detaching information records and media in the device shown in FIG. 3 is a perspective view of the magnetic field generator shown in FIG. 1, and FIG. 4 is a perspective view of the magnetic field generator shown in FIG. 1. FIGS. 5 and 6 are perspective views showing a conventional magnetic field generating device, without showing the coil. 20... Information recording medium, 25... Objective lens, 28... Optical head, 34... Magnetic core, 36...
...Magnetic core extension part, 37...vA flux derivation part, 38...
... Yoke part, 40 ... Heat dissipation part Applicant's agent Patent attorney Takeshi Suzue β No. 5 Inwaki Fig. 6

Claims (1)

【特許請求の範囲】 (1)磁性体で作られた磁心部と、この磁心部に巻回さ
れたコイルと、この磁心部の一端から延出され、磁性体
で作られた磁心延長部と、前記磁心部の他端に磁気的に
連結され、情報の記録或いは、消去が可能な情報記録媒
体が配置されるべき空間を介して前記磁心延長部から放
出された磁束が帰還されるヨーク部とを具備した磁界発
生装置において前記磁心延長部の表面積がヨーク部の表
面積よりも小さいことを特徴とする磁界発生装置(2)
前記磁心延長部は、磁心部に平行な少なくとも1つの面
を有することを特徴とする特許請求の範囲第1項記載の
磁界発生装置 (3)前記磁心延長部は、放熱部を具備することを特徴
とする特許請求の範囲第1項記載の磁界発生装置 (4)前記放熱部は、非磁性材より成ることを特徴とす
る特許請求の範囲第2項記載の磁界発生装置 (5)前記磁心部、前記磁心延長部及びヨーク部から成
る磁石構造体が分離可能な構造を有し、少なくとも前記
コイルへの通電時に前記磁心部、前記磁心延長部及びヨ
ーク部が連結状態に維持され、前記情報記録媒体の脱着
時に磁石構造体が分離されることを特徴とする特許請求
の範囲第1項記載の磁界発生装置 (6)前記磁心部が前記ヨーク部から分離されることを
特徴とする特許請求の範囲第4項記載の磁界発生装置 (7)前記磁心延長部が前記磁心部から分離されること
を特徴とする特許請求の範囲第4項記載の磁界発生装置 (8)前記ヨーク部が分離可能な構造を有することを特
徴とする特許請求の範囲第4項記載の磁界発生装置 (9)前記磁心延長部が分離可能な構造を有することを
特徴とする特許請求の範囲第4項記載の磁界発生装置
[Claims] (1) A magnetic core made of a magnetic material, a coil wound around the magnetic core, and a magnetic core extension made of a magnetic material extending from one end of the magnetic core. , a yoke portion that is magnetically connected to the other end of the magnetic core portion and returns the magnetic flux emitted from the magnetic core extension portion through a space in which an information recording medium capable of recording or erasing information is placed; A magnetic field generating device (2) characterized in that the surface area of the magnetic core extension part is smaller than the surface area of the yoke part.
(3) The magnetic field generating device according to claim 1, wherein the magnetic core extension has at least one surface parallel to the magnetic core. (4) The magnetic field generating device (4) according to claim 1, wherein the heat dissipation section is made of a non-magnetic material (5) The magnetic core , the magnet structure including the magnetic core extension and the yoke has a separable structure, the magnetic core, the magnetic core extension and the yoke are maintained in a connected state at least when the coil is energized, and the information The magnetic field generating device according to claim 1, wherein the magnetic structure is separated when the recording medium is attached or detached. (6) The magnetic field generating device according to claim 1, wherein the magnetic core part is separated from the yoke part. (7) The magnetic field generating device according to claim 4, wherein the magnetic core extension portion is separated from the magnetic core portion. (8) The magnetic field generating device according to claim 4, wherein the yoke portion is separated. A magnetic field generating device (9) according to claim 4, characterized in that the magnetic field generating device (9) has a structure in which the magnetic core extension part has a separable structure. magnetic field generator
JP30859886A 1986-12-26 1986-12-26 Magnetic field generator Pending JPS63164004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30859886A JPS63164004A (en) 1986-12-26 1986-12-26 Magnetic field generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30859886A JPS63164004A (en) 1986-12-26 1986-12-26 Magnetic field generator

Publications (1)

Publication Number Publication Date
JPS63164004A true JPS63164004A (en) 1988-07-07

Family

ID=17982965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30859886A Pending JPS63164004A (en) 1986-12-26 1986-12-26 Magnetic field generator

Country Status (1)

Country Link
JP (1) JPS63164004A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278713A (en) * 1989-07-14 1994-01-11 Deutsche Thomson Brandt Gmbh Cooling device including ribs, in combination with a magnetic head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278713A (en) * 1989-07-14 1994-01-11 Deutsche Thomson Brandt Gmbh Cooling device including ribs, in combination with a magnetic head

Similar Documents

Publication Publication Date Title
KR20040075919A (en) Heat assisted magnetic recording head with hybrid write pole
US4984225A (en) System for applying magnetic field to opto-magnetic memory
JP2008269757A (en) Near-field optical head and information record regeneration apparatus
JP5246688B2 (en) Information recording / reproducing device
JPS63164004A (en) Magnetic field generator
CA2048583C (en) Magnetic recording and reproducing apparatus
JPH0232692B2 (en)
US20110122736A1 (en) Near-field optical head and information recording/reproducing device
CN1783249B (en) Optical pickup actuator
JP3460947B2 (en) Magneto-optical recording medium and magneto-optical recording device
JPH08235556A (en) Magnetic head device
JPS63244432A (en) Optical disk device
JPS63244716A (en) Magnetic field generating device
JPS62129812A (en) Photoscanning mirror device
JPS63113839A (en) Magneto-optical information recording and reproducing device
JPS63121103A (en) Magnetic field generating device
JPH0253201A (en) Bias magnetic field impressing device
JP5207302B2 (en) Information recording / reproducing head gimbal assembly and information recording / reproducing apparatus
US5381390A (en) Directly overwrite information by using two radiation beams onto a single magneto-optical recording
JP5553302B2 (en) Near-field optical head manufacturing method, near-field optical head, and information recording / reproducing apparatus
JPS63244430A (en) Optical disk device
JP5263879B2 (en) Pivot bearing and information recording / reproducing apparatus
CN101248485A (en) Information recording device and recording head
JP2007305185A (en) Near field light head and information recording and reproducing apparatus
JP2813266B2 (en) Thermomagnetic recording device