JPS6316379B2 - - Google Patents

Info

Publication number
JPS6316379B2
JPS6316379B2 JP57005215A JP521582A JPS6316379B2 JP S6316379 B2 JPS6316379 B2 JP S6316379B2 JP 57005215 A JP57005215 A JP 57005215A JP 521582 A JP521582 A JP 521582A JP S6316379 B2 JPS6316379 B2 JP S6316379B2
Authority
JP
Japan
Prior art keywords
copper
formula
reaction
trifluoromethylhalogenobenzene
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57005215A
Other languages
Japanese (ja)
Other versions
JPS58150554A (en
Inventor
Hitomi Suzuki
Hiroshi Naito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP57005215A priority Critical patent/JPS58150554A/en
Publication of JPS58150554A publication Critical patent/JPS58150554A/en
Publication of JPS6316379B2 publication Critical patent/JPS6316379B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、トリフルオロメチルベンゼン誘導体
の製法に関し、更に詳しくはトリフルオロメチル
ハロゲノベンゼンを特定の溶媒中、臭化銅または
沃化銅の存在下、シアン化銅と反応させることか
ら成るトリフルオロメチルベンゾニトリルの製法
に関する。 近年、生理活性を有する含フツ素有機化合物の合
成に、大きな興味が持たれている。これは、分子
内に少数のフツ素原子を導入することにより、し
ばしば強力でしかも選択的な生理作用が発現する
ためであり、特に農薬、医薬の合成分野で注目さ
れている。しかし、市販されている合成ブロツク
として有用な含フツ素化合物の数は、きわめて限
られているのが実状である。 ところで、芳香族ハロゲン化合物は脂肪族ハロ
ゲン化合物にくらべて反応性が著しく小さく、適
当な電子吸引基で活性化されていない限り、通常
のSNAr型の求核置換反応を行わない。トリフル
オロメチル基は、フツ素原子の電気陰性度と負の
超共役の寄与のため、−Iおよび−E効果を示す
電子吸引基として働くことが知られているが、求
核攻撃に対して芳香環を活性化する度合は比較的
小さい。従つて、トリフルオロメチルハロゲノベ
ンゼンにシアノ基を導入しようとする場合、シア
ン化アルカリを直接作用させたとしても、芳香環
よりもむしろトリフルオロメチル側鎖上の反応の
方が起こりやすいことになり、ベンゾニトリル誘
導体を所期通りに得ることは困難である。 芳香族ハロゲン化合物から対応するニトリルを
得る方法としては、Rosenmund−von Braun反
応がよく知られている。この反応は、芳香族臭素
化合物とシアン化銅を250〜260℃の高温に加熱
し、臭素原子をシアノ基で置換するものである。
しかし、過激な反応条件を必要とするため、副反
応を伴うという欠点を有している。近年、パラジ
ウム塩やパラジウム−ホスフイン錯体の存在下に
反応させる方法も提案されているが、工業的な製
造には適していない。 本発明者らは、トリフルオロメチルハロゲノベ
ンゼンおよびその誘導体から対応するニトリルを
得る、簡単でかつ効率のよい、しかも副反応を伴
わない方法を開発すべく研究を重ねた結果、トリ
フルオロメチルハロゲノベンゼンとシアン化銅を
特定の溶媒中、臭化銅または沃化銅の存在下に反
応させれば芳香環にシアノ基を効率よく導入でき
ることを見い出し、本発明を完成するに至つた。 すなわち、本発明の要旨は、ヘキサメチル燐酸
トリアミドおよびN−メチルピロリドンから選ば
れた少くとも1種の溶媒中、臭化銅または沃化銅
の存在下に、式: 〔式中、Xはハロゲン、Yは水素、低級アルコキ
シ基またはニトロ基を表わす。〕 で示されるトリフルオロメチルハロゲノベンゼン
をシアン化銅と反応させて式: 〔式中、Yは前記と同意義。〕 で示されるトリフルオロメチルベンゾニトリルを
得ることを特徴とするトリフルオロメチルベンゼ
ン誘導体の製法に存する。 本発明において出発物質として用いられるトリ
フルオロメチルハロゲノベンゼン()の例とし
ては、o−クロロベンゾトリフルオリド、m−ク
ロロ−ベンゾトリフルオリド、p−クロロベンゾ
トリフルオリド、o−、p−またはm−ブロモベ
ンゾトリフルオリド、o−、p−またはm−ヨー
ドベンゾトリフルオリド、2−クロロ−5−ニト
ロベンゾトリフルオリド、2−ニトロ−5−クロ
ロベンゾトリフルオリド、3−ニトロ−4−クロ
ロベンゾトリフルオリド、2−ニトロ−5−ブロ
モベンゾトリフルオリド、3−メトキシ−4−ク
ロロベンゾトリフルオリドなどが挙げられる。 シアン化銅の使用割合は、トリフルオロメチル
ハロゲノベンゼン()1モルに対し、少くとも
1モル、好ましくは少くとも2モル、たとえば2
〜3モルである。また、シアン化アルカリ、たと
えばシアン化カリウムまたはシアン化ナトリウム
をシアン化銅と併用することもできる。 臭化銅または沃化銅は、トリフルオロメチルハ
ロゲノベンゼン()に対し、0.1〜5倍モル、
好ましくは0.5〜2倍モル、より好ましくは0.8〜
1.2倍モルで用いられる。 溶媒としては、ヘキサメチル燐酸トリアミド
(以下、HMPAという。)およびN−メチルピロ
リドンの非プロトン極性溶媒を用いる。ニトロ基
に代表される強い電子吸引基とトリフルオロメチ
ル基の電子効果とが相乗的に作用する位置にハロ
ゲン原子を有する出発物質を使用する時は、溶媒
としてHMPAよりもN−メチルピロリドンを用
いるのが望ましい場合がある。 反応は、通常、常圧において、100〜250℃、好
ましくは150〜200℃、特に190〜200℃の温度で行
う。 反応時間は、一般に1〜10時間である。 この様にして得られるトリフルオロメチルベン
ゾニトリル()は、加水分解することにより、
安息香酸およびその誘導体またはフタル酸および
その誘導体に変換することができる。 加水分解は、酸または塩基加水分解のいずれで
も行うことができる。 希酸または弱酸で加水分解する場合、反応速度
はきわめて遅いが、安息香酸およびその誘導体が
生成する。これに対し、強酸で加水分解を行う
と、シアノ基に加えてトリフルオロメチル基も加
水分解されてフタル酸およびその誘導体が生成す
る。 塩基で加水分解する場合、通常、対応するモノ
カルボン酸が生成するが、o−トリフルオロメチ
ルベンゾニトリルからは対応する酸アミドが生成
し、また水酸化カルシウムや水酸化バリウムを塩
基として用いると酸アミドとカルボン酸の混合物
が生じる。この酸アミドは、ニトロソ化反応によ
り容易にカルボン酸に変換することができる。 次に実施例および比較例を示し、本発明を具体
的に説明する。 実施例 1 o−クロロベンゾトリフルオリド3.61g(20ミ
リモル)、シアン化銅3.58g(40ミリモル)およ
びHMPA(10ml)をフラスコに仕込み、次いで沃
化銅1.91g(10ミリモル)を加え、撹拌下に油浴
上で150〜160℃に10時間保つた。反応混合物をガ
スクロマトグラフイ(担体:SE−30)に付し、
o−トリフルオロメチルベンゾニトリルが収率54
%で生成していることを確認した。なお、収率は
n−ドデカンを内部標準に用いて補正した。 実施例2〜3および比較例1 各化合物の使用量、ハロゲン化銅の種類、反応
温度および反応時間を第1表に示す通りにして実
施例1と同様の手順で反応を行つた。収率は第1
表に示す通りであつた。
The present invention relates to a method for producing trifluoromethylbenzene derivatives, and more particularly, the present invention relates to a method for producing trifluoromethylbenzene derivatives, which comprises reacting trifluoromethylhalogenobenzene with copper cyanide in a specific solvent in the presence of copper bromide or copper iodide. Concerning a method for producing benzonitrile. In recent years, there has been a great deal of interest in the synthesis of physiologically active fluorine-containing organic compounds. This is because the introduction of a small number of fluorine atoms into a molecule often produces strong and selective physiological effects, and it has attracted particular attention in the fields of agrochemical and pharmaceutical synthesis. However, the reality is that the number of commercially available fluorine-containing compounds useful as synthetic blocks is extremely limited. By the way, aromatic halogen compounds have significantly lower reactivity than aliphatic halogen compounds, and do not undergo the usual S N Ar type nucleophilic substitution reaction unless activated with an appropriate electron-withdrawing group. The trifluoromethyl group is known to act as an electron-withdrawing group exhibiting -I and -E effects due to the electronegativity of the fluorine atom and the contribution of negative hyperconjugation, but it is not susceptible to nucleophilic attack. The degree of activation of aromatic rings is relatively small. Therefore, when trying to introduce a cyano group into trifluoromethylhalogenobenzene, even if an alkali cyanide is used directly, the reaction is more likely to occur on the trifluoromethyl side chain than on the aromatic ring. , it is difficult to obtain benzonitrile derivatives as expected. The Rosenmund-von Braun reaction is well known as a method for obtaining a corresponding nitrile from an aromatic halogen compound. This reaction involves heating an aromatic bromine compound and copper cyanide to a high temperature of 250 to 260°C to replace the bromine atom with a cyano group.
However, since it requires extreme reaction conditions, it has the disadvantage of being accompanied by side reactions. Recently, a method of reacting in the presence of a palladium salt or a palladium-phosphine complex has been proposed, but this method is not suitable for industrial production. The present inventors have conducted extensive research to develop a simple and efficient method for obtaining the corresponding nitrile from trifluoromethylhalogenobenzene and its derivatives, and which does not involve side reactions. The inventors have discovered that a cyano group can be efficiently introduced into an aromatic ring by reacting copper cyanide with copper bromide or copper iodide in a specific solvent, and have completed the present invention. That is, the gist of the present invention is that the formula: [In the formula, X represents a halogen, and Y represents hydrogen, a lower alkoxy group, or a nitro group. ] Trifluoromethylhalogenobenzene shown by is reacted with copper cyanide to form the formula: [In the formula, Y has the same meaning as above. ] A method for producing a trifluoromethylbenzene derivative, characterized by obtaining trifluoromethylbenzonitrile represented by the following. Examples of trifluoromethylhalogenobenzenes () used as starting materials in the present invention include o-chlorobenzotrifluoride, m-chloro-benzotrifluoride, p-chlorobenzotrifluoride, o-, p- or m- Bromobenzotrifluoride, o-, p- or m-iodobenzotrifluoride, 2-chloro-5-nitrobenzotrifluoride, 2-nitro-5-chlorobenzotrifluoride, 3-nitro-4-chlorobenzotrifluoride , 2-nitro-5-bromobenzotrifluoride, 3-methoxy-4-chlorobenzotrifluoride, and the like. The proportion of copper cyanide used is at least 1 mol, preferably at least 2 mol, for example 2 mol, per 1 mol of trifluoromethylhalogenobenzene ().
~3 moles. It is also possible to use alkali cyanides, such as potassium or sodium cyanide, in combination with copper cyanide. Copper bromide or copper iodide is 0.1 to 5 times the molar amount of trifluoromethylhalogenobenzene (),
Preferably 0.5 to 2 times the mole, more preferably 0.8 to 2 times the mole
Used at 1.2 times the mole. As the solvent, aprotic polar solvents such as hexamethylphosphoric acid triamide (hereinafter referred to as HMPA) and N-methylpyrrolidone are used. When using a starting material that has a halogen atom at a position where a strong electron-withdrawing group represented by a nitro group and the electron effect of a trifluoromethyl group act synergistically, N-methylpyrrolidone is used as a solvent rather than HMPA. may be desirable. The reaction is usually carried out at normal pressure and at a temperature of 100 to 250°C, preferably 150 to 200°C, particularly 190 to 200°C. The reaction time is generally 1 to 10 hours. By hydrolyzing trifluoromethylbenzonitrile () obtained in this way,
It can be converted into benzoic acid and its derivatives or phthalic acid and its derivatives. Hydrolysis can be carried out by either acid or base hydrolysis. Hydrolysis with dilute or weak acids produces benzoic acid and its derivatives, although the reaction rate is very slow. On the other hand, when hydrolysis is performed with a strong acid, not only the cyano group but also the trifluoromethyl group is hydrolyzed to produce phthalic acid and its derivatives. When hydrolyzed with a base, the corresponding monocarboxylic acid is usually produced, but o-trifluoromethylbenzonitrile produces the corresponding acid amide, and when calcium hydroxide or barium hydroxide is used as a base, the corresponding monocarboxylic acid is produced. A mixture of amide and carboxylic acid is formed. This acid amide can be easily converted into a carboxylic acid by a nitrosation reaction. Next, examples and comparative examples will be shown to specifically explain the present invention. Example 1 3.61 g (20 mmol) of o-chlorobenzotrifluoride, 3.58 g (40 mmol) of copper cyanide and HMPA (10 ml) were charged into a flask, and then 1.91 g (10 mmol) of copper iodide was added and the mixture was stirred. was kept at 150-160 °C on an oil bath for 10 hours. The reaction mixture was subjected to gas chromatography (carrier: SE-30),
Yield of o-trifluoromethylbenzonitrile: 54
I confirmed that it was generated in %. Note that the yield was corrected using n-dodecane as an internal standard. Examples 2 to 3 and Comparative Example 1 A reaction was carried out in the same manner as in Example 1 using the amounts of each compound used, the type of copper halide, the reaction temperature, and the reaction time as shown in Table 1. The yield is the first
It was as shown in the table.

【表】 実施例4〜7および比較例2 出発物質としてo−クロロベンゾトリフルオリ
ドの代りにm−クロロベンゾトリフルオリド(m
−CBTF)またはp−クロロベンゾトリフル
オリド(p−CBTF)を用い、条件を第2表
に示す通りにして実施例1と同様の手順で反応を
行つた。収率は第2表に示す通りであつた。
[Table] Examples 4 to 7 and Comparative Example 2 m-chlorobenzotrifluoride (m-chlorobenzotrifluoride (m
-CBTF) or p-chlorobenzotrifluoride (p-CBTF), the reaction was carried out in the same manner as in Example 1 under the conditions shown in Table 2. The yield was as shown in Table 2.

【表】 実施例 8 溶媒をN−メチルピロリドンとし、反応を還流
温度で行う以外は実施例4と同様の手順で反応を
行つた。9時間後の収率は39%であつた。 実施例 9〜25 トリフルオロメチルベンゾニトリル(1ミリモ
ル)を第3表に示す酸または塩基の水溶液(1
ml)と共に加熱還流した。酸加水分解の場合は、
反応混合物を酢酸エチルで抽出し、抽出液から溶
媒を留去し、残渣の組成およびカルボン酸の収率
を分光法により測定した。塩基加水分解の場合
は、反応混合物から未反応トリフルオロメチルベ
ンゾニトリルおよび酸アミドを酢酸エチルで抽出
し、水相を分離して塩酸で弱酸性とした後、分離
するカルボン酸をエーテルで抽出した。抽出液を
無水硫酸ナトリウムで乾燥し、溶媒を留去し、残
留した酸を定量した。結果を第3表に示す。
[Table] Example 8 A reaction was carried out in the same manner as in Example 4 except that N-methylpyrrolidone was used as the solvent and the reaction was carried out at reflux temperature. The yield after 9 hours was 39%. Examples 9-25 Trifluoromethylbenzonitrile (1 mmol) was added to an aqueous solution of the acid or base shown in Table 3 (1 mmol).
ml) and heated to reflux. For acid hydrolysis,
The reaction mixture was extracted with ethyl acetate, the solvent was distilled off from the extract, and the composition of the residue and the yield of carboxylic acid were determined by spectroscopy. For base hydrolysis, unreacted trifluoromethylbenzonitrile and acid amide were extracted from the reaction mixture with ethyl acetate, the aqueous phase was separated and made weakly acidic with hydrochloric acid, and the carboxylic acid to be separated was extracted with ether. . The extract was dried over anhydrous sodium sulfate, the solvent was distilled off, and the remaining acid was quantified. The results are shown in Table 3.

【表】【table】

【表】 注 1) トリフルオロメチルベンゾニト
リル
2) トリフルオロメチル安息香酸
実施例 26 o−トリフルオロメチルベンズアミド178.8mg
(0.942ミリモル)、亜硝酸ナトリウム400mg(5.80
ミリモル)および水3mlを混合、撹拌し、氷冷し
ながら濃硫酸3mlを少量ずつ滴加した。直ちに窒
素ガスの発生がみられた。滴加終了後、撹拌を続
け、反応混合物を約20分間、約80℃に加熱した。
室温に冷却した後、沈殿を取した。液を酢酸
エチルで抽出し、抽出液から溶媒を留去した。残
渣を先に得た沈殿と合わせ、水/エタノールから
再結晶化してo−トリフルオロメチル安息香酸
158.2mgを得た。融点109〜110℃。収率88%。 実施例 27 3−ニトロ−4−クロロベンゾトリフルオリド
4.5g(20ミリモル)(沸点94.5℃/10mmHg)[ジ
ヤーナル・オブ・アメリカン・ケミカル・ソサイ
エテイ(以下、JACSと記す)74、3011(1952)、
JACS、75、1997(1953)およびJACS、76、3936
(1954)参照]、シアン化銅3.58g(40ミリモル)
およびHMPA(20ml)をフラスコに仕込み、次い
で、沃化銅1.91g(10ミリモル)を加え、撹拌下
に油溶上で150〜160℃に15時間保つた。反応混合
物をガスクロマトグラフイ(担体:SE−30)に
付し、2−ニトロ−4−トリフルオロメチルベン
ゾニトリルが収率68%で生成していることを確認
した。融点:47〜8℃。 実施例 28 3−ニトロ−4−クロロベンゾトリフルオリド
4.5gの代りに3−メトキシ−4−クロロベンゾ
トリフルオリド4.2g(20ミリモル)(沸点:100
〜1℃/38mmHg)[JACS、73、3470(1951)参
照]を使用する以外は実施例27の手順で反応を行
つた。反応混合物をガスクロマトグラフイに付
し、2−メトキシ−4−トリフルオロメチルベン
ゾニトリルが収率60%で生成していることを確認
した。融点:64〜5℃。
[Table] Note 1) Trifluoromethylbenzonitrile
2) Trifluoromethylbenzoic acid Example 26 o-trifluoromethylbenzamide 178.8mg
(0.942 mmol), sodium nitrite 400 mg (5.80
mmol) and 3 ml of water were mixed and stirred, and 3 ml of concentrated sulfuric acid was added dropwise little by little while cooling on ice. Nitrogen gas was immediately observed. After the addition was complete, stirring was continued and the reaction mixture was heated to about 80° C. for about 20 minutes.
After cooling to room temperature, the precipitate was collected. The liquid was extracted with ethyl acetate, and the solvent was distilled off from the extract. The residue was combined with the precipitate obtained earlier and recrystallized from water/ethanol to obtain o-trifluoromethylbenzoic acid.
158.2mg was obtained. Melting point 109-110℃. Yield 88%. Example 27 3-nitro-4-chlorobenzotrifluoride
4.5 g (20 mmol) (boiling point 94.5°C/10 mmHg) [Journal of American Chemical Society (hereinafter referred to as JACS) 74 , 3011 (1952),
JACS, 75 , 1997 (1953) and JACS, 76 , 3936
(1954)], copper cyanide 3.58 g (40 mmol)
and HMPA (20 ml) were charged into a flask, and then 1.91 g (10 mmol) of copper iodide was added, and the mixture was kept at 150-160° C. for 15 hours in an oil solution with stirring. The reaction mixture was subjected to gas chromatography (carrier: SE-30), and it was confirmed that 2-nitro-4-trifluoromethylbenzonitrile was produced in a yield of 68%. Melting point: 47-8°C. Example 28 3-nitro-4-chlorobenzotrifluoride
4.2 g (20 mmol) of 3-methoxy-4-chlorobenzotrifluoride instead of 4.5 g (boiling point: 100
The reaction was carried out according to the procedure of Example 27, except that the reaction temperature was 1°C/38mmHg (see JACS, 73 , 3470 (1951)). The reaction mixture was subjected to gas chromatography, and it was confirmed that 2-methoxy-4-trifluoromethylbenzonitrile was produced in a yield of 60%. Melting point: 64-5°C.

Claims (1)

【特許請求の範囲】 1 ヘキサメチル燐酸トリアミドおよびN−メチ
ルピロリドンから選ばれた少なくとも1種の溶媒
中、臭化銅または沃化銅の存在下に、 式: で示されるトリフルオロメチルハロゲノベンゼン
をシアン化銅と反応させて 式: で示されるトリフルオロメチルベンゾニトリルを
得ることを特徴とするトリフルオロメチルベンゼ
ン誘導体の製法。 [式中、Xはハロゲン、Yは水素、低級アルコキ
シ基またはニトロ基を表わす。]。 2 臭化銅または沃化銅をトリフルオロメチルハ
ロゲノベンゼンに対し0.5〜2倍モル用いる特許
請求の範囲第1項記載の製法。 3 反応温度100〜250℃、好ましくは150〜200℃
である特許請求の範囲第1〜3項のいずれかに記
載の製法。 4 ヘキサメチル燐酸トリアミドおよびN−メチ
ルピロリドンから選ばれた少なくとも1種の溶媒
中、臭化銅または沃化銅の存在下に、 式: [式中、Xはハロゲンを表わす。] で示されるトリフルオロメチルハロゲノベンゼン
をシアン化銅と反応させて得られた 式: で示されるトリフルオロメチルベンゾニトリルを
加水分解することを特徴とするトリフルオロメチ
ルベンゼンモノカルボン酸の製法。
[Claims] 1 In the presence of copper bromide or copper iodide in at least one solvent selected from hexamethylphosphoric triamide and N-methylpyrrolidone, the formula: By reacting trifluoromethylhalogenobenzene represented by with copper cyanide, the formula: A method for producing a trifluoromethylbenzene derivative, characterized by obtaining trifluoromethylbenzonitrile represented by: [In the formula, X represents a halogen, and Y represents hydrogen, a lower alkoxy group, or a nitro group. ]. 2. The manufacturing method according to claim 1, in which copper bromide or copper iodide is used in an amount of 0.5 to 2 moles relative to trifluoromethylhalogenobenzene. 3 Reaction temperature 100-250℃, preferably 150-200℃
The manufacturing method according to any one of claims 1 to 3. 4 In the presence of copper bromide or copper iodide in at least one solvent selected from hexamethylphosphoric triamide and N-methylpyrrolidone, the formula: [In the formula, X represents a halogen. ] The formula obtained by reacting trifluoromethylhalogenobenzene with copper cyanide: A method for producing trifluoromethylbenzene monocarboxylic acid, which comprises hydrolyzing trifluoromethylbenzonitrile represented by:
JP57005215A 1982-01-16 1982-01-16 Preparation of trifluoromethylbenzene derivative Granted JPS58150554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57005215A JPS58150554A (en) 1982-01-16 1982-01-16 Preparation of trifluoromethylbenzene derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57005215A JPS58150554A (en) 1982-01-16 1982-01-16 Preparation of trifluoromethylbenzene derivative

Publications (2)

Publication Number Publication Date
JPS58150554A JPS58150554A (en) 1983-09-07
JPS6316379B2 true JPS6316379B2 (en) 1988-04-08

Family

ID=11604960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57005215A Granted JPS58150554A (en) 1982-01-16 1982-01-16 Preparation of trifluoromethylbenzene derivative

Country Status (1)

Country Link
JP (1) JPS58150554A (en)

Also Published As

Publication number Publication date
JPS58150554A (en) 1983-09-07

Similar Documents

Publication Publication Date Title
JP2022166011A (en) Method for preparing 6-(cyclopropaneamido)-4-((2-methoxy-3-(1-methyl-1h-1,2,4-triazol-3-yl)phenyl)amino)-n-(methyl-d3)pyridazine-3-carboxamide
JP2525977B2 (en) Process for producing N-acylaminomethylphosphonic acid
JPS6316379B2 (en)
EP0097357B1 (en) Process for preparing trifluoromethylbenzene derivatives
JP4467890B2 (en) Chloromethylation of thiophene
JPH0782207A (en) Production of fluorenone and oxidation catalyst used therein
JP2000109462A (en) Production of 8-benzylaminoquioline
JPH0237348B2 (en)
JP2000229930A (en) Production of cyanoacetate ester
JPH0237347B2 (en)
KR102720054B1 (en) Method for preparing 6-(cyclopropanamido)-4-((2-methoxy-3-(1-methyl-1H-1,2,4-triazol-3-yl)phenyl)amino)-N-(methyl-D3)pyridazine-3-carboxamide
JP2706554B2 (en) 4-trifluoromethylaniline derivative and method for producing the same
JP3500504B2 (en) Method for producing 2-hydroxycarbazole
JPS6054948B2 (en) Method for producing aromatic amines from α,β↓-unsaturated cycloaliphatic ketoxime
JPWO2013084860A1 (en) Method for producing pentafluorosulfanylbenzoic acid
JPH0710829B2 (en) Method for producing benzyl mercaptan derivative
JPS6343382B2 (en)
JPH08119925A (en) Production of 3,4-dichlorobenzonitrile
JP3787866B2 (en) Process for producing binuclear dimethylol compound of p-cresol
EP1314727B1 (en) Direct synthesis of quaternary phenanthridinium salts
JPS5811415B2 (en) Method for producing substituted acetophenone
JP2001181228A (en) Method for producing poly-(fluoroalkyl)-acetophenone
JP2538335B2 (en) Process for producing aromatic amines
JP2003528846A (en) Process for preparing N-butyryl-4-amino-3-methyl-benzoic acid methyl ester and novel compound N- (4-bromo-2-methylphenyl) -butanamide
JPH0399065A (en) Preparation of imidazole compound